]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/lfops.c
update change log for adjusted 14b write cmd
[proxmark3-svn] / armsrc / lfops.c
index cde4ae543f515f9a460c646f6a65d65bf90fe2e3..7e53d4a566173d97301f9e56ee1e5ad01a1ca15e 100644 (file)
 #include "hitag2.h"
 #include "crc16.h"
 #include "string.h"
+#include "lfdemod.h"
+#include "lfsampling.h"
+#include "usb_cdc.h"
 
-void AcquireRawAdcSamples125k(int at134khz)
-{
-       if (at134khz)
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-       else
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
 
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
-       // Connect the A/D to the peak-detected low-frequency path.
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
-       // Give it a bit of time for the resonant antenna to settle.
-       SpinDelay(50);
-
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
-
-       // Now call the acquisition routine
-       DoAcquisition125k();
-}
-
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(void)
+/**
+ * Function to do a modulation and then get samples.
+ * @param delay_off
+ * @param period_0
+ * @param period_1
+ * @param command
+ */
+void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
 {
-       uint8_t *dest = (uint8_t *)BigBuf;
-       int n = sizeof(BigBuf);
-       int i;
 
-       memset(dest, 0, n);
-       i = 0;
-       for(;;) {
-               if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-                       AT91C_BASE_SSC->SSC_THR = 0x43;
-                       LED_D_ON();
-               }
-               if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-                       dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-                       i++;
-                       LED_D_OFF();
-                       if (i >= n) break;
-               }
-       }
-       Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
-                       dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
-}
+       int divisor_used = 95; // 125 KHz
+       // see if 'h' was specified
 
-void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
-{
-       int at134khz;
+       if (command[strlen((char *) command) - 1] == 'h')
+               divisor_used = 88; // 134.8 KHz
+
+       sample_config sc = { 0,0,1, divisor_used, 0};
+       setSamplingConfig(&sc);
 
        /* Make sure the tag is reset */
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        SpinDelay(2500);
 
-       // see if 'h' was specified
-       if (command[strlen((char *) command) - 1] == 'h')
-               at134khz = TRUE;
-       else
-               at134khz = FALSE;
+       LFSetupFPGAForADC(sc.divisor, 1);
 
-       if (at134khz)
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-       else
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
-       // Give it a bit of time for the resonant antenna to settle.
-       SpinDelay(50);
        // And a little more time for the tag to fully power up
        SpinDelay(2000);
 
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
-
        // now modulate the reader field
        while(*command != '\0' && *command != ' ') {
                FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
                LED_D_OFF();
                SpinDelayUs(delay_off);
-               if (at134khz)
-                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-               else
-                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
 
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
                LED_D_ON();
                if(*(command++) == '0')
                        SpinDelayUs(period_0);
@@ -111,17 +65,16 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1,
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        LED_D_OFF();
        SpinDelayUs(delay_off);
-       if (at134khz)
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-       else
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
 
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
 
        // now do the read
-       DoAcquisition125k();
+       DoAcquisition_config(false);
 }
 
+
+
 /* blank r/w tag data stream
 ...0000000000000000 01111111
 1010101010101010101010101010101010101010101010101010101010101010
@@ -137,15 +90,12 @@ void ReadTItag(void)
        // when we read a TI tag we sample the zerocross line at 2Mhz
        // TI tags modulate a 1 as 16 cycles of 123.2Khz
        // TI tags modulate a 0 as 16 cycles of 134.2Khz
-       #define FSAMPLE 2000000
-       #define FREQLO 123200
-       #define FREQHI 134200
-
-       signed char *dest = (signed char *)BigBuf;
-       int n = sizeof(BigBuf);
-//     int *dest = GraphBuffer;
-//     int n = GraphTraceLen;
+ #define FSAMPLE 2000000
+ #define FREQLO 123200
+ #define FREQHI 134200
 
+       signed char *dest = (signed char *)BigBuf_get_addr();
+       uint16_t n = BigBuf_max_traceLen();
        // 128 bit shift register [shift3:shift2:shift1:shift0]
        uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
 
@@ -156,6 +106,7 @@ void ReadTItag(void)
        uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
 
        // TI tags charge at 134.2Khz
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
 
        // Place FPGA in passthrough mode, in this mode the CROSS_LO line
@@ -180,10 +131,10 @@ void ReadTItag(void)
 
                                // TI bits are coming to us lsb first so shift them
                                // right through our 128 bit right shift register
-                         shift0 = (shift0>>1) | (shift1 << 31);
-                         shift1 = (shift1>>1) | (shift2 << 31);
-                         shift2 = (shift2>>1) | (shift3 << 31);
-                         shift3 >>= 1;
+                               shift0 = (shift0>>1) | (shift1 << 31);
+                               shift1 = (shift1>>1) | (shift2 << 31);
+                               shift2 = (shift2>>1) | (shift3 << 31);
+                               shift3 >>= 1;
 
                                // check if the cycles fall close to the number
                                // expected for either the low or high frequency
@@ -218,18 +169,18 @@ void ReadTItag(void)
        if (cycles!=0xF0B) {
                DbpString("Info: No valid tag detected.");
        } else {
-         // put 64 bit data into shift1 and shift0
-         shift0 = (shift0>>24) | (shift1 << 8);
-         shift1 = (shift1>>24) | (shift2 << 8);
+               // put 64 bit data into shift1 and shift0
+               shift0 = (shift0>>24) | (shift1 << 8);
+               shift1 = (shift1>>24) | (shift2 << 8);
 
                // align 16 bit crc into lower half of shift2
-         shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
+               shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
 
                // if r/w tag, check ident match
-               if ( shift3&(1<<15) ) {
+               if (shift3 & (1<<15) ) {
                        DbpString("Info: TI tag is rewriteable");
                        // only 15 bits compare, last bit of ident is not valid
-                       if ( ((shift3>>16)^shift0)&0x7fff ) {
+                       if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
                                DbpString("Error: Ident mismatch!");
                        } else {
                                DbpString("Info: TI tag ident is valid");
@@ -244,7 +195,7 @@ void ReadTItag(void)
                // calculate CRC
                uint32_t crc=0;
 
-               crc = update_crc16(crc, (shift0)&0xff);
+               crc = update_crc16(crc, (shift0)&0xff);
                crc = update_crc16(crc, (shift0>>8)&0xff);
                crc = update_crc16(crc, (shift0>>16)&0xff);
                crc = update_crc16(crc, (shift0>>24)&0xff);
@@ -254,7 +205,7 @@ void ReadTItag(void)
                crc = update_crc16(crc, (shift1>>24)&0xff);
 
                Dbprintf("Info: Tag data: %x%08x, crc=%x",
-                       (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+                                (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
                if (crc != (shift2&0xffff)) {
                        Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
                } else {
@@ -293,10 +244,11 @@ void AcquireTiType(void)
        int i, j, n;
        // tag transmission is <20ms, sampling at 2M gives us 40K samples max
        // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
      #define TIBUFLEN 1250
+ #define TIBUFLEN 1250
 
        // clear buffer
-       memset(BigBuf,0,sizeof(BigBuf));
+       uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
+       memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
 
        // Set up the synchronous serial port
        AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
@@ -344,7 +296,7 @@ void AcquireTiType(void)
        AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
        AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
 
-       char *dest = (char *)BigBuf;
+       char *dest = (char *)BigBuf_get_addr();
        n = TIBUFLEN*32;
        // unpack buffer
        for (i=TIBUFLEN-1; i>=0; i--) {
@@ -363,8 +315,9 @@ void AcquireTiType(void)
 // if not provided a valid crc will be computed from the data and written.
 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 {
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
        if(crc == 0) {
-               crc = update_crc16(crc, (idlo)&0xff);
+               crc = update_crc16(crc, (idlo)&0xff);
                crc = update_crc16(crc, (idlo>>8)&0xff);
                crc = update_crc16(crc, (idlo>>16)&0xff);
                crc = update_crc16(crc, (idlo>>24)&0xff);
@@ -374,7 +327,7 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
                crc = update_crc16(crc, (idhi>>24)&0xff);
        }
        Dbprintf("Writing to tag: %x%08x, crc=%x",
-               (unsigned int) idhi, (unsigned int) idlo, crc);
+                       (unsigned int) idhi, (unsigned int) idlo, crc);
 
