- int i=0;
- int peak=0;
- int low=128;
- int clk[]={16,32,40,50,64,100,128,256};
- int loopCnt = 256; //don't need to loop through entire array...
- if (size<loopCnt) loopCnt = size;
-
- //if we already have a valid clock quit
- for (;i<8;++i)
- if (clk[i]==clock) return clock;
-
- //get high and low peak
- for (i=0;i<loopCnt;++i){
- if(dest[i]>peak){
- peak = dest[i];
- }
- if(dest[i]<low){
- low = dest[i];
- }
- }
- peak=(int)((peak-128)*.75)+128;
- low= (int)((low-128)*.75)+128;
- int ii;
- int clkCnt;
- int tol = 0;
- int bestErr=1000;
- int errCnt[]={0,0,0,0,0,0,0,0};
- //test each valid clock from smallest to greatest to see which lines up
- for(clkCnt=0; clkCnt<6;++clkCnt){
- if (clk[clkCnt]==32){
- tol=1;
- }else{
- tol=0;
- }
- bestErr=1000;
- //try lining up the peaks by moving starting point (try first 256)
- for (ii=0; ii<loopCnt; ++ii){
- if ((dest[ii]>=peak) || (dest[ii]<=low)){
- errCnt[clkCnt]=0;
- // now that we have the first one lined up test rest of wave array
- for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){
- if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
- }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
- }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
- }else{ //error no peak detected
- errCnt[clkCnt]++;
- }
- }
- //if we found no errors this is correct one - return this clock
- if(errCnt[clkCnt]==0) return clk[clkCnt];
- //if we found errors see if it is lowest so far and save it as best run
- if(errCnt[clkCnt]<bestErr) bestErr=errCnt[clkCnt];
- }
- }
- }
- int iii=0;
- int best=0;
- for (iii=0; iii<6;++iii){
- if (errCnt[iii]<errCnt[best]){
- best = iii;
- }
- }
- return clk[best];
+ int i=0;
+ int peak=0;
+ int low=255;
+ int clk[]={16,32,40,50,64,100,128,256};
+ int loopCnt = 256; //don't need to loop through entire array...
+ if (size<loopCnt) loopCnt = size;
+
+ //if we already have a valid clock quit
+ for (;i<8;++i)
+ if (clk[i] == clock) return clock;
+
+ //get high and low peak
+ for (i=0; i < loopCnt; ++i){
+ if(dest[i] > peak){
+ peak = dest[i];
+ }
+ if(dest[i] < low){
+ low = dest[i];
+ }
+ }
+ peak=(int)(((peak-128)*.75)+128);
+ low= (int)(((low-128)*.75)+128);
+ int ii;
+ int clkCnt;
+ int tol = 0;
+ int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000};
+ int errCnt=0;
+ //test each valid clock from smallest to greatest to see which lines up
+ for(clkCnt=0; clkCnt < 6; ++clkCnt){
+ if (clk[clkCnt] == 32){
+ tol=1;
+ }else{
+ tol=0;
+ }
+ bestErr[clkCnt]=1000;
+ //try lining up the peaks by moving starting point (try first 256)
+ for (ii=0; ii< loopCnt; ++ii){
+ if ((dest[ii] >= peak) || (dest[ii] <= low)){
+ errCnt=0;
+ // now that we have the first one lined up test rest of wave array
+ for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){
+ if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
+ }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
+ }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
+ }else{ //error no peak detected
+ errCnt++;
+ }
+ }
+ //if we found no errors this is correct one - return this clock
+ if(errCnt==0) return clk[clkCnt];
+ //if we found errors see if it is lowest so far and save it as best run
+ if(errCnt<bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
+ }
+ }
+ }
+ int iii=0;
+ int best=0;
+ for (iii=0; iii<7;++iii){
+ if (bestErr[iii]<bestErr[best]){
+ // current best bit to error ratio vs new bit to error ratio
+ if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){
+ best = iii;
+ }
+ }
+ }
+ return clk[best];
+}
+
+//by marshmellow
+//detect psk clock by reading #peaks vs no peaks(or errors)
+int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
+{
+ int i=0;
+ int peak=0;
+ int low=255;
+ int clk[]={16,32,40,50,64,100,128,256};
+ int loopCnt = 2048; //don't need to loop through entire array...
