#include "lfdemod.h"
#include "lfsampling.h"
#include "protocols.h"
-#include "usb_cdc.h" //test
+#include "usb_cdc.h" // for usb_poll_validate_length
+
+#ifndef SHORT_COIL
+# define SHORT_COIL() LOW(GPIO_SSC_DOUT)
+#endif
+#ifndef OPEN_COIL
+# define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
+#endif
/**
* Function to do a modulation and then get samples.
* @param delay_off
- * @param period_0
- * @param period_1
+ * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1
+ * @param useHighFreg
* @param command
*/
-void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
+void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t periods, uint32_t useHighFreq, uint8_t *command)
{
+ /* Make sure the tag is reset */
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ SpinDelay(200);
- int divisor_used = 95; // 125 KHz
- // see if 'h' was specified
-
- if (command[strlen((char *) command) - 1] == 'h')
- divisor_used = 88; // 134.8 KHz
-
+ uint16_t period_0 = periods >> 16;
+ uint16_t period_1 = periods & 0xFFFF;
+
+ // 95 == 125 KHz 88 == 134.8 KHz
+ int divisor_used = (useHighFreq) ? 88 : 95;
sample_config sc = { 0,0,1, divisor_used, 0};
setSamplingConfig(&sc);
- /* Make sure the tag is reset */
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(2500);
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
LFSetupFPGAForADC(sc.divisor, 1);
// And a little more time for the tag to fully power up
- SpinDelay(2000);
+ SpinDelay(50);
// now modulate the reader field
while(*command != '\0' && *command != ' ') {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
- SpinDelayUs(delay_off);
+ WaitUS(delay_off);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
LED_D_ON();
if(*(command++) == '0')
- SpinDelayUs(period_0);
+ WaitUS(period_0);
else
- SpinDelayUs(period_1);
+ WaitUS(period_1);
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
- SpinDelayUs(delay_off);
+ WaitUS(delay_off);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
-
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// now do the read
DoAcquisition_config(false);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
/* blank r/w tag data stream
*/
void ReadTItag(void)
{
+ StartTicks();
// some hardcoded initial params
// when we read a TI tag we sample the zerocross line at 2Mhz
// TI tags modulate a 1 as 16 cycles of 123.2Khz
DbpString("Info: CRC is good");
}
}
+ StopTicks();
}
void WriteTIbyte(uint8_t b)
// modulate 8 bits out to the antenna
for (i=0; i<8; i++)
{
- if (b&(1<<i)) {
- // stop modulating antenna
+ if ( b & ( 1 << i ) ) {
+ // stop modulating antenna 1ms
LOW(GPIO_SSC_DOUT);
- SpinDelayUs(1000);
- // modulate antenna
- HIGH(GPIO_SSC_DOUT);
- SpinDelayUs(1000);
+ WaitUS(1000);
+ // modulate antenna 1ms
+ HIGH(GPIO_SSC_DOUT);
+ WaitUS(1000);
} else {
- // stop modulating antenna
+ // stop modulating antenna 1ms
LOW(GPIO_SSC_DOUT);
- SpinDelayUs(300);
- // modulate antenna
+ WaitUS(300);
+ // modulate antenna 1m
HIGH(GPIO_SSC_DOUT);
- SpinDelayUs(1700);
+ WaitUS(1700);
}
}
}
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
AT91C_BASE_SSC->SSC_TCMR = 0;
AT91C_BASE_SSC->SSC_TFMR = 0;
-
+ // iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
LED_D_ON();
// modulate antenna
HIGH(GPIO_SSC_DOUT);
// Charge TI tag for 50ms.