        // TI tags charge at 134.2Khz
        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
@@ -432,39 +385,40 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
 {
        int i;
-       uint8_t *tab = (uint8_t *)BigBuf;
-    
+       uint8_t *tab = BigBuf_get_addr();
+
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
-    
+
        AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
-    
+
        AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
        AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
-    
-#define SHORT_COIL()   LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL()            HIGH(GPIO_SSC_DOUT)
-    
+
+ #define SHORT_COIL()  LOW(GPIO_SSC_DOUT)
+ #define OPEN_COIL()           HIGH(GPIO_SSC_DOUT)
+
        i = 0;
        for(;;) {
+               //wait until SSC_CLK goes HIGH
                while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
-                       if(BUTTON_PRESS()) {
+                       if(BUTTON_PRESS() || usb_poll()) {
                                DbpString("Stopped");
                                return;
                        }
                        WDT_HIT();
                }
-        
                if (ledcontrol)
                        LED_D_ON();
-        
+
                if(tab[i])
                        OPEN_COIL();
                else
                        SHORT_COIL();
-        
+
                if (ledcontrol)
                        LED_D_OFF();
-        
+               //wait until SSC_CLK goes LOW
                while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
                        if(BUTTON_PRESS()) {
                                DbpString("Stopped");
@@ -472,9 +426,10 @@ void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
                        }
                        WDT_HIT();
                }
-        
+
                i++;
                if(i == period) {
+
                        i = 0;
                        if (gap) {
                                SHORT_COIL();
@@ -489,29 +444,31 @@ void SimulateTagLowFrequencyBidir(int divisor, int t0)
 {
 }
 
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
-       uint8_t *dest = (uint8_t *)BigBuf;
+// compose fc/8 fc/10 waveform (FSK2)
+static void fc(int c, int *n)
+{
+       uint8_t *dest = BigBuf_get_addr();
        int idx;
 
        // for when we want an fc8 pattern every 4 logical bits
        if(c==0) {
                dest[((*n)++)]=1;
                dest[((*n)++)]=1;
-               dest[((*n)++)]=0;
-               dest[((*n)++)]=0;
+               dest[((*n)++)]=1;
+               dest[((*n)++)]=1;
                dest[((*n)++)]=0;
                dest[((*n)++)]=0;
                dest[((*n)++)]=0;
                dest[((*n)++)]=0;
        }
-       //      an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples
+
+       //      an fc/8  encoded bit is a bit pattern of  11110000  x6 = 48 samples
        if(c==8) {
                for (idx=0; idx<6; idx++) {
                        dest[((*n)++)]=1;
                        dest[((*n)++)]=1;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
@@ -519,9 +476,11 @@ static void fc(int c, int *n) {
                }
        }
 
-       //      an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
+       //      an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
        if(c==10) {
                for (idx=0; idx<5; idx++) {
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
                        dest[((*n)++)]=1;
                        dest[((*n)++)]=1;
                        dest[((*n)++)]=1;
@@ -530,11 +489,39 @@ static void fc(int c, int *n) {
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
                        dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
-                       dest[((*n)++)]=0;
                }
        }
 }
+// compose fc/X fc/Y waveform (FSKx)
+static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) 
+{
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfFC = fc/2;
+       uint8_t wavesPerClock = clock/fc;
+       uint8_t mod = clock % fc;    //modifier
+       uint8_t modAdj = fc/mod;     //how often to apply modifier
+       bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
+       // loop through clock - step field clock
+       for (uint8_t idx=0; idx < wavesPerClock; idx++){
+               // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
+               memset(dest+(*n), 0, fc-halfFC);  //in case of odd number use extra here
+               memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+               *n += fc;
+       }
+       if (mod>0) (*modCnt)++;
+       if ((mod>0) && modAdjOk){  //fsk2 
+               if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
+                       memset(dest+(*n), 0, fc-halfFC);
+                       memset(dest+(*n)+(fc-halfFC), 1, halfFC);
+                       *n += fc;
+               }
+       }
+       if (mod>0 && !modAdjOk){  //fsk1
+               memset(dest+(*n), 0, mod-(mod/2));
+               memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
+               *n += mod;
+       }
+}
 
 // prepare a waveform pattern in the buffer based on the ID given then
 // simulate a HID tag until the button is pressed
@@ -552,12 +539,12 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
        */
 
        if (hi>0xFFF) {
-               DbpString("Tags can only have 44 bits.");
+               DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
                return;
        }
        fc(0,&n);
        // special start of frame marker containing invalid bit sequences
-       fc(8,  &n);     fc(8,  &n);     // invalid
+       fc(8,  &n);     fc(8,  &n); // invalid
        fc(8,  &n);     fc(10, &n); // logical 0
        fc(10, &n);     fc(10, &n); // invalid
        fc(8,  &n);     fc(10, &n); // logical 0
@@ -567,9 +554,9 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
        for (i=11; i>=0; i--) {
                if ((i%4)==3) fc(0,&n);
                if ((hi>>i)&1) {
-                       fc(10, &n);     fc(8,  &n);             // low-high transition
+                       fc(10, &n); fc(8,  &n);         // low-high transition
                } else {
-                       fc(8,  &n);     fc(10, &n);             // high-low transition
+                       fc(8,  &n); fc(10, &n);         // high-low transition
                }
        }
 
@@ -578,9 +565,9 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
        for (i=31; i>=0; i--) {
                if ((i%4)==3) fc(0,&n);
                if ((lo>>i)&1) {
-                       fc(10, &n);     fc(8,  &n);             // low-high transition
+                       fc(10, &n); fc(8,  &n);         // low-high transition
                } else {
-                       fc(8,  &n);     fc(10, &n);             // high-low transition
+                       fc(8,  &n); fc(10, &n);         // high-low transition
                }
        }
 
@@ -592,219 +579,391 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
                LED_A_OFF();
 }
 
-
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a FSK tag until the button is pressed
+// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
+void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
 {
-       uint8_t *dest = (uint8_t *)BigBuf;
-       int m=0, n=0, i=0, idx=0, found=0, lastval=0;
-       uint32_t hi2=0, hi=0, lo=0;
+       int ledcontrol=1;
+       int n=0, i=0;
+       uint8_t fcHigh = arg1 >> 8;
+       uint8_t fcLow = arg1 & 0xFF;
+       uint16_t modCnt = 0;
+       uint8_t clk = arg2 & 0xFF;
+       uint8_t invert = (arg2 >> 8) & 1;
+
+       for (i=0; i<size; i++){
+               if (BitStream[i] == invert){
+                       fcAll(fcLow, &n, clk, &modCnt);
+               } else {
+                       fcAll(fcHigh, &n, clk, &modCnt);
+               }
+       }
+       Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
+       /*Dbprintf("DEBUG: First 32:");
+       uint8_t *dest = BigBuf_get_addr();
+       i=0;
+       Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+       i+=16;
+       Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+       */
+       if (ledcontrol)
+               LED_A_ON();
 
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+       SimulateTagLowFrequency(n, 0, ledcontrol);
 
-       // Connect the A/D to the peak-detected low-frequency path.
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+       if (ledcontrol)
+               LED_A_OFF();
+}
 
-       // Give it a bit of time for the resonant antenna to settle.
-       SpinDelay(50);
+// compose ask waveform for one bit(ASK)
+static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
+{
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfClk = clock/2;
+       // c = current bit 1 or 0
+       if (manchester==1){
+               memset(dest+(*n), c, halfClk);
+               memset(dest+(*n) + halfClk, c^1, halfClk);
+       } else {
+               memset(dest+(*n), c, clock);
+       }
+       *n += clock;
+}
 
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
+static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
+{
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfClk = clock/2;
+       if (c){
+               memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
+               memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
+       } else {
+               memset(dest+(*n), c ^ *phase, clock);
+               *phase ^= 1;
+       }
 
-       for(;;) {
-               WDT_HIT();
-               if (ledcontrol)
-                       LED_A_ON();
-               if(BUTTON_PRESS()) {
-                       DbpString("Stopped");
-                       if (ledcontrol)
-                               LED_A_OFF();
-                       return;
-               }
+}
 
-               i = 0;
-               m = sizeof(BigBuf);
-               memset(dest,128,m);
-               for(;;) {
-                       if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-                               AT91C_BASE_SSC->SSC_THR = 0x43;
-                               if (ledcontrol)
-                                       LED_D_ON();
+// args clock, ask/man or askraw, invert, transmission separator
+void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+       int ledcontrol = 1;
+       int n=0, i=0;
+       uint8_t clk = (arg1 >> 8) & 0xFF;
+       uint8_t encoding = arg1 & 0xFF;
+       uint8_t separator = arg2 & 1;
+       uint8_t invert = (arg2 >> 8) & 1;
+
+       if (encoding==2){  //biphase
+               uint8_t phase=0;
+               for (i=0; i<size; i++){
+                       biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
+               }
+               if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
+                       for (i=0; i<size; i++){
+                               biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
                        }
-                       if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-                               dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-                               // we don't care about actual value, only if it's more or less than a
-                               // threshold essentially we capture zero crossings for later analysis
-                               if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
-                               i++;
-                               if (ledcontrol)
-                                       LED_D_OFF();
-                               if(i >= m) {
-                                       break;
-                               }
+               }
+       } else {  // ask/manchester || ask/raw
+               for (i=0; i<size; i++){
+                       askSimBit(BitStream[i]^invert, &n, clk, encoding);
+               }
+               if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
+                       for (i=0; i<size; i++){
+                               askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
                        }
                }
+       }
+       
+       if (separator==1) Dbprintf("sorry but separator option not yet available"); 
 
-               // FSK demodulator
+       Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
+       //DEBUG
+       //Dbprintf("First 32:");
+       //uint8_t *dest = BigBuf_get_addr();
+       //i=0;
+       //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+       //i+=16;
+       //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
 
