//un_comment to allow debug print calls when used not on device
void dummy(char *fmt, ...){}
-
+void dummy_sgc (int clock, int startidx) {}
#ifndef ON_DEVICE
-# include "ui.h"
+# include "ui.h" // plotclock, plotclockstartindex
# include "cmdparser.h"
# include "cmddata.h"
# define prnt PrintAndLog
+# define sgc SetGraphClock
+void SetGraphClock(int clock, int startidx){
+ PlotClock = clock;
+ PlockClockStartIndex = startidx;
+}
#else
- uint8_t g_debugMode=0;
+ uint8_t g_debugMode = 0;
# define prnt dummy
+# define sgc dummy_sgc
#endif
//test samples are not just noise
uint8_t justNoise(uint8_t *bits, size_t size) {
#define THRESHOLD 123
uint8_t val = 1;
- for(size_t idx=0; idx < size && val ;idx++)
+ for(size_t idx = 0; idx < size && val; idx++)
val = bits[idx] < THRESHOLD;
return val;
}
int Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
{
// sanity check
+ if (*size < 64) return -3;
if (BitStream[1] > 1) return -1;
uint8_t fmtlen;
// preamble 0111111111
// include 0 in front to help get start pos
uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
- if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx))
+ if (!preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx))
return -2;
- if (*size < 64) return -3;
+
+ //XL and normal size.
+ if (*size != 64 && *size != 128) return -3;
- fmtlen = (*size == 110) ? 22 : 10;
+ fmtlen = (*size == 128) ? 22 : 10;
//skip last 4bit parity row for simplicity
*size = removeParity(BitStream, *startIdx + sizeof(preamble), 5, 0, fmtlen * 5);
{
if (*size==0) return -1;
int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
-
if (*clk==0 || start < 0) return -3;
if (*invert != 1) *invert = 0;
if (amp==1) askAmp(BinStream, *size);
if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp);
+ sgc(*clk, start);
+
uint8_t initLoopMax = 255;
if (initLoopMax > *size) initLoopMax = *size;
// Detect high and lows
// by marshmellow
// to help detect clocks on heavily clipped samples
// based on count of low to low
-int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
+int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low, int *clock)
{
- uint8_t fndClk[] = {8,16,32,40,50,64,128};
+ uint8_t clocks[] = {8,16,32,40,50,64,128};
size_t startwave;
size_t i = 100;
size_t minClk = 255;
- // get to first full low to prime loop and skip incomplete first pulse
+ int shortestWaveIdx = 0;
+ // get to first full low to prime loop and skip incomplete first pulse
while ((dest[i] < high) && (i < size))
++i;
while ((dest[i] > low) && (i < size))
while ((dest[i] > low) && (i < size))
++i;
//get minimum measured distance
- if (i-startwave < minClk && i < size)
+ if (i-startwave < minClk && i < size) {
minClk = i - startwave;
+ shortestWaveIdx = startwave;
+ }
}
// set clock
if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
- if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
- return fndClk[clkCnt];
+ if (minClk >= clocks[clkCnt]-(clocks[clkCnt]/8) && minClk <= clocks[clkCnt]+1)
+ *clock = clocks[clkCnt];
+ return shortestWaveIdx;
}
return 0;
}
// return start index of best starting position for that clock and return clock (by reference)
int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
{
- size_t i=1;
+ size_t i = 1;
uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
uint8_t clkEnd = 9;
uint8_t loopCnt = 255; //don't need to loop through entire array...
- if (size <= loopCnt+60) return -1; //not enough samples
+ if (size <= loopCnt + 60) return -1; //not enough samples
size -= 60; //sometimes there is a strange end wave - filter out this....
//if we already have a valid clock
- uint8_t clockFnd=0;
- for (;i<clkEnd;++i)
+ uint8_t clockFnd = 0;
+ for (; i < clkEnd; ++i)
if (clk[i] == *clock) clockFnd = i;
//clock found but continue to find best startpos
//test for large clean peaks
if (!clockFnd){
if (DetectCleanAskWave(dest, size, peak, low)==1){
- int ans = DetectStrongAskClock(dest, size, peak, low);
- if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
- for (i=clkEnd-1; i>0; i--){
- if (clk[i] == ans) {
- *clock = ans;
- //clockFnd = i;
- return 0; // for strong waves i don't use the 'best start position' yet...