- SpinDelay(50);
+ WaitMS(50);
// stop modulating antenna and listen
LOW(GPIO_SSC_DOUT);
// whether we're modulating the antenna (high)
// or listening to the antenna (low)
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+ StartTicks();
+
LED_A_ON();
-
+
// steal this pin from the SSP and use it to control the modulation
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
// finally end with 0x0300 (write frame)
// all data is sent lsb first
- // finish with 15ms programming time
+ // finish with 50ms programming time
// modulate antenna
HIGH(GPIO_SSC_DOUT);
- SpinDelay(50); // charge time
+ WaitMS(50); // charge time
WriteTIbyte(0xbb); // keyword
WriteTIbyte(0xeb); // password
WriteTIbyte(0x00); // write frame lo
WriteTIbyte(0x03); // write frame hi
HIGH(GPIO_SSC_DOUT);
- SpinDelay(50); // programming time
+ WaitMS(50); // programming time
LED_A_OFF();
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- DbpString("Now use 'lf ti read' to check");
+ DbpString("Now use `lf ti read` to check");
+ StopTicks();
}
void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
{
- int i;
- uint8_t *tab = BigBuf_get_addr();
+ int i = 0;
+ uint8_t *buf = BigBuf_get_addr();
- FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+ //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
+ //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
+ //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE );
+
+ // set frequency, get values from 'lf config' command
+ sample_config *sc = getSamplingConfig();
+ if ( (sc->divisor == 1) || (sc->divisor < 0) || (sc->divisor > 255) )
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+ else if (sc->divisor == 0)
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+ else
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
+
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
- #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
- #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
-
- i = 0;
+ // power on antenna
+ OPEN_COIL();
+ // charge time
+ WaitMS(50);
+
for(;;) {
- //wait until SSC_CLK goes HIGH
+ WDT_HIT();
+
+ if (ledcontrol) LED_D_ON();
+
+ // wait until SSC_CLK goes HIGH
+ // used as a simple detection of a reader field?
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
- if(BUTTON_PRESS() || usb_poll_validate_length() ) {
- DbpString("Stopped");
- return;
- }
WDT_HIT();
+ if ( usb_poll_validate_length() || BUTTON_PRESS() )
+ goto OUT;
}
- if (ledcontrol) LED_D_ON();
-
- if(tab[i])
+
+ if(buf[i])
OPEN_COIL();
else
SHORT_COIL();
-
- if (ledcontrol) LED_D_OFF();
-
+
//wait until SSC_CLK goes LOW
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
- if( BUTTON_PRESS() || usb_poll_validate_length() ) {
- DbpString("Stopped");
- return;
- }
WDT_HIT();
+ if ( usb_poll_validate_length() || BUTTON_PRESS() )
+ goto OUT;
}
-
+
i++;
if(i == period) {
-
i = 0;
if (gap) {
+ WDT_HIT();
SHORT_COIL();
SpinDelayUs(gap);
}
}
+
+ if (ledcontrol) LED_D_OFF();
}
+OUT:
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+ DbpString("Simulation stopped");
+ return;
}
#define DEBUG_FRAME_CONTENTS 1
// simulate a HID tag until the button is pressed
void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
{
- int n=0, i=0;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ set_tracing(FALSE);
+
+ int n = 0, i = 0;
/*
HID tag bitstream format
The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
*/
- if (hi>0xFFF) {
+ if (hi > 0xFFF) {
DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
return;
}
fc(8, &n); fc(10, &n); // high-low transition
}
}
-
+ WDT_HIT();
+
if (ledcontrol) LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
if (ledcontrol) LED_A_OFF();
// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
{
- int ledcontrol=1;
- int n=0, i=0;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ // free eventually allocated BigBuf memory