-               // sync to first lo-hi transition
-               for( idx=1; idx<m; idx++) {
-                       if (dest[idx-1]<dest[idx])
-                               lastval=idx;
-                               break;
-               }
-               WDT_HIT();
+       if (ledcontrol)
+               LED_A_ON();
+       
+       SimulateTagLowFrequency(n, 0, ledcontrol);
 
-               // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
-               // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
-               // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
-               for( i=0; idx<m; idx++) {
-                       if (dest[idx-1]<dest[idx]) {
-                               dest[i]=idx-lastval;
-                               if (dest[i] <= 8) {
-                                               dest[i]=1;
-                               } else {
-                                               dest[i]=0;
-                               }
+       if (ledcontrol)
+               LED_A_OFF();
+}
 
-                               lastval=idx;
-                               i++;
-                       }
+//carrier can be 2,4 or 8
+static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
+{
+       uint8_t *dest = BigBuf_get_addr();
+       uint8_t halfWave = waveLen/2;
+       //uint8_t idx;
+       int i = 0;
+       if (phaseChg){
+               // write phase change
+               memset(dest+(*n), *curPhase^1, halfWave);
+               memset(dest+(*n) + halfWave, *curPhase, halfWave);
+               *n += waveLen;
+               *curPhase ^= 1;
+               i += waveLen;
+       }
+       //write each normal clock wave for the clock duration
+       for (; i < clk; i+=waveLen){
+               memset(dest+(*n), *curPhase, halfWave);
+               memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
+               *n += waveLen;
+       }
+}
+
+// args clock, carrier, invert,
+void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
+{
+       int ledcontrol=1;
+       int n=0, i=0;
+       uint8_t clk = arg1 >> 8;
+       uint8_t carrier = arg1 & 0xFF;
+       uint8_t invert = arg2 & 0xFF;
+       uint8_t curPhase = 0;
+       for (i=0; i<size; i++){
+               if (BitStream[i] == curPhase){
+                       pskSimBit(carrier, &n, clk, &curPhase, FALSE);
+               } else {
+                       pskSimBit(carrier, &n, clk, &curPhase, TRUE);
                }
-               m=i;
+       }
+       Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
+       //Dbprintf("DEBUG: First 32:");
+       //uint8_t *dest = BigBuf_get_addr();
+       //i=0;
+       //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+       //i+=16;
+       //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
+                  
+       if (ledcontrol)
+               LED_A_ON();
+       SimulateTagLowFrequency(n, 0, ledcontrol);
+
+       if (ledcontrol)
+               LED_A_OFF();
+}
+
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+       uint8_t *dest = BigBuf_get_addr();
+       //const size_t sizeOfBigBuff = BigBuf_max_traceLen();
+       size_t size; 
+       uint32_t hi2=0, hi=0, lo=0;
+       int idx=0;
+       // Configure to go in 125Khz listen mode
+       LFSetupFPGAForADC(95, true);
+
+       while(!BUTTON_PRESS()) {
+
                WDT_HIT();
+               if (ledcontrol) LED_A_ON();
 
-               // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-               lastval=dest[0];
-               idx=0;
-               i=0;
-               n=0;
-               for( idx=0; idx<m; idx++) {
-                       if (dest[idx]==lastval) {
-                               n++;
-                       } else {
-                               // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
-                               // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
-                               // swallowed up by rounding
-                               // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
-                               // special start of frame markers use invalid manchester states (no transitions) by using sequences
-                               // like 111000
-                               if (dest[idx-1]) {
-                                       n=(n+1)/6;                      // fc/8 in sets of 6
-                               } else {
-                                       n=(n+1)/5;                      // fc/10 in sets of 5
+               DoAcquisition_default(-1,true);
+               // FSK demodulator
+               //size = sizeOfBigBuff;  //variable size will change after demod so re initialize it before use
+               size = 50*128*2; //big enough to catch 2 sequences of largest format
+               idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
+               
+               if (idx>0 && lo>0 && (size==96 || size==192)){
+                       // go over previously decoded manchester data and decode into usable tag ID
+                       if (hi2 != 0){ //extra large HID tags  88/192 bits
+                               Dbprintf("TAG ID: %x%08x%08x (%d)",
+                                 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+                       }else {  //standard HID tags 44/96 bits
+                               //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
+                               uint8_t bitlen = 0;
+                               uint32_t fc = 0;
+                               uint32_t cardnum = 0;
+                               if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
+                                       uint32_t lo2=0;
+                                       lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+                                       uint8_t idx3 = 1;
+                                       while(lo2 > 1){ //find last bit set to 1 (format len bit)
+                                               lo2=lo2 >> 1;
+                                               idx3++;
+                                       }
+                                       bitlen = idx3+19;
+                                       fc =0;
+                                       cardnum=0;
+                                       if(bitlen == 26){
+                                               cardnum = (lo>>1)&0xFFFF;
+                                               fc = (lo>>17)&0xFF;
+                                       }
+                                       if(bitlen == 37){
+                                               cardnum = (lo>>1)&0x7FFFF;
+                                               fc = ((hi&0xF)<<12)|(lo>>20);
+                                       }
+                                       if(bitlen == 34){
+                                               cardnum = (lo>>1)&0xFFFF;
+                                               fc= ((hi&1)<<15)|(lo>>17);
+                                       }
+                                       if(bitlen == 35){
+                                               cardnum = (lo>>1)&0xFFFFF;
+                                               fc = ((hi&1)<<11)|(lo>>21);
+                                       }
                                }
-                               switch (n) {                    // stuff appropriate bits in buffer
-                                       case 0:
-                                       case 1: // one bit
-                                               dest[i++]=dest[idx-1];
-                                               break;
-                                       case 2: // two bits
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               break;
-                                       case 3: // 3 bit start of frame markers
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               break;
-                                       // When a logic 0 is immediately followed by the start of the next transmisson
-                                       // (special pattern) a pattern of 4 bit duration lengths is created.
-                                       case 4:
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               dest[i++]=dest[idx-1];
-                                               break;
-                                       default:        // this shouldn't happen, don't stuff any bits
-                                               break;
+                               else { //if bit 38 is not set then 37 bit format is used
+                                       bitlen= 37;
+                                       fc =0;
+                                       cardnum=0;
+                                       if(bitlen==37){
+                                               cardnum = (lo>>1)&0x7FFFF;
+                                               fc = ((hi&0xF)<<12)|(lo>>20);
+                                       }
                                }
-                               n=0;
-                               lastval=dest[idx];
+                               //Dbprintf("TAG ID: %x%08x (%d)",
+                               // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+                               Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+                                                (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
+                                                (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
+                       }
+                       if (findone){
+                               if (ledcontrol) LED_A_OFF();
+                               *high = hi;
+                               *low = lo;
+                               return;
                        }
+                       // reset
                }
-               m=i;
+               hi2 = hi = lo = idx = 0;
                WDT_HIT();
+       }
+       DbpString("Stopped");
+       if (ledcontrol) LED_A_OFF();
+}
 