+ if (size<loopCnt) loopCnt = size;
+
+ //if we already have a valid clock quit
+ for (; i < 8; ++i)
+ if (clk[i] == clock) return clock;
+
+ //get high and low peak
+ for (i=0; i < loopCnt; ++i){
+ if(dest[i] > peak){
+ peak = dest[i];
+ }
+ if(dest[i] < low){
+ low = dest[i];
+ }
+ }
+ peak=(int)(((peak-128)*.75)+128);
+ low= (int)(((low-128)*.75)+128);
+ //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
+ int ii;
+ uint8_t clkCnt;
+ uint8_t tol = 0;
+ int peakcnt=0;
+ int errCnt=0;
+ int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
+ int peaksdet[]={0,0,0,0,0,0,0,0,0};
+ //test each valid clock from smallest to greatest to see which lines up
+ for(clkCnt=0; clkCnt < 6; ++clkCnt){
+ if (clk[clkCnt] == 32){
+ tol=1;
+ }else{
+ tol=0;
+ }
+ //try lining up the peaks by moving starting point (try first 256)
+ for (ii=0; ii< loopCnt; ++ii){
+ if ((dest[ii] >= peak) || (dest[ii] <= low)){
+ errCnt=0;
+ peakcnt=0;
+ // now that we have the first one lined up test rest of wave array
+ for (i=0; i < ((int)(size/clk[clkCnt])-1); ++i){
+ if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
+ peakcnt++;
+ }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
+ peakcnt++;
+ }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
+ peakcnt++;
+ }else{ //error no peak detected
+ errCnt++;
+ }
+ }
+ if(peakcnt>peaksdet[clkCnt]) {
+ peaksdet[clkCnt]=peakcnt;
+ bestErr[clkCnt]=errCnt;
+ }
+ }
+ }
+ }
+ int iii=0;
+ int best=0;
+ //int ratio2; //debug
+ int ratio;
+ //int bits;
+ for (iii=0; iii < 7; ++iii){
+ ratio=1000;
+ //ratio2=1000; //debug
+ //bits=size/clk[iii]; //debug
+ if (peaksdet[iii] > 0){
+ ratio=bestErr[iii]/peaksdet[iii];
+ if (((bestErr[best]/peaksdet[best]) > (ratio)+1)){
+ best = iii;
+ }
+ //ratio2=bits/peaksdet[iii]; //debug
+ }
+ //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2);
+ }
+ return clk[best];
+}
+
+//by marshmellow (attempt to get rid of high immediately after a low)
+void pskCleanWave(uint8_t *bitStream, size_t size)
+{
+ int i;
+ int low=255;
+ int high=0;
+ int gap = 4;
+ // int loopMax = 2048;
+ int newLow=0;
+ int newHigh=0;
+ for (i=0; i < size; ++i){
+ if (bitStream[i] < low) low=bitStream[i];
+ if (bitStream[i] > high) high=bitStream[i];
+ }
+ high = (int)(((high-128)*.80)+128);
+ low = (int)(((low-128)*.90)+128);
+ //low = (uint8_t)(((int)(low)-128)*.80)+128;
+ for (i=0; i < size; ++i){
+ if (newLow == 1){
+ bitStream[i]=low+8;
+ gap--;
+ if (gap == 0){
+ newLow=0;
+ gap=4;
+ }
+ }else if (newHigh == 1){
+ bitStream[i]=high-8;
+ gap--;
+ if (gap == 0){
+ newHigh=0;
+ gap=4;
+ }
+ }
+ if (bitStream[i] <= low) newLow=1;
+ if (bitStream[i] >= high) newHigh=1;
+ }
+ return;
+}
+
+
+//redesigned by marshmellow adjusted from existing decode functions
+//indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
+int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
+{
+ //26 bit 40134 format (don't know other formats)
+ int i;
+ int long_wait=29;//29 leading zeros in format
+ int start;
+ int first = 0;
+ int first2 = 0;
+ int bitCnt = 0;
+ int ii;
+ // Finding the start of a UID
+ for (start = 0; start <= *size - 250; start++) {
+ first = bitStream[start];
+ for (i = start; i < start + long_wait; i++) {
+ if (bitStream[i] != first) {
+ break;
+ }
+ }
+ if (i == (start + long_wait)) {
+ break;
+ }
+ }
+ if (start == *size - 250 + 1) {
+ // did not find start sequence
+ return -1;
+ }
+ // Inverting signal if needed
+ if (first == 1) {
+ for (i = start; i < *size; i++) {
+ bitStream[i] = !bitStream[i];
+ }
+ *invert = 1;
+ }else *invert=0;
+
+ int iii;
+ //found start once now test length by finding next one
+ for (ii=start+29; ii <= *size - 250; ii++) {
+ first2 = bitStream[ii];
+ for (iii = ii; iii < ii + long_wait; iii++) {
+ if (bitStream[iii] != first2) {
+ break;
+ }
+ }
+ if (iii == (ii + long_wait)) {
+ break;
+ }
+ }
+ if (ii== *size - 250 + 1){
+ // did not find second start sequence
+ return -2;
+ }
+ bitCnt=ii-start;
+
+ // Dumping UID
+ i = start;
+ for (ii = 0; ii < bitCnt; ii++) {
+ bitStream[ii] = bitStream[i++];
+ }
+ *size=bitCnt;
+ return 1;