+ BigBuf_free(); BigBuf_Clear_ext(false);
+ clear_trace();
+ set_tracing(FALSE);
+
+ int ledcontrol = 1, n = 0, i = 0;
uint8_t fcHigh = arg1 >> 8;
uint8_t fcLow = arg1 & 0xFF;
uint16_t modCnt = 0;
uint8_t invert = (arg2 >> 8) & 1;
for (i=0; i<size; i++){
- if (BitStream[i] == invert){
+
+ if (BitStream[i] == invert)
fcAll(fcLow, &n, clk, &modCnt);
- } else {
+ else
fcAll(fcHigh, &n, clk, &modCnt);
- }
}
- Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
+ WDT_HIT();
+
+ Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh, fcLow, clk, invert, n);
if (ledcontrol) LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
memset(dest+(*n), c ^ *phase, clock);
*phase ^= 1;
}
+ *n += clock;
+}
+static void stAskSimBit(int *n, uint8_t clock) {
+ uint8_t *dest = BigBuf_get_addr();
+ uint8_t halfClk = clock/2;
+ //ST = .5 high .5 low 1.5 high .5 low 1 high
+ memset(dest+(*n), 1, halfClk);
+ memset(dest+(*n) + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock, 1, clock + halfClk);
+ memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
+ memset(dest+(*n) + clock*3, 1, clock);
+ *n += clock*4;
}
// args clock, ask/man or askraw, invert, transmission separator
void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
{
- int ledcontrol = 1;
- int n=0, i=0;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ set_tracing(FALSE);
+
+ int ledcontrol = 1, n = 0, i = 0;
uint8_t clk = (arg1 >> 8) & 0xFF;
uint8_t encoding = arg1 & 0xFF;
uint8_t separator = arg2 & 1;
uint8_t invert = (arg2 >> 8) & 1;
- if (encoding==2){ //biphase
- uint8_t phase=0;
+ if (encoding == 2){ //biphase
+ uint8_t phase = 0;
for (i=0; i<size; i++){
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
}
- if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
+ if (phase == 1) { //run a second set inverted to keep phase in check
for (i=0; i<size; i++){
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
}
for (i=0; i<size; i++){
askSimBit(BitStream[i]^invert, &n, clk, encoding);
}
- if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
+ if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase)
for (i=0; i<size; i++){
askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
}
}
}
-
- if (separator==1) Dbprintf("sorry but separator option not yet available");
+ if (separator==1 && encoding == 1)
+ stAskSimBit(&n, clk);
+ else if (separator==1)
+ Dbprintf("sorry but separator option not yet available");
+ WDT_HIT();
+
Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
if (ledcontrol) LED_A_ON();
// args clock, carrier, invert,
void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
{
- int ledcontrol = 1;
- int n=0, i=0;
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+ set_tracing(FALSE);
+
+ int ledcontrol = 1, n = 0, i = 0;
uint8_t clk = arg1 >> 8;
uint8_t carrier = arg1 & 0xFF;
uint8_t invert = arg2 & 0xFF;
pskSimBit(carrier, &n, clk, &curPhase, TRUE);
}
}
+
+ WDT_HIT();
+
Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
if (ledcontrol) LED_A_ON();
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+
while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
- DoAcquisition_default(-1,true);
+ DoAcquisition_default(0, true);
// FSK demodulator
size = 50*128*2; //big enough to catch 2 sequences of largest format
idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
(unsigned int) lo,
(unsigned int) (lo>>1) & 0xFFFF
);
- }else { //standard HID tags 44/96 bits
+ } else { //standard HID tags 44/96 bits
uint8_t bitlen = 0;
uint32_t fc = 0;
uint32_t cardnum = 0;
if (ledcontrol) LED_A_OFF();
*high = hi;
*low = lo;
- return;
+ break;
}
// reset
}
hi2 = hi = lo = idx = 0;
WDT_HIT();
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
uint8_t *dest = BigBuf_get_addr();
size_t size;
int idx=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
size = removeParity(dest, idx+8, 4, 1, 88);
if (size != 66) continue;
- // ok valid card found!