-               // final loop, go over previously decoded manchester data and decode into usable tag ID
-               // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-               for( idx=0; idx<m-6; idx++) {
-                       // search for a start of frame marker
-                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
-                       {
-                               found=1;
-                               idx+=6;
-                               if (found && (hi2|hi|lo)) {
-                                       if (hi2 != 0){
-                                       Dbprintf("TAG ID: %x%08x%08x (%d)",
-                                               (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-                               }               
-                                       else {
-                                         Dbprintf("TAG ID: %x%08x (%d)",
-                                                 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-                                       }       
-                                       /* if we're only looking for one tag */
-                                       if (findone)
-                                       {
-                                               *high = hi;
-                                               *low = lo;
-                                               return;
-                                       }
-                                       hi2=0;
-                                       hi=0;
-                                       lo=0;
-                                       found=0;
-                               }
-                       }
-                       if (found) {
-                               if (dest[idx] && (!dest[idx+1]) ) {
-                                       hi2=(hi2<<1)|(hi>>31);
-                                       hi=(hi<<1)|(lo>>31);
-                                       lo=(lo<<1)|0;
-                               } else if ( (!dest[idx]) && dest[idx+1]) {
-                                       hi2=(hi2<<1)|(hi>>31);
-                                       hi=(hi<<1)|(lo>>31);
-                                       lo=(lo<<1)|1;
-                               } else {
-                                       found=0;
-                                       hi2=0;
-                                       hi=0;
-                                       lo=0;
-                               }
-                               idx++;
+void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
+{
+       uint8_t *dest = BigBuf_get_addr();
+
+       size_t size=0, idx=0;
+       int clk=0, invert=0, errCnt=0, maxErr=20;
+       uint32_t hi=0;
+       uint64_t lo=0;
+       // Configure to go in 125Khz listen mode
+       LFSetupFPGAForADC(95, true);
+
+       while(!BUTTON_PRESS()) {
+
+               WDT_HIT();
+               if (ledcontrol) LED_A_ON();
+
+               DoAcquisition_default(-1,true);
+               size  = BigBuf_max_traceLen();
+               //askdemod and manchester decode
+               if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
+               errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
+               WDT_HIT();
+
+               if (errCnt<0) continue;
+       
+               errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
+               if (errCnt){
+                       if (size>64){
+                               Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
+                                 hi,
+                                 (uint32_t)(lo>>32),
+                                 (uint32_t)lo,
+                                 (uint32_t)(lo&0xFFFF),
+                                 (uint32_t)((lo>>16LL) & 0xFF),
+                                 (uint32_t)(lo & 0xFFFFFF));
+                       } else {
+                               Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
+                                 (uint32_t)(lo>>32),
+                                 (uint32_t)lo,
+                                 (uint32_t)(lo&0xFFFF),
+                                 (uint32_t)((lo>>16LL) & 0xFF),
+                                 (uint32_t)(lo & 0xFFFFFF));
                        }
-                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
-                       {
-                               found=1;
-                               idx+=6;
-                               if (found && (hi|lo)) {
-                                       if (hi2 != 0){
-                                       Dbprintf("TAG ID: %x%08x%08x (%d)",
-                                               (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-                               }               
-                                       else {
-                                         Dbprintf("TAG ID: %x%08x (%d)",
-                                                 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-                                       }       
-                                       /* if we're only looking for one tag */
-                                       if (findone)
-                                       {
-                                               *high = hi;
-                                               *low = lo;
-                                               return;
-                                       }
-          hi2=0;
-                                       hi=0;
-                                       lo=0;
-                                       found=0;
-                               }
+
+                       if (findone){
+                               if (ledcontrol) LED_A_OFF();
+                               *high=lo>>32;
+                               *low=lo & 0xFFFFFFFF;
+                               return;
                        }
                }
                WDT_HIT();
+               hi = lo = size = idx = 0;
+               clk = invert = errCnt = 0;
        }
+       DbpString("Stopped");
+       if (ledcontrol) LED_A_OFF();
 }
 
+void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+       uint8_t *dest = BigBuf_get_addr();
+       int idx=0;
+       uint32_t code=0, code2=0;
+       uint8_t version=0;
+       uint8_t facilitycode=0;
+       uint16_t number=0;
+       // Configure to go in 125Khz listen mode
+       LFSetupFPGAForADC(95, true);
+
+       while(!BUTTON_PRESS()) {
+               WDT_HIT();
+               if (ledcontrol) LED_A_ON();
+               DoAcquisition_default(-1,true);
+               //fskdemod and get start index
+               WDT_HIT();
+               idx = IOdemodFSK(dest, BigBuf_max_traceLen());
+               if (idx<0) continue;
+               //valid tag found
+
+               //Index map
+               //0           10          20          30          40          50          60
+               //|           |           |           |           |           |           |
+               //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+               //-----------------------------------------------------------------------------
+               //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+               //
+               //XSF(version)facility:codeone+codetwo
+               //Handle the data
+               if(findone){ //only print binary if we are doing one
+                       Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+                       Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+                       Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+                       Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+                       Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+                       Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+                       Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+               }
+               code = bytebits_to_byte(dest+idx,32);
+               code2 = bytebits_to_byte(dest+idx+32,32);
+               version = bytebits_to_byte(dest+idx+27,8); //14,4
+               facilitycode = bytebits_to_byte(dest+idx+18,8);
+               number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+               Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
+               // if we're only looking for one tag
+               if (findone){
+                       if (ledcontrol) LED_A_OFF();
+                       //LED_A_OFF();
+                       *high=code;
+                       *low=code2;
+                       return;
+               }
+               code=code2=0;
+               version=facilitycode=0;
+               number=0;
+               idx=0;
+
+               WDT_HIT();
+       }
+       DbpString("Stopped");
+       if (ledcontrol) LED_A_OFF();
+}
 
 /*------------------------------
  * T5555/T5557/T5567 routines
@@ -865,16 +1024,19 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
  * To compensate antenna falling times shorten the write times
  * and enlarge the gap ones.
  */
-#define START_GAP 250
-#define WRITE_GAP 160
-#define WRITE_0   144 // 192
-#define WRITE_1   400 // 432 for T55x7; 448 for E5550
+#define START_GAP 31*8 // was 250 // SPEC:  1*8 to 50*8 - typ 15*8 (or 15fc)
+#define WRITE_GAP 20*8 // was 160 // SPEC:  1*8 to 20*8 - typ 10*8 (or 10fc)
+#define WRITE_0   18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
+#define WRITE_1   50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc)  432 for T55x7; 448 for E5550
+
+#define T55xx_SAMPLES_SIZE      12000 // 32 x 32 x 10  (32 bit times numofblock (7), times clock skip..)
 
 // Write one bit to card
 void T55xxWriteBit(int bit)
 {
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
        if (bit == 0)
                SpinDelayUs(WRITE_0);
        else
@@ -886,14 +1048,11 @@ void T55xxWriteBit(int bit)
 // Write one card block in page 0, no lock
 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 {
-       unsigned int i;
-
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+       uint32_t i = 0;
 
-       // Give it a bit of time for the resonant antenna to settle.
-       // And for the tag to fully power up
-       SpinDelay(150);
+       // Set up FPGA, 125kHz
+       // Wait for config.. (192+8190xPOW)x8 == 67ms
+       LFSetupFPGAForADC(0, true);
 
        // Now start writting
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
@@ -906,7 +1065,7 @@ void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMod
                // Pwd
                for (i = 0x80000000; i != 0; i >>= 1)
                        T55xxWriteBit(Pwd & i);
-       }       
+       }
        // Lock bit
        T55xxWriteBit(0);
 
@@ -921,35 +1080,33 @@ void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMod
        // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
        // so wait a little more)
        FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
        SpinDelay(20);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 }
 
+void TurnReadLFOn(){
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+       // Give it a bit of time for the resonant antenna to settle.
+       SpinDelayUs(8*150);
+}
+
 
-// Read one card block in page 0 
+// Read one card block in page 0
 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 {
-       uint8_t *dest = (uint8_t *)BigBuf;
-       int m=0, i=0;
-       m = sizeof(BigBuf);
-  // Clear destination buffer before sending the command
-       memset(dest, 128, m);
-       // Connect the A/D to the peak-detected low-frequency path.
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
-
-       LED_D_ON();
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
-       // Give it a bit of time for the resonant antenna to settle.
-       // And for the tag to fully power up
-       SpinDelay(150);
-
-       // Now start writting
+       uint32_t i = 0;
+       uint8_t *dest = BigBuf_get_addr();
+       uint16_t bufferlength = BigBuf_max_traceLen();
+       if ( bufferlength > T55xx_SAMPLES_SIZE )
+               bufferlength = T55xx_SAMPLES_SIZE;
+
+       // Clear destination buffer before sending the command
+       memset(dest, 0x80, bufferlength);
+
+       // Set up FPGA, 125kHz
+       // Wait for config.. (192+8190xPOW)x8 == 67ms
+       LFSetupFPGAForADC(0, true);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        SpinDelayUs(START_GAP);
 
@@ -960,187 +1117,176 @@ void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
                // Pwd
                for (i = 0x80000000; i != 0; i >>= 1)
                        T55xxWriteBit(Pwd & i);
-       }       
+       }
        // Lock bit
        T55xxWriteBit(0);
        // Block
        for (i = 0x04; i != 0; i >>= 1)
                T55xxWriteBit(Block & i);
-  
-  // Turn field on to read the response
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
 
-       // Now do the acquisition 
+       // Turn field on to read the response
+       TurnReadLFOn();
+       // Now do the acquisition
        i = 0;
        for(;;) {
                if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
                        AT91C_BASE_SSC->SSC_THR = 0x43;
+                       LED_D_ON();
                }
                if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
                        dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-                       // we don't care about actual value, only if it's more or less than a
-                       // threshold essentially we capture zero crossings for later analysis
-//                     if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
                        i++;
-                       if (i >= m) break;
+                       LED_D_OFF();
+                       if (i >= bufferlength) break;
                }
        }
 
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       cmd_send(CMD_ACK,0,0,0,0,0);    
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
        LED_D_OFF();
-       DbpString("DONE!");
 }
 
 // Read card traceability data (page 1)
-void T55xxReadTrace(void){ 
-       uint8_t *dest = (uint8_t *)BigBuf;
-       int m=0, i=0;
-       m = sizeof(BigBuf);
-  // Clear destination buffer before sending the command
-       memset(dest, 128, m);
-       // Connect the A/D to the peak-detected low-frequency path.
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-       // Now set up the SSC to get the ADC samples that are now streaming at us.
-       FpgaSetupSsc();
+void T55xxReadTrace(void){
+       
+       uint32_t i = 0;
+       uint8_t *dest = BigBuf_get_addr();
+       uint16_t bufferlength = BigBuf_max_traceLen();
+       if ( bufferlength > T55xx_SAMPLES_SIZE )
+               bufferlength= T55xx_SAMPLES_SIZE;
 