- //break; //clock found but continue to find best startpos [not yet]
- }
+ int ans = DetectStrongAskClock(dest, size, peak, low, clock);
+ if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %i, ShortestWave: %i", clock ,ans);
+ if (ans > 0){
+ return ans; // return shortest wave start pos
}
}
}
size_t errCnt = 0;
size_t arrLoc, loopEnd;
- if (clockFnd>0) {
+ if (clockFnd > 0) {
clkCnt = clockFnd;
clkEnd = clockFnd+1;
} else {
- clkCnt=1;
+ clkCnt = 1;
}
//test each valid clock from smallest to greatest to see which lines up
- for(; clkCnt < clkEnd; clkCnt++) {
+ for (; clkCnt < clkEnd; clkCnt++) {
if (clk[clkCnt] <= 32) {
tol=1;
} else {
if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d", clk[k], bestErr[k], clk[best], bestStart[best]);
}
if (!clockFnd) *clock = clk[best];
+
return bestStart[best];
}
+int DetectPSKClock(uint8_t dest[], size_t size, int clock) {
+ int firstPhaseShift = 0;
+ return DetectPSKClock_ext(dest, size, clock, &firstPhaseShift);
+}
+
//by marshmellow
//detect psk clock by reading each phase shift
// a phase shift is determined by measuring the sample length of each wave
-int DetectPSKClock(uint8_t dest[], size_t size, int clock)
-{
- uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
+int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseShift) {
+ uint8_t clk[] = {255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
uint16_t loopCnt = 4096; //don't need to loop through entire array...
- if (size == 0) return 0;
- if (size<loopCnt) loopCnt = size-20;
//if we already have a valid clock quit
size_t i=1;
for (; i < 8; ++i)
if (clk[i] == clock) return clock;
+ if (size < 160+20) return 0;
+ // size must be larger than 20 here, and 160 later on.
+ if (size < loopCnt) loopCnt = size-20;
+
size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
- uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
- uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
+ uint16_t bestErr[] = {1000,1000,1000,1000,1000,1000,1000,1000,1000};
+ uint16_t peaksdet[] = {0,0,0,0,0,0,0,0,0};
fc = countFC(dest, size, 0);
if (fc!=2 && fc!=4 && fc!=8) return -1;
if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
//find first full wave
- for (i=160; i<loopCnt; i++){
+ for (i=160; i < loopCnt; i++){
if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
if (waveStart == 0) {
waveStart = i+1;
}
}
}
- if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
+ *firstPhaseShift = firstFullWave;
+ if (g_debugMode == 2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
//test each valid clock from greatest to smallest to see which lines up
- for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
+ for (clkCnt=7; clkCnt >= 1 ; clkCnt--){
lastClkBit = firstFullWave; //set end of wave as clock align
waveStart = 0;
errCnt=0;
}
}
}
- if (errCnt == 0){
- return clk[clkCnt];
- }
- if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
- if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
+ if (errCnt == 0) return clk[clkCnt];
+ if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt] = errCnt;
+ if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt] = peakcnt;
}
//all tested with errors
//return the highest clk with the most peaks found
- uint8_t best=7;
- for (i=7; i>=1; i--){
- if (peaksdet[i] > peaksdet[best]) {
+ uint8_t best = 7;
+ for (i=7; i >= 1; i--){
+ if (peaksdet[i] > peaksdet[best])
best = i;
- }
+
if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
}
return clk[best];
return lowestTransition;
}
+int DetectNRZClock(uint8_t dest[], size_t size, int clock) {
+ int bestStart = 0;
+ return DetectNRZClock_ext(dest, size, clock, &bestStart);
+}
+
//by marshmellow
//detect nrz clock by reading #peaks vs no peaks(or errors)
-int DetectNRZClock(uint8_t dest[], size_t size, int clock)
-{
- size_t i=0;
- uint8_t clk[]={8,16,32,40,50,64,100,128,255};
+int DetectNRZClock_ext(uint8_t dest[], size_t size, int clock, int *clockStartIdx) {
+ size_t i = 0;
+ uint8_t clk[] = {8,16,32,40,50,64,100,128,255};
size_t loopCnt = 4096; //don't need to loop through entire array...