// Index map
// 0 10 20 30 40 50 60
// 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
// bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
// |26 bit| |-117--| |-----142------|
+ //
+ // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000
+ // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx
+ // |50 bit| |----4000------||-----------2248975-------------|
+ //
// b = format bit len, o = odd parity of last 3 bits
// f = facility code, c = card number
// w = wiegand parity
- // (26 bit format shown)
uint32_t fc = 0;
uint32_t cardnum = 0;
uint32_t code1 = 0;
uint32_t code2 = 0;
uint8_t fmtLen = bytebits_to_byte(dest,8);
- if (fmtLen==26){
- fc = bytebits_to_byte(dest+9, 8);
- cardnum = bytebits_to_byte(dest+17, 16);
- code1 = bytebits_to_byte(dest+8,fmtLen);
- Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
- } else {
- cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
- if (fmtLen>32){
- code1 = bytebits_to_byte(dest+8,fmtLen-32);
- code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
- Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
- } else{
- code1 = bytebits_to_byte(dest+8,fmtLen);
- Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
- }
- }
- if (findone){
- if (ledcontrol) LED_A_OFF();
- return;
+ switch(fmtLen) {
+ case 26:
+ fc = bytebits_to_byte(dest + 9, 8);
+ cardnum = bytebits_to_byte(dest + 17, 16);
+ code1 = bytebits_to_byte(dest + 8,fmtLen);
+ Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
+ break;
+ case 50:
+ fc = bytebits_to_byte(dest + 9, 16);
+ cardnum = bytebits_to_byte(dest + 25, 32);
+ code1 = bytebits_to_byte(dest + 8, (fmtLen-32) );
+ code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32);
+ Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+ break;
+ default:
+ if (fmtLen > 32 ) {
+ cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+ code1 = bytebits_to_byte(dest+8,fmtLen-32);
+ code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
+ Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
+ } else {
+ cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
+ code1 = bytebits_to_byte(dest+8,fmtLen);
+ Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
+ }
+ break;
}
- // reset
+ if (findone)
+ break;
+
idx = 0;
WDT_HIT();
}
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
int clk=0, invert=0, errCnt=0, maxErr=20;
uint32_t hi=0;
uint64_t lo=0;
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
if (ledcontrol) LED_A_OFF();
*high=lo>>32;
*low=lo & 0xFFFFFFFF;
- return;
+ break;
}
}
WDT_HIT();
hi = lo = size = idx = 0;
clk = invert = errCnt = 0;
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
uint16_t number=0;
uint8_t crc = 0;
uint16_t calccrc = 0;
+
+ //clear read buffer
+ BigBuf_Clear_keep_EM();
+
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
// Checksum: 0x75
//XSF(version)facility:codeone+codetwo
//Handle the data
- if(findone){ //only print binary if we are doing one
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
- Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
- Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
- }
+ // if(findone){ //only print binary if we are doing one
+ // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+ // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+ // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+ // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+ // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+ // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+ // Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+ // }
code = bytebits_to_byte(dest+idx,32);
code2 = bytebits_to_byte(dest+idx+32,32);
version = bytebits_to_byte(dest+idx+27,8); //14,4
if (ledcontrol) LED_A_OFF();
*high=code;
*low=code2;
- return;
+ break;
}
code=code2=0;
version=facilitycode=0;
WDT_HIT();
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
* Q5 tags seems to have issues when these values changes.
*/
-#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
-#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
-#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
-#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
+#define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc)
+#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc)
+#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc)
+#define WRITE_1 54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550
#define READ_GAP 15*8
// VALUES TAKEN FROM EM4x function: SendForward
// WRITE_1 = 256 32*8; (32*8)
// These timings work for 4469/4269/4305 (with the 55*8 above)
-// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
+// WRITE_0 = 23*8 , 9*8
// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
// T0 = TIMER_CLOCK1 / 125000 = 192
// 1 Cycle = 8 microseconds(us) == 1 field clock
-void TurnReadLFOn(int delay) {
+// new timer:
+// = 1us = 1.5ticks
+// 1fc = 8us = 12ticks
+void TurnReadLFOn(uint32_t delay) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- // Give it a bit of time for the resonant antenna to settle.
// measure antenna strength.
//int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
- // where to save it
-
- SpinDelayUs(delay);
+
+ // Give it a bit of time for the resonant antenna to settle.
+ WaitUS(delay);
}
// Write one bit to card
else
TurnReadLFOn(WRITE_1);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(WRITE_GAP);
+ WaitUS(WRITE_GAP);
}
// Send T5577 reset command then read stream (see if we can identify the start of the stream)
void T55xxResetRead(void) {
LED_A_ON();
//clear buffer now so it does not interfere with timing later
- BigBuf_Clear_ext(false);
+ BigBuf_Clear_keep_EM();
// Set up FPGA, 125kHz
LFSetupFPGAForADC(95, true);
// Trigger T55x7 in mode.
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
+ WaitUS(START_GAP);
// reset tag - op code 00
T55xxWriteBit(0);
// Trigger T55x7 in mode.