-       LED_D_ON();
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+       // Clear destination buffer before sending the command
+       memset(dest, 0x80, bufferlength);
 
-       // Give it a bit of time for the resonant antenna to settle.
-       // And for the tag to fully power up
-       SpinDelay(150);
-
-       // Now start writting
+       LFSetupFPGAForADC(0, true);
        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
        SpinDelayUs(START_GAP);
 
        // Opcode
        T55xxWriteBit(1);
        T55xxWriteBit(1); //Page 1
-  
-  // Turn field on to read the response
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
 
-       // Now do the acquisition 
-       i = 0;
+       // Turn field on to read the response
+       TurnReadLFOn();
+
+       // Now do the acquisition
        for(;;) {
                if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
                        AT91C_BASE_SSC->SSC_THR = 0x43;
+                       LED_D_ON();
                }
                if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
                        dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
                        i++;
-                       if (i >= m) break;
+                       LED_D_OFF();
+
+                       if (i >= bufferlength) break;
                }
        }
 
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       cmd_send(CMD_ACK,0,0,0,0,0);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
        LED_D_OFF();
-       DbpString("DONE!");
 }
 
 /*-------------- Cloning routines -----------*/
 // Copy HID id to card and setup block 0 config
 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
 {
-       int data1, data2, data3, data4, data5, data6; //up to six blocks for long format
+       int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
        int last_block = 0;
 
-  if (longFMT){
-         // Ensure no more than 84 bits supplied
-         if (hi2>0xFFFFF) {
-                 DbpString("Tags can only have 84 bits.");
-                 return;
-         }
-    // Build the 6 data blocks for supplied 84bit ID
-    last_block = 6;
-    data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
-         for (int i=0;i<4;i++) {
-                 if (hi2 & (1<<(19-i)))
-                         data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
-                 else
-                         data1 |= (1<<((3-i)*2)); // 0 -> 01
-         }
-
-       data2 = 0;
-       for (int i=0;i<16;i++) {
-               if (hi2 & (1<<(15-i)))
-                       data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data2 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-
-       data3 = 0;
-       for (int i=0;i<16;i++) {
-               if (hi & (1<<(31-i)))
-                       data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data3 |= (1<<((15-i)*2)); // 0 -> 01
-       }
-  
-       data4 = 0;
-       for (int i=0;i<16;i++) {
-               if (hi & (1<<(15-i)))
-                       data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data4 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-    
-       data5 = 0;
-       for (int i=0;i<16;i++) {
-               if (lo & (1<<(31-i)))
-                       data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data5 |= (1<<((15-i)*2)); // 0 -> 01
-       }
-  
-       data6 = 0;
-       for (int i=0;i<16;i++) {
-               if (lo & (1<<(15-i)))
-                       data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data6 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-  }
-  else {       
-         // Ensure no more than 44 bits supplied
-         if (hi>0xFFF) {
-                 DbpString("Tags can only have 44 bits.");
-                 return;
-         }
-
-       // Build the 3 data blocks for supplied 44bit ID
-       last_block = 3;
-       
-       data1 = 0x1D000000; // load preamble
-  
-       for (int i=0;i<12;i++) {
-               if (hi & (1<<(11-i)))
-                       data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
-               else
-                       data1 |= (1<<((11-i)*2)); // 0 -> 01
-       }
-  
-       data2 = 0;
-       for (int i=0;i<16;i++) {
-               if (lo & (1<<(31-i)))
-                       data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data2 |= (1<<((15-i)*2)); // 0 -> 01
-       }
-  
-       data3 = 0;
-       for (int i=0;i<16;i++) {
-               if (lo & (1<<(15-i)))
-                       data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-               else
-                       data3 |= (1<<((15-i)*2)); // 0 -> 01
-       }               
-  }
+       if (longFMT){
+               // Ensure no more than 84 bits supplied
+               if (hi2>0xFFFFF) {
+                       DbpString("Tags can only have 84 bits.");
+                       return;
+               }
+               // Build the 6 data blocks for supplied 84bit ID
+               last_block = 6;
+               data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
+               for (int i=0;i<4;i++) {
+                       if (hi2 & (1<<(19-i)))
+                               data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
+                       else
+                               data1 |= (1<<((3-i)*2)); // 0 -> 01
+               }
+
+               data2 = 0;
+               for (int i=0;i<16;i++) {
+                       if (hi2 & (1<<(15-i)))
+                               data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+                       else
+                               data2 |= (1<<((15-i)*2)); // 0 -> 01
+               }
+
+               data3 = 0;
+               for (int i=0;i<16;i++) {
+                       if (hi & (1<<(31-i)))
+                               data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+                       else
+                               data3 |= (1<<((15-i)*2)); // 0 -> 01
+               }
+
+               data4 = 0;
+               for (int i=0;i<16;i++) {
+                       if (hi & (1<<(15-i)))
+                               data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+                       else
+                               data4 |= (1<<((15-i)*2)); // 0 -> 01
+               }
+
+               data5 = 0;
+               for (int i=0;i<16;i++) {
+                       if (lo & (1<<(31-i)))
+                               data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+                       else
+                               data5 |= (1<<((15-i)*2)); // 0 -> 01
+               }
+
+               data6 = 0;
+               for (int i=0;i<16;i++) {
+                       if (lo & (1<<(15-i)))
+                               data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+                       else
+                               data6 |= (1<<((15-i)*2)); // 0 -> 01
+               }
+       }
+       else {
+               // Ensure no more than 44 bits supplied
+               if (hi>0xFFF) {
+                       DbpString("Tags can only have 44 bits.");
+                       return;
+               }
+
+               // Build the 3 data blocks for supplied 44bit ID
+               last_block = 3;
+
+               data1 = 0x1D000000; // load preamble
+
+               for (int i=0;i<12;i++) {
+                       if (hi & (1<<(11-i)))
+                               data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
+                       else
+                               data1 |= (1<<((11-i)*2)); // 0 -> 01
+               }
+
+               data2 = 0;
+               for (int i=0;i<16;i++) {
+                       if (lo & (1<<(31-i)))
+                               data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+                       else
+                               data2 |= (1<<((15-i)*2)); // 0 -> 01
+               }
+
+               data3 = 0;
+               for (int i=0;i<16;i++) {
+                       if (lo & (1<<(15-i)))
+                               data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+                       else
+                               data3 |= (1<<((15-i)*2)); // 0 -> 01
+               }
+       }
 
        LED_D_ON();
        // Program the data blocks for supplied ID
@@ -1148,21 +1294,41 @@ void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
        T55xxWriteBlock(data1,1,0,0);
        T55xxWriteBlock(data2,2,0,0);
        T55xxWriteBlock(data3,3,0,0);
-       
+
        if (longFMT) { // if long format there are 6 blocks
-         T55xxWriteBlock(data4,4,0,0);
-         T55xxWriteBlock(data5,5,0,0);
-         T55xxWriteBlock(data6,6,0,0);
-  }
+               T55xxWriteBlock(data4,4,0,0);
+               T55xxWriteBlock(data5,5,0,0);
+               T55xxWriteBlock(data6,6,0,0);
+       }
 
        // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
        T55xxWriteBlock(T55x7_BITRATE_RF_50    |
-                       T55x7_MODULATION_FSK2a |
-                       last_block << T55x7_MAXBLOCK_SHIFT,
-                       0,0,0);
-  
+                                       T55x7_MODULATION_FSK2a |
+                                       last_block << T55x7_MAXBLOCK_SHIFT,
+                                       0,0,0);
+
        LED_D_OFF();
-       
+
+       DbpString("DONE!");
+}
+
+void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
+{
+       int data1=0, data2=0; //up to six blocks for long format
+
+       data1 = hi;  // load preamble
+       data2 = lo;
+
+       LED_D_ON();
+       // Program the data blocks for supplied ID
+       // and the block 0 for HID format
+       T55xxWriteBlock(data1,1,0,0);
+       T55xxWriteBlock(data2,2,0,0);
+
+       //Config Block
+       T55xxWriteBlock(0x00147040,0,0,0);
+       LED_D_OFF();
+
        DbpString("DONE!");
 }
 
@@ -1177,6 +1343,7 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
        uint64_t rev_id = 0;    // reversed ID
        int c_parity[4];        // column parity
        int r_parity = 0;       // row parity
+       uint32_t clock = 0;
 
        // Reverse ID bits given as parameter (for simpler operations)
        for (i = 0; i < EM410X_ID_LENGTH; ++i) {
@@ -1234,22 +1401,45 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
        T55xxWriteBlock((uint32_t)id, 2, 0, 0);
 
