//un_comment to allow debug print calls when used not on device
void dummy(char *fmt, ...){}
-
+void dummy_sgc (int clock, int startidx) {}
#ifndef ON_DEVICE
-# include "ui.h"
+# include "ui.h" // plotclock, plotclockstartindex
# include "cmdparser.h"
# include "cmddata.h"
# define prnt PrintAndLog
+# define sgc SetGraphClock
+void SetGraphClock(int clock, int startidx){
+ PlotClock = clock;
+ PlockClockStartIndex = startidx;
+}
#else
- uint8_t g_debugMode=0;
+ uint8_t g_debugMode = 0;
# define prnt dummy
+# define sgc dummy_sgc
#endif
//test samples are not just noise
uint8_t justNoise(uint8_t *bits, size_t size) {
#define THRESHOLD 123
uint8_t val = 1;
- for(size_t idx=0; idx < size && val ;idx++)
+ for(size_t idx = 0; idx < size && val; idx++)
val = bits[idx] < THRESHOLD;
return val;
}
{
if (*size==0) return -1;
int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
-
if (*clk==0 || start < 0) return -3;
if (*invert != 1) *invert = 0;
if (amp==1) askAmp(BinStream, *size);
if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp);
+ sgc(*clk, start);
+
uint8_t initLoopMax = 255;
if (initLoopMax > *size) initLoopMax = *size;
// Detect high and lows
// by marshmellow
// to help detect clocks on heavily clipped samples
// based on count of low to low
-int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
+int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low, int *clock)
{
- uint8_t fndClk[] = {8,16,32,40,50,64,128};
+ uint8_t clocks[] = {8,16,32,40,50,64,128};
size_t startwave;
size_t i = 100;
size_t minClk = 255;
- // get to first full low to prime loop and skip incomplete first pulse
+ int shortestWaveIdx = 0;
+ // get to first full low to prime loop and skip incomplete first pulse
while ((dest[i] < high) && (i < size))
++i;
while ((dest[i] > low) && (i < size))
while ((dest[i] > low) && (i < size))
++i;
//get minimum measured distance
- if (i-startwave < minClk && i < size)
+ if (i-startwave < minClk && i < size) {
minClk = i - startwave;
+ shortestWaveIdx = startwave;
+ }
}
// set clock
if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
- if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
- return fndClk[clkCnt];
+ if (minClk >= clocks[clkCnt]-(clocks[clkCnt]/8) && minClk <= clocks[clkCnt]+1) {
+ *clock = clocks[clkCnt];
+ return shortestWaveIdx;
+ }
}
return 0;
}
-void SetGraphClock( int clock, int startidx){
- PlotClock = clock;
- PlockClockStartIndex = startidx;
-}
// by marshmellow
// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
//test for large clean peaks
if (!clockFnd){
if (DetectCleanAskWave(dest, size, peak, low)==1){
- int ans = DetectStrongAskClock(dest, size, peak, low);
- if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
- for (i=clkEnd-1; i>0; i--){
- if (clk[i] == ans) {
- *clock = ans;
- //clockFnd = i;
- return 0; // for strong waves i don't use the 'best start position' yet...
- //break; //clock found but continue to find best startpos [not yet]
- }
+ int ans = DetectStrongAskClock(dest, size, peak, low, clock);
+ if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %i, ShortestWave: %i", clock ,ans);
+ if (ans > 0){
+ return ans; // return shortest wave start pos
}
}
}
if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d", clk[clkCnt], errCnt, ii, i);
if (errCnt==0 && clkCnt<7) {
if (!clockFnd) *clock = clk[clkCnt];
-
- SetGraphClock(*clock, ii);
return ii;
}
//if we found errors see if it is lowest so far and save it as best run
}
if (!clockFnd) *clock = clk[best];
- SetGraphClock(*clock, bestStart[best]);
return bestStart[best];
}
+int DetectPSKClock(uint8_t dest[], size_t size, int clock) {
+ int firstPhaseShift = 0;
+ return DetectPSKClock_ext(dest, size, clock, &firstPhaseShift);
+}
+
//by marshmellow
//detect psk clock by reading each phase shift
// a phase shift is determined by measuring the sample length of each wave
-int DetectPSKClock(uint8_t dest[], size_t size, int clock)
-{
+int DetectPSKClock_ext(uint8_t dest[], size_t size, int clock, int *firstPhaseShift) {
uint8_t clk[] = {255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
uint16_t loopCnt = 4096; //don't need to loop through entire array...
size_t i=1;
for (; i < 8; ++i)
if (clk[i] == clock) return clock;
-
+
if (size < 160+20) return 0;
-
// size must be larger than 20 here, and 160 later on.
- if (size < loopCnt) loopCnt = size-20;
+ if (size < loopCnt) loopCnt = size-20;
size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
}
}
}
+ *firstPhaseShift = firstFullWave;
if (g_debugMode == 2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
//test each valid clock from greatest to smallest to see which lines up
return lowestTransition;
}
+int DetectNRZClock(uint8_t dest[], size_t size, int clock) {
+ int bestStart = 0;
+ return DetectNRZClock_ext(dest, size, clock, &bestStart);
+}
+
//by marshmellow
//detect nrz clock by reading #peaks vs no peaks(or errors)
-//iceman: shouldn't param clock be reference? like DetectASKClock
-int DetectNRZClock(uint8_t dest[], size_t size, int clock)
-{
+int DetectNRZClock_ext(uint8_t dest[], size_t size, int clock, int *clockStartIdx) {
size_t i = 0;
uint8_t clk[] = {8,16,32,40,50,64,100,128,255};
size_t loopCnt = 4096; //don't need to loop through entire array...
uint8_t ignoreWindow = 4;
bool lastPeakHigh = 0;
int lastBit = 0;
+ int bestStart[] = {0,0,0,0,0,0,0,0,0};
peakcnt = 0;
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 8; ++clkCnt){
}
}
if (peakcnt > peaksdet[clkCnt]) {
+ bestStart[clkCnt]=ii;
peaksdet[clkCnt] = peakcnt;
}
}
}
if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d", clk[m], peaksdet[m], maxPeak, clk[best], lowestTransition);
}
-
+ *clockStartIdx = bestStart[best];
return clk[best];
}
return 0;
}
+uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) {
+ int firstClockEdge = 0;
+ return detectFSKClk_ext(BitStream, size, fcHigh, fcLow, &firstClockEdge);
+}
+
//by marshmellow
//detects the bit clock for FSK given the high and low Field Clocks
-uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
-{
+uint8_t detectFSKClk_ext(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow, int *firstClockEdge) {
uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
rfLens[rfLensFnd++] = rfCounter;
}
} else {
+ *firstClockEdge = i;
firstBitFnd++;
}
rfCounter=0;