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
+ WaitUS(START_GAP);
// Opcode 10
T55xxWriteBit(1);
// Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
// so wait a little more)
TurnReadLFOn(20 * 1000);
- //could attempt to do a read to confirm write took
- // as the tag should repeat back the new block
- // until it is reset, but to confirm it we would
- // need to know the current block 0 config mode
+
+ //could attempt to do a read to confirm write took
+ // as the tag should repeat back the new block
+ // until it is reset, but to confirm it we would
+ // need to know the current block 0 config mode
// turn field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
bool RegReadMode = (Block == 0xFF);
//clear buffer now so it does not interfere with timing later
- BigBuf_Clear_ext(false);
+ BigBuf_Clear_keep_EM();
//make sure block is at max 7
Block &= 0x7;
// Set up FPGA, 125kHz to power up the tag
LFSetupFPGAForADC(95, true);
+ //SpinDelay(3);
// Trigger T55x7 Direct Access Mode with start gap
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
+ WaitUS(START_GAP);
// Opcode 1[page]
T55xxWriteBit(1);
// Send Block number (if direct access mode)
if (!RegReadMode)
- for (i = 0x04; i != 0; i >>= 1)
- T55xxWriteBit(Block & i);
+ for (i = 0x04; i != 0; i >>= 1)
+ T55xxWriteBit(Block & i);
// Turn field on to read the response
TurnReadLFOn(READ_GAP);
// Acquisition
- doT55x7Acquisition(12000);
+ doT55x7Acquisition(7679);
// Turn the field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
// Trigger T55x7 Direct Access Mode
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelayUs(START_GAP);
+ WaitUS(START_GAP);
// Opcode 10
T55xxWriteBit(1);
}
/*-------------- Cloning routines -----------*/
-
void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
// write last block first and config block last (if included)
for (uint8_t i = numblocks+startblock; i > startblock; i--)
if (longFMT){
// Ensure no more than 84 bits supplied
- if (hi2>0xFFFFF) {
+ if (hi2 > 0xFFFFF) {
DbpString("Tags can only have 84 bits.");
return;
}
data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
data[5] = manchesterEncode2Bytes(lo >> 16);
data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
- } else {
+ } else {
// Ensure no more than 44 bits supplied
- if (hi>0xFFF) {
+ if (hi > 0xFFF) {
DbpString("Tags can only have 44 bits.");
return;
}
data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
//TODO add selection of chip for Q5 or T55x7
- // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
+ // data[0] = (((50-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
LED_D_ON();
- // Program the data blocks for supplied ID
- // and the block 0 for HID format
WriteT55xx(data, 0, last_block+1);
-
LED_D_OFF();
-
- DbpString("DONE!");
}
void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
//TODO add selection of chip for Q5 or T55x7
- // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
+ //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
+ // data[0] = ( ((64-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
LED_D_ON();
// Program the data blocks for supplied ID
// and the block 0 config
WriteT55xx(data, 0, 3);
-
LED_D_OFF();
-
- DbpString("DONE!");
}
// Clone Indala 64-bit tag by UID to T55x7
// and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
//TODO add selection of chip for Q5 or T55x7
- // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
+ // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
WriteT55xx(data, 0, 3);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
// T5567WriteBlock(0x603E1042,0);
- DbpString("DONE!");
}
// Clone Indala 224-bit tag by UID to T55x7
void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
//TODO add selection of chip for Q5 or T55x7
- // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
+ // data[0] = (((32-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
WriteT55xx(data, 0, 8);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
// T5567WriteBlock(0x603E10E2,0);
- DbpString("DONE!");
}
// clone viking tag to T55xx
void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
- if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
+ //t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
+ if (Q5) data[0] = (((32-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
// Program the data blocks for supplied ID and the block 0 config
WriteT55xx(data, 0, 3);
LED_D_OFF();
LED_D_ON();
// Write EM410x ID
- uint32_t data[] = {0, (uint32_t)(id>>32), id & 0xFFFFFFFF};
+ uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
clock = (card & 0xFF00) >> 8;
clock = (clock == 0) ? 64 : clock;
}
data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
} else { //t5555 (Q5)
- clock = (clock-2)>>1; //n = (RF-2)/2
- data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
+ // t5555 (Q5) BITRATE = (RF-2)/2 (iceman)
+ data[0] = ( ((clock-2) >> 1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
}
-
+
WriteT55xx(data, 0, 3);
LED_D_OFF();
//-----------------------------------
// EM4469 / EM4305 routines
//-----------------------------------
-#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
-#define FWD_CMD_WRITE 0xA
-#define FWD_CMD_READ 0x9
+// Below given command set.