        // Config for EM410x (RF/64, Manchester, Maxblock=2)
-       if (card)
+       if (card) {
+               // Clock rate is stored in bits 8-15 of the card value
+               clock = (card & 0xFF00) >> 8;
+               Dbprintf("Clock rate: %d", clock);
+               switch (clock)
+               {
+               case 32:
+                       clock = T55x7_BITRATE_RF_32;
+                       break;
+               case 16:
+                       clock = T55x7_BITRATE_RF_16;
+                       break;
+               case 0:
+                       // A value of 0 is assumed to be 64 for backwards-compatibility
+                       // Fall through...
+               case 64:
+                       clock = T55x7_BITRATE_RF_64;
+                       break;
+               default:
+                       Dbprintf("Invalid clock rate: %d", clock);
+                       return;
+               }
+
                // Writing configuration for T55x7 tag
-               T55xxWriteBlock(T55x7_BITRATE_RF_64         |
-                               T55x7_MODULATION_MANCHESTER |
-                               2 << T55x7_MAXBLOCK_SHIFT,
-                               0, 0, 0);
+               T55xxWriteBlock(clock       |
+                                               T55x7_MODULATION_MANCHESTER |
+                                               2 << T55x7_MAXBLOCK_SHIFT,
+                                               0, 0, 0);
+       }
        else
                // Writing configuration for T5555(Q5) tag
                T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
-                               T5555_MODULATION_MANCHESTER   |
-                               2 << T5555_MAXBLOCK_SHIFT,
-                               0, 0, 0);
+                                               T5555_MODULATION_MANCHESTER |
+                                               2 << T5555_MAXBLOCK_SHIFT,
+                                               0, 0, 0);
 
        LED_D_OFF();
        Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
-                                       (uint32_t)(id >> 32), (uint32_t)id);
+                        (uint32_t)(id >> 32), (uint32_t)id);
 }
 
 // Clone Indala 64-bit tag by UID to T55x7
@@ -1262,15 +1452,15 @@ void CopyIndala64toT55x7(int hi, int lo)
        T55xxWriteBlock(lo,2,0,0);
        //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
        T55xxWriteBlock(T55x7_BITRATE_RF_32    |
-                       T55x7_MODULATION_PSK1 |
-                       2 << T55x7_MAXBLOCK_SHIFT,
-                       0,0,0);
+                                       T55x7_MODULATION_PSK1 |
+                                       2 << T55x7_MAXBLOCK_SHIFT,
+                                       0, 0, 0);
        //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
-//     T5567WriteBlock(0x603E1042,0);
+       //      T5567WriteBlock(0x603E1042,0);
 
        DbpString("DONE!");
 
-}      
+}
 
 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
 {
@@ -1286,457 +1476,464 @@ void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int
        T55xxWriteBlock(uid7,7,0,0);
        //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
        T55xxWriteBlock(T55x7_BITRATE_RF_32    |
-                       T55x7_MODULATION_PSK1 |
-                       7 << T55x7_MAXBLOCK_SHIFT,
-                       0,0,0);
+                                       T55x7_MODULATION_PSK1 |
+                                       7 << T55x7_MAXBLOCK_SHIFT,
+                                       0,0,0);
        //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
-//     T5567WriteBlock(0x603E10E2,0);
+       //      T5567WriteBlock(0x603E10E2,0);
 
        DbpString("DONE!");
 
 }
 
+
 #define abs(x) ( ((x)<0) ? -(x) : (x) )
 #define max(x,y) ( x<y ? y:x)
 
 int DemodPCF7931(uint8_t **outBlocks) {
-  uint8_t BitStream[256];
-  uint8_t Blocks[8][16];
-  uint8_t *GraphBuffer = (uint8_t *)BigBuf;
-  int GraphTraceLen = sizeof(BigBuf);
-  int i, j, lastval, bitidx, half_switch;
-  int clock = 64;
-  int tolerance = clock / 8;
-  int pmc, block_done;
-  int lc, warnings = 0;
-  int num_blocks = 0;
-  int lmin=128, lmax=128;
-  uint8_t dir;
-
-  AcquireRawAdcSamples125k(0);
-
-  lmin = 64;
-  lmax = 192;
-
-  i = 2;
-
-  /* Find first local max/min */
-  if(GraphBuffer[1] > GraphBuffer[0]) {
-    while(i < GraphTraceLen) {
-      if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
-       break;
-      i++;
-    }
-    dir = 0;
-  }
-  else {
-    while(i < GraphTraceLen) {
-      if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
-       break;
-      i++;
-    }
-    dir = 1;
-  }
-  
-  lastval = i++;
-  half_switch = 0;
-  pmc = 0;
-  block_done = 0;
-  
-  for (bitidx = 0; i < GraphTraceLen; i++)
-    {
-      if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
+       uint8_t BitStream[256];
+       uint8_t Blocks[8][16];
+       uint8_t *GraphBuffer = BigBuf_get_addr();
+       int GraphTraceLen = BigBuf_max_traceLen();
+       int i, j, lastval, bitidx, half_switch;
+       int clock = 64;
+       int tolerance = clock / 8;
+       int pmc, block_done;
+       int lc, warnings = 0;
+       int num_blocks = 0;
+       int lmin=128, lmax=128;
+       uint8_t dir;
+
+       LFSetupFPGAForADC(95, true);
+       DoAcquisition_default(0, 0);
+
+
+       lmin = 64;
+       lmax = 192;
+
+       i = 2;
+
+       /* Find first local max/min */
+       if(GraphBuffer[1] > GraphBuffer[0]) {
+               while(i < GraphTraceLen) {
+                       if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
+                               break;
+                       i++;
+               }
+               dir = 0;
+       }
+       else {
+               while(i < GraphTraceLen) {
+                       if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
+                               break;
+                       i++;
+               }
+               dir = 1;
+       }
+
+       lastval = i++;
+       half_switch = 0;
+       pmc = 0;
+       block_done = 0;
+
+       for (bitidx = 0; i < GraphTraceLen; i++)
        {
-         lc = i - lastval;
-         lastval = i;
-         
-         // Switch depending on lc length:
-         // Tolerance is 1/8 of clock rate (arbitrary)
-         if (abs(lc-clock/4) < tolerance) {
-           // 16T0
-           if((i - pmc) == lc) { /* 16T0 was previous one */
-             /* It's a PMC ! */
-             i += (128+127+16+32+33+16)-1;
-             lastval = i;
-             pmc = 0;
-             block_done = 1;
-           }
-           else {
-             pmc = i;
-           }
-         } else if (abs(lc-clock/2) < tolerance) {
-           // 32TO
-           if((i - pmc) == lc) { /* 16T0 was previous one */
-             /* It's a PMC ! */
-             i += (128+127+16+32+33)-1;
-             lastval = i;
-             pmc = 0;
-             block_done = 1;
-           }
-           else if(half_switch == 1) {
-             BitStream[bitidx++] = 0;
-             half_switch = 0;
-           }
-           else
-             half_switch++;
-         } else if (abs(lc-clock) < tolerance) {
-           // 64TO
-           BitStream[bitidx++] = 1;
-         } else {
-           // Error
-           warnings++;
-           if (warnings > 10)
-             {
-               Dbprintf("Error: too many detection errors, aborting.");
-               return 0;
-             }
-         }
-         
-         if(block_done == 1) {
-           if(bitidx == 128) {
-             for(j=0; j<16; j++) {
-               Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
-                 64*BitStream[j*8+6]+
-                 32*BitStream[j*8+5]+
-                 16*BitStream[j*8+4]+
-                 8*BitStream[j*8+3]+
-                 4*BitStream[j*8+2]+
-                 2*BitStream[j*8+1]+
-                 BitStream[j*8];
-             }
-             num_blocks++;
-           }
-           bitidx = 0;
-           block_done = 0;
-           half_switch = 0;
-         }
-         if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
-         else dir = 1;
+               if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
+               {
+                       lc = i - lastval;
+                       lastval = i;
+
+                       // Switch depending on lc length:
+                       // Tolerance is 1/8 of clock rate (arbitrary)
+                       if (abs(lc-clock/4) < tolerance) {
+                               // 16T0
+                               if((i - pmc) == lc) { /* 16T0 was previous one */
+                                       /* It's a PMC ! */
+                                       i += (128+127+16+32+33+16)-1;
+                                       lastval = i;
+                                       pmc = 0;
+                                       block_done = 1;
+                               }
+                               else {
+                                       pmc = i;
+                               }
+                       } else if (abs(lc-clock/2) < tolerance) {
+                               // 32TO
+                               if((i - pmc) == lc) { /* 16T0 was previous one */
+                                       /* It's a PMC ! */
+                                       i += (128+127+16+32+33)-1;
+                                       lastval = i;
+                                       pmc = 0;
+                                       block_done = 1;
+                               }
+                               else if(half_switch == 1) {
+                                       BitStream[bitidx++] = 0;
+                                       half_switch = 0;
+                               }
+                               else
+                                       half_switch++;
+                       } else if (abs(lc-clock) < tolerance) {
+                               // 64TO
+                               BitStream[bitidx++] = 1;
+                       } else {
+                               // Error
+                               warnings++;
+                               if (warnings > 10)
+                               {
+                                       Dbprintf("Error: too many detection errors, aborting.");
+                                       return 0;
+                               }
+                       }
+
+                       if(block_done == 1) {
+                               if(bitidx == 128) {
+                                       for(j=0; j<16; j++) {
+                                               Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
+                                                               64*BitStream[j*8+6]+
+                                                               32*BitStream[j*8+5]+
+                                                               16*BitStream[j*8+4]+
+                                                               8*BitStream[j*8+3]+
+                                                               4*BitStream[j*8+2]+
+                                                               2*BitStream[j*8+1]+
+                                                               BitStream[j*8];
+                                       }
+                                       num_blocks++;
+                               }
+                               bitidx = 0;
+                               block_done = 0;
+                               half_switch = 0;
+                       }
+                       if(i < GraphTraceLen)
+                       {
+                               if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
+                               else dir = 1;
+                       }
+               }
+               if(bitidx==255)
+                       bitidx=0;
+               warnings = 0;
+               if(num_blocks == 4) break;
        }
-      if(bitidx==255)
-       bitidx=0;
-      warnings = 0;
-      if(num_blocks == 4) break;
-    }
-  memcpy(outBlocks, Blocks, 16*num_blocks);
-  return num_blocks;
+       memcpy(outBlocks, Blocks, 16*num_blocks);
+       return num_blocks;
 }
 
 int IsBlock0PCF7931(uint8_t *Block) {
-  // Assume RFU means 0 :)
-  if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
-    return 1;
-  if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
-    return 1;
-  return 0;
+       // Assume RFU means 0 :)
+       if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
+               return 1;
+       if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
+               return 1;
+       return 0;
 }
 
 int IsBlock1PCF7931(uint8_t *Block) {
-  // Assume RFU means 0 :)
-  if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
-    if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
-      return 1;
+       // Assume RFU means 0 :)
+       if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
+               if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
+                       return 1;
 
-  return 0;
+       return 0;
 }
 
 #define ALLOC 16
 
 void ReadPCF7931() {
-  uint8_t Blocks[8][17];
-  uint8_t tmpBlocks[4][16];
-  int i, j, ind, ind2, n;
-  int num_blocks = 0;
-  int max_blocks = 8;
-  int ident = 0;
-  int error = 0;
-  int tries = 0;
-  
-  memset(Blocks, 0, 8*17*sizeof(uint8_t));
-
-  do {
-    memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
-    n = DemodPCF7931((uint8_t**)tmpBlocks);
-    if(!n)
-      error++;
-    if(error==10 && num_blocks == 0) {
-      Dbprintf("Error, no tag or bad tag");
-      return;
-    }
-    else if (tries==20 || error==10) {
-      Dbprintf("Error reading the tag");
-      Dbprintf("Here is the partial content");
-      goto end;
-    }
-    
-    for(i=0; i<n; i++)
-      Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
-              tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7], 
-              tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
-    if(!ident) {
-      for(i=0; i<n; i++) {
-       if(IsBlock0PCF7931(tmpBlocks[i])) {
-         // Found block 0 ?
-         if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
-           // Found block 1!
-           // \o/
-           ident = 1;
-           memcpy(Blocks[0], tmpBlocks[i], 16);
-           Blocks[0][ALLOC] = 1;
-           memcpy(Blocks[1], tmpBlocks[i+1], 16);
-           Blocks[1][ALLOC] = 1;
-           max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
-           // Debug print
-           Dbprintf("(dbg) Max blocks: %d", max_blocks);
-           num_blocks = 2;
-           // Handle following blocks
-           for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
-             if(j==n) j=0;
-             if(j==i) break;
-             memcpy(Blocks[ind2], tmpBlocks[j], 16);
-             Blocks[ind2][ALLOC] = 1;
-           }
-           break;
-         }
-       }
-      }
-    }
-    else {
-      for(i=0; i<n; i++) { // Look for identical block in known blocks
-       if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
-         for(j=0; j<max_blocks; j++) {
-           if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
-             // Found an identical block
-             for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
-               if(ind2 < 0)
-                 ind2 = max_blocks;
-               if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
-                 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
-                 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
-                 Blocks[ind2][ALLOC] = 1;
-                 num_blocks++;
-                 if(num_blocks == max_blocks) goto end;
+       uint8_t Blocks[8][17];
+       uint8_t tmpBlocks[4][16];
+       int i, j, ind, ind2, n;
+       int num_blocks = 0;
+       int max_blocks = 8;
+       int ident = 0;
+       int error = 0;
+       int tries = 0;
+
+       memset(Blocks, 0, 8*17*sizeof(uint8_t));
+
+       do {
+               memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
+               n = DemodPCF7931((uint8_t**)tmpBlocks);
+               if(!n)
+                       error++;
+               if(error==10 && num_blocks == 0) {
+                       Dbprintf("Error, no tag or bad tag");
+                       return;
                }
-             }
-             for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
-               if(ind2 > max_blocks)
-                 ind2 = 0;
-               if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
-                 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
-                 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
-                 Blocks[ind2][ALLOC] = 1;
-                 num_blocks++;
-                 if(num_blocks == max_blocks) goto end;
+               else if (tries==20 || error==10) {
+                       Dbprintf("Error reading the tag");
+                       Dbprintf("Here is the partial content");
+                       goto end;
                }
-             }
-           }
-         }
-       }
-      }
-    }
-    tries++;
-    if (BUTTON_PRESS()) return;
-  } while (num_blocks != max_blocks);
+
+               for(i=0; i<n; i++)
+                       Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+                                        tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
+                                       tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
+               if(!ident) {
+                       for(i=0; i<n; i++) {
+                               if(IsBlock0PCF7931(tmpBlocks[i])) {
+                                       // Found block 0 ?
+                                       if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
+                                               // Found block 1!
+                                               // \o/
+                                               ident = 1;
+                                               memcpy(Blocks[0], tmpBlocks[i], 16);
+                                               Blocks[0][ALLOC] = 1;
+                                               memcpy(Blocks[1], tmpBlocks[i+1], 16);
+                                               Blocks[1][ALLOC] = 1;
+                                               max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
+                                               // Debug print
+                                               Dbprintf("(dbg) Max blocks: %d", max_blocks);
+                                               num_blocks = 2;
+                                               // Handle following blocks
+                                               for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
+                                                       if(j==n) j=0;
+                                                       if(j==i) break;
+                                                       memcpy(Blocks[ind2], tmpBlocks[j], 16);
+                                                       Blocks[ind2][ALLOC] = 1;
+                                               }
+                                               break;
+                                       }
+                               }
+                       }
+               }
+               else {
+                       for(i=0; i<n; i++) { // Look for identical block in known blocks
+                               if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
+                                       for(j=0; j<max_blocks; j++) {
+                                               if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
+                                                       // Found an identical block
+                                                       for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
+                                                               if(ind2 < 0)
+                                                                       ind2 = max_blocks;
+                                                               if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+                                                                       // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+                                                                       memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+                                                                       Blocks[ind2][ALLOC] = 1;
+                                                                       num_blocks++;
+                                                                       if(num_blocks == max_blocks) goto end;
+                                                               }
+                                                       }
+                                                       for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
+                                                               if(ind2 > max_blocks)
+                                                                       ind2 = 0;
+                                                               if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+                                                                       // Dbprintf("Tmp %d -> Block %d", ind, ind2);
+                                                                       memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+                                                                       Blocks[ind2][ALLOC] = 1;
+                                                                       num_blocks++;
+                                                                       if(num_blocks == max_blocks) goto end;
+                                                               }
+                                                       }
+                                               }
+                                       }
+                               }
+                       }
+               }
+               tries++;
+               if (BUTTON_PRESS()) return;
+       } while (num_blocks != max_blocks);
  end:
-  Dbprintf("-----------------------------------------");
-  Dbprintf("Memory content:");
-  Dbprintf("-----------------------------------------");
-  for(i=0; i<max_blocks; i++) {
-    if(Blocks[i][ALLOC]==1)
-      Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
-              Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7], 
-              Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
-    else
-      Dbprintf("<missing block %d>", i);
-  }
-  Dbprintf("-----------------------------------------");
-  
-  return ;
+       Dbprintf("-----------------------------------------");
+       Dbprintf("Memory content:");
+       Dbprintf("-----------------------------------------");
+       for(i=0; i<max_blocks; i++) {
+               if(Blocks[i][ALLOC]==1)
+                       Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+                                        Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
+                                       Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
+               else
+                       Dbprintf("<missing block %d>", i);
+       }
+       Dbprintf("-----------------------------------------");
+
+       return ;
 }
 