- if (size == 0) return 0;
- if (size<loopCnt) loopCnt = size-20;
+
//if we already have a valid clock quit
for (; i < 8; ++i)
if (clk[i] == clock) return clock;
+
+ if (size < 20) return 0;
+ // size must be larger than 20 here
+ if (size < loopCnt) loopCnt = size-20;
//get high and low peak
int peak, low;
if (!firstpeak) continue;
smplCnt++;
} else {
- firstpeak=true;
+ firstpeak = true;
if (smplCnt > 6 ){
if (maxPeak > smplCnt){
maxPeak = smplCnt;
}
peakcnt++;
//prnt("maxPk: %d, smplCnt: %d, peakcnt: %d",maxPeak,smplCnt,peakcnt);
- smplCnt=0;
+ smplCnt = 0;
}
}
}
uint8_t ignoreWindow = 4;
bool lastPeakHigh = 0;
int lastBit = 0;
- peakcnt=0;
+ int bestStart[] = {0,0,0,0,0,0,0,0,0};
+ peakcnt = 0;
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 8; ++clkCnt){
//ignore clocks smaller than smallest peak
if (dest[i] >= peak || dest[i] <= low) {
//if same peak don't count it
if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
- peakcnt++;
+ peakcnt++;
}
lastPeakHigh = (dest[i] >= peak);
bitHigh = true;
}
//else if not a clock bit and no peaks
} else if (dest[i] < peak && dest[i] > low){
- if (ignoreCnt==0){
+ if (ignoreCnt == 0){
bitHigh=false;
- if (errBitHigh==true) peakcnt--;
+ if (errBitHigh==true)
+ peakcnt--;
errBitHigh=false;
} else {
ignoreCnt--;
errBitHigh=true;
}
}
- if(peakcnt>peaksdet[clkCnt]) {
- peaksdet[clkCnt]=peakcnt;
+ if (peakcnt > peaksdet[clkCnt]) {
+ bestStart[clkCnt]=ii;
+ peaksdet[clkCnt] = peakcnt;
}
}
}
}
- int iii=7;
- uint8_t best=0;
- for (iii=7; iii > 0; iii--){
- if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
- if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
- best = iii;
- }
- } else if (peaksdet[iii] > peaksdet[best]){
- best = iii;
+
+ uint8_t best = 0;
+ for (int m = 7; m > 0; m--){
+ if ((peaksdet[m] >= (peaksdet[best]-1)) && (peaksdet[m] <= peaksdet[best]+1) && lowestTransition) {
+ if (clk[m] > (lowestTransition - (clk[m]/8)) && clk[m] < (lowestTransition + (clk[m]/8))) {
+ best = m;
+ }
+ } else if (peaksdet[m] > peaksdet[best]){
+ best = m;
}
- if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
+ if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d", clk[m], peaksdet[m], maxPeak, clk[best], lowestTransition);
}
-
+ *clockStartIdx = bestStart[best];
return clk[best];
}
return 0;
}
+uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) {
+ int firstClockEdge = 0;
+ return detectFSKClk_ext(BitStream, size, fcHigh, fcLow, &firstClockEdge);
+}
+
//by marshmellow
//detects the bit clock for FSK given the high and low Field Clocks
-uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
-{
+uint8_t detectFSKClk_ext(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow, int *firstClockEdge) {
uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
rfLens[rfLensFnd++] = rfCounter;
}
} else {
+ *firstClockEdge = i;
firstBitFnd++;
}
rfCounter=0;
return errCnt;
}
+bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
+ size_t ststart = 0, stend = 0;
+ return DetectST_ext(buffer, size, foundclock, &ststart, &stend);
+}
+
//by marshmellow
//attempt to identify a Sequence Terminator in ASK modulated raw wave
-bool DetectST(uint8_t buffer[], size_t *size, int *foundclock) {
+bool DetectST_ext(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststart, size_t *stend) {
size_t bufsize = *size;
//need to loop through all samples and identify our clock, look for the ST pattern
uint8_t fndClk[] = {8,16,32,40,50,64,128};
size_t newloc = 0;
i=0;
if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen);
-
+ bool firstrun = true;
// warning - overwriting buffer given with raw wave data with ST removed...
while ( dataloc < bufsize-(clk/2) ) {
//compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
buffer[dataloc] = buffer[dataloc+2];
buffer[dataloc+1] = buffer[dataloc+2];
}
+ if (firstrun) {
+ *stend = dataloc;
+ *ststart = dataloc-(clk*4);
+ firstrun=false;
+ }
for (i=0; i<datalen; ++i) {
if (i+newloc < bufsize) {
if (i+newloc < dataloc)