+// Commands are including the even parity, binary mirrored
+#define FWD_CMD_LOGIN 0xC
+#define FWD_CMD_WRITE 0xA
+#define FWD_CMD_READ 0x9
#define FWD_CMD_DISABLE 0x5
uint8_t forwardLink_data[64]; //array of forwarded bits
// WRITE_1 = 256 32*8; (32*8)
// These timings work for 4469/4269/4305 (with the 55*8 above)
-// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
+// WRITE_0 = 23*8 , 9*8
uint8_t Prepare_Cmd( uint8_t cmd ) {
uint8_t i;
line_parity = 0;
- for(i=0;i<6;i++) {
+ for( i=0; i<6; i++ ) {
*forward_ptr++ = addr;
line_parity ^= addr;
addr >>= 1;
//====================================================================
void SendForward(uint8_t fwd_bit_count) {
+// iceman, 21.3us increments for the USclock verification.
+// 55FC * 8us == 440us / 21.3 === 20.65 steps. could be too short. Go for 56FC instead
+// 32FC * 8us == 256us / 21.3 == 12.018 steps. ok
+// 16FC * 8us == 128us / 21.3 == 6.009 steps. ok
+
+#ifndef EM_START_GAP
+#define EM_START_GAP 60*8
+#endif
+#ifndef EM_ONE_GAP
+#define EM_ONE_GAP 32*8
+#endif
+#ifndef EM_ZERO_GAP
+# define EM_ZERO_GAP 16*8
+#endif
+
fwd_write_ptr = forwardLink_data;
fwd_bit_sz = fwd_bit_count;
- LED_D_ON();
-
// Set up FPGA, 125kHz
LFSetupFPGAForADC(95, true);
// force 1st mod pulse (start gap must be longer for 4305)
fwd_bit_sz--; //prepare next bit modulation
fwd_write_ptr++;
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(16*8); //16 cycles on (8us each)
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitUS(EM_START_GAP);
+ TurnReadLFOn(16);
- // now start writting
+ // now start writting with bitbanging the antenna.
while(fwd_bit_sz-- > 0) { //prepare next bit modulation
if(((*fwd_write_ptr++) & 1) == 1)
- SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
+ WaitUS(EM_ONE_GAP);
else {
- //These timings work for 4469/4269/4305 (with the 55*8 above)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- SpinDelayUs(23*8); //16-4 cycles off (8us each)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
- SpinDelayUs(9*8); //16 cycles on (8us each)
+ //These timings work for 4469/4269/4305
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ WaitUS(20);
+ TurnReadLFOn(12);
}
}
}
-void EM4xLogin(uint32_t Password) {
+void EM4xLogin(uint32_t pwd) {
+ uint8_t len;
+ forward_ptr = forwardLink_data;
+ len = Prepare_Cmd( FWD_CMD_LOGIN );
+ len += Prepare_Data( pwd & 0xFFFF, pwd >> 16 );
+ SendForward(len);
+ WaitMS(20); // no wait for login command.
+ // should receive
+ // 0000 1010 ok.
+ // 0000 0001 fail
+}
- uint8_t fwd_bit_count;
+void EM4xReadWord(uint8_t addr, uint32_t pwd, uint8_t usepwd) {
+
+ LED_A_ON();
+ uint8_t len;
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
+
+ /* should we read answer from Logincommand?
+ *
+ * should receive
+ * 0000 1010 ok.