 
 //-----------------------------------
-//   EM4469 / EM4305 routines
+// EM4469 / EM4305 routines
 //-----------------------------------
-#define FWD_CMD_LOGIN   0xC      //including the even parity, binary mirrored 
-#define FWD_CMD_WRITE   0xA 
-#define FWD_CMD_READ    0x9 
-#define FWD_CMD_DISABLE 0x5 
-
-
-uint8_t forwardLink_data[64];       //array of forwarded bits  
-uint8_t * forward_ptr;              //ptr for forward message preparation 
-uint8_t fwd_bit_sz;                 //forwardlink bit counter
-uint8_t * fwd_write_ptr;            //forwardlink bit pointer
-//==================================================================== 
-// prepares command bits 
-// see EM4469 spec 
-//==================================================================== 
-//-------------------------------------------------------------------- 
-uint8_t Prepare_Cmd( uint8_t cmd ) { 
-//--------------------------------------------------------------------  
-  *forward_ptr++ = 0;               //start bit 
-  *forward_ptr++ = 0;               //second pause for 4050 code 
-  *forward_ptr++ = cmd; 
-  cmd >>= 1; 
-  *forward_ptr++ = cmd; 
-  cmd >>= 1; 
-  *forward_ptr++ = cmd; 
-  cmd >>= 1;
-  *forward_ptr++ = cmd; 
-  return 6;                         //return number of emited bits 
-} 
-//==================================================================== 
-// prepares address bits 
-// see EM4469 spec 
-//==================================================================== 
-//-------------------------------------------------------------------- 
-uint8_t Prepare_Addr( uint8_t addr ) { 
-//-------------------------------------------------------------------- 
-  register uint8_t line_parity; 
-  uint8_t i;
-  line_parity = 0;
-  for(i=0;i<6;i++) {
-    *forward_ptr++ = addr; 
-    line_parity ^= addr; 
-    addr >>= 1;
-  }
-  
-  *forward_ptr++ = (line_parity & 1);  
-  return 7;                      //return number of emited bits 
-} 
-//==================================================================== 
-// prepares data bits intreleaved with parity bits 
-// see EM4469 spec 
-//==================================================================== 
-//-------------------------------------------------------------------- 
-uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { 
-//-------------------------------------------------------------------- 
-  register uint8_t line_parity; 
-  register uint8_t column_parity; 
-  register uint8_t i, j; 
-  register uint16_t data; 
-  data = data_low; 
-  column_parity = 0; 
-  for(i=0; i<4; i++) { 
-    line_parity = 0; 
-    for(j=0; j<8; j++) { 
-      line_parity ^= data; 
-      column_parity ^= (data & 1) << j; 
-      *forward_ptr++ = data; 
-      data >>= 1; 
-    } 
-    *forward_ptr++ = line_parity; 
-    if(i == 1) 
-      data = data_hi; 
-  } 
-  for(j=0; j<8; j++) { 
-    *forward_ptr++ = column_parity; 
-    column_parity >>= 1; 
-  } 
-  *forward_ptr = 0; 
-  return 45;                             //return number of emited bits 
-} 
-//==================================================================== 
-// Forward Link send function 
-// Requires: forwarLink_data filled with valid bits (1 bit per byte) 
-//           fwd_bit_count set with number of bits to be sent 
-//==================================================================== 
+#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
+#define FWD_CMD_WRITE 0xA
+#define FWD_CMD_READ 0x9
+#define FWD_CMD_DISABLE 0x5
+
+
+uint8_t forwardLink_data[64]; //array of forwarded bits
+uint8_t * forward_ptr; //ptr for forward message preparation
+uint8_t fwd_bit_sz; //forwardlink bit counter
+uint8_t * fwd_write_ptr; //forwardlink bit pointer
+
+//====================================================================
+// prepares command bits
+// see EM4469 spec
+//====================================================================
+//--------------------------------------------------------------------
+uint8_t Prepare_Cmd( uint8_t cmd ) {
+       //--------------------------------------------------------------------
+
+       *forward_ptr++ = 0; //start bit
+       *forward_ptr++ = 0; //second pause for 4050 code
+
+       *forward_ptr++ = cmd;
+       cmd >>= 1;
+       *forward_ptr++ = cmd;
+       cmd >>= 1;
+       *forward_ptr++ = cmd;
+       cmd >>= 1;
+       *forward_ptr++ = cmd;
+
+       return 6; //return number of emited bits
+}
+
+//====================================================================
+// prepares address bits
+// see EM4469 spec
+//====================================================================
+
+//--------------------------------------------------------------------
+uint8_t Prepare_Addr( uint8_t addr ) {
+       //--------------------------------------------------------------------
+
+       register uint8_t line_parity;
+
+       uint8_t i;
+       line_parity = 0;
+       for(i=0;i<6;i++) {
+               *forward_ptr++ = addr;
+               line_parity ^= addr;
+               addr >>= 1;
+       }
+
+       *forward_ptr++ = (line_parity & 1);
+
+       return 7; //return number of emited bits
+}
+
+//====================================================================
+// prepares data bits intreleaved with parity bits
+// see EM4469 spec
+//====================================================================
+
+//--------------------------------------------------------------------
+uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
+       //--------------------------------------------------------------------
+
+       register uint8_t line_parity;
+       register uint8_t column_parity;
+       register uint8_t i, j;
+       register uint16_t data;
+
+       data = data_low;
+       column_parity = 0;
+
+       for(i=0; i<4; i++) {
+               line_parity = 0;
+               for(j=0; j<8; j++) {
+                       line_parity ^= data;
+                       column_parity ^= (data & 1) << j;
+                       *forward_ptr++ = data;
+                       data >>= 1;
+               }
+               *forward_ptr++ = line_parity;
+               if(i == 1)
+                       data = data_hi;
+       }
+
+       for(j=0; j<8; j++) {
+               *forward_ptr++ = column_parity;
+               column_parity >>= 1;
+       }
+       *forward_ptr = 0;
+
+       return 45; //return number of emited bits
+}
+
+//====================================================================
+// Forward Link send function
+// Requires: forwarLink_data filled with valid bits (1 bit per byte)
+// fwd_bit_count set with number of bits to be sent
+//====================================================================
 void SendForward(uint8_t fwd_bit_count) {
 
-  fwd_write_ptr = forwardLink_data;
-  fwd_bit_sz = fwd_bit_count;
+       fwd_write_ptr = forwardLink_data;
+       fwd_bit_sz = fwd_bit_count;
 
        LED_D_ON();
 
-  //Field on
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-       
+       //Field on
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
        // Give it a bit of time for the resonant antenna to settle.
        // And for the tag to fully power up
        SpinDelay(150);
-       
-  // force 1st mod pulse (start gap must be longer for 4305)
-  fwd_bit_sz--;                        //prepare next bit modulation 
-  fwd_write_ptr++; 
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-  SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
-  FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on
-  SpinDelayUs(16*8); //16 cycles on (8us each)
+
+       // force 1st mod pulse (start gap must be longer for 4305)
+       fwd_bit_sz--; //prepare next bit modulation
+       fwd_write_ptr++;
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
+       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+       SpinDelayUs(16*8); //16 cycles on (8us each)
 
        // now start writting
-  while(fwd_bit_sz-- > 0) {                   //prepare next bit modulation
-    if(((*fwd_write_ptr++) & 1) == 1) 
-      SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
-    else {
-      //These timings work for 4469/4269/4305 (with the 55*8 above)
-           FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-      SpinDelayUs(23*8); //16-4 cycles off (8us each)
-           FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-           FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on
-      SpinDelayUs(9*8); //16 cycles on (8us each)
-    }
-  } 
+       while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+               if(((*fwd_write_ptr++) & 1) == 1)
+                       SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
+               else {
+                       //These timings work for 4469/4269/4305 (with the 55*8 above)
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+                       SpinDelayUs(23*8); //16-4 cycles off (8us each)
+                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+                       SpinDelayUs(9*8); //16 cycles on (8us each)
+               }
+       }
 }
 
-void Login (uint32_t Password) {
+void EM4xLogin(uint32_t Password) {
+
+       uint8_t fwd_bit_count;
 
-  uint8_t fwd_bit_count;
+       forward_ptr = forwardLink_data;
+       fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+       fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
 
-  forward_ptr = forwardLink_data; 
-  fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); 
-  fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); 
+       SendForward(fwd_bit_count);
 
-  SendForward(fwd_bit_count); 
-  
-  //Wait for command to complete 
+       //Wait for command to complete
        SpinDelay(20);
 
-} 
+}
+
+void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
 
-void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { 
-  uint8_t fwd_bit_count;
-       uint8_t *dest = (uint8_t *)BigBuf;
+       uint8_t fwd_bit_count;
+       uint8_t *dest = BigBuf_get_addr();
        int m=0, i=0;
-  //If password mode do login
-  if (PwdMode == 1) Login(Pwd);
 
-  forward_ptr = forwardLink_data; 
-  fwd_bit_count  = Prepare_Cmd( FWD_CMD_READ ); 
-  fwd_bit_count += Prepare_Addr( Address ); 
+       //If password mode do login
+       if (PwdMode == 1) EM4xLogin(Pwd);
+
+       forward_ptr = forwardLink_data;
+       fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+       fwd_bit_count += Prepare_Addr( Address );
 
-       m = sizeof(BigBuf);
-  // Clear destination buffer before sending the command
+       m = BigBuf_max_traceLen();
+       // Clear destination buffer before sending the command
        memset(dest, 128, m);
        // Connect the A/D to the peak-detected low-frequency path.
        SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
        // Now set up the SSC to get the ADC samples that are now streaming at us.
        FpgaSetupSsc();
 
-  SendForward(fwd_bit_count); 
-  