+ * 0000 0001 fail
+ **/
+ if (usepwd) EM4xLogin(pwd);
forward_ptr = forwardLink_data;
- fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
- fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+ len = Prepare_Cmd( FWD_CMD_READ );
+ len += Prepare_Addr( addr );
+
+ SendForward(len);
- SendForward(fwd_bit_count);
+ WaitUS(400);
+ // Now do the acquisition
+ DoPartialAcquisition(20, true, 6000);
- //Wait for command to complete
- SpinDelay(20);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_A_OFF();
}
-void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-
- uint8_t fwd_bit_count;
- uint8_t *dest = BigBuf_get_addr();
- uint16_t bufsize = BigBuf_max_traceLen();
- uint32_t i = 0;
+void EM4xWriteWord(uint32_t flag, uint32_t data, uint32_t pwd) {
+ LED_A_ON();
+
+ bool usePwd = (flag & 0xF);
+ uint8_t addr = (flag >> 8) & 0xFF;
+ uint8_t len;
+
//clear buffer now so it does not interfere with timing later
BigBuf_Clear_ext(false);
-
- //If password mode do login
- if (PwdMode == 1) EM4xLogin(Pwd);
- forward_ptr = forwardLink_data;
- fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
- fwd_bit_count += Prepare_Addr( Address );
+ /* should we read answer from Logincommand?
+ *
+ * should receive
+ * 0000 1010 ok.
+ * 0000 0001 fail
+ **/
+ if (usePwd) EM4xLogin(pwd);
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
+ forward_ptr = forwardLink_data;
+ len = Prepare_Cmd( FWD_CMD_WRITE );
+ len += Prepare_Addr( addr );
+ len += Prepare_Data( data & 0xFFFF, data >> 16 );
- SendForward(fwd_bit_count);
+ SendForward(len);
- // Now do the acquisition
- i = 0;
- for(;;) {
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
- AT91C_BASE_SSC->SSC_THR = 0x43;
- }
- if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
- dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- ++i;
- if (i >= bufsize) break;
- }
- }
+ //Wait 20ms for write to complete?
+ WaitMS(6);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+ //Capture response if one exists
+ DoPartialAcquisition(20, true, 6000);
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
cmd_send(CMD_ACK,0,0,0,0,0);
- LED_D_OFF();
+ LED_A_OFF();
}
-void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+/*
+Reading a COTAG.
- uint8_t fwd_bit_count;
+COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
+because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
- //If password mode do login
- if (PwdMode == 1) EM4xLogin(Pwd);
+READER START SEQUENCE:
+burst 800 us, gap 2.2 msecs
+burst 3.6 msecs gap 2.2 msecs
+burst 800 us gap 2.2 msecs
+pulse 3.6 msecs
- forward_ptr = forwardLink_data;
- fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
- fwd_bit_count += Prepare_Addr( Address );
- fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+This triggers a COTAG tag to response
+*/
+void Cotag(uint32_t arg0) {
+#ifndef OFF
+# define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); }
+#endif
+#ifndef ON
+# define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
+#endif
+ uint8_t rawsignal = arg0 & 0xF;
+
+ LED_A_ON();
+
+ // Switching to LF image on FPGA. This might empty BigBuff
+ FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+ //clear buffer now so it does not interfere with timing later
+ BigBuf_Clear_ext(false);
+
+ // Set up FPGA, 132kHz to power up the tag
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
- SendForward(fwd_bit_count);
+ // Connect the A/D to the peak-detected low-frequency path.
+ SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+
+ // Now set up the SSC to get the ADC samples that are now streaming at us.
+ FpgaSetupSsc();
- //Wait for write to complete
- SpinDelay(20);
+ // start clock - 1.5ticks is 1us
+ StartTicks();
+
+ //send COTAG start pulse
+ ON(740) OFF
+ ON(3330) OFF
+ ON(740) OFF
+ ON(1000)
+
+ switch(rawsignal) {
+ case 0: doCotagAcquisition(50000); break;
+ case 1: doCotagAcquisitionManchester(); break;
+ case 2: DoAcquisition_config(TRUE); break;
+ }
+
+ // Turn the field off
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
- LED_D_OFF();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_A_OFF();
}
+
+/*
+* EM4305 support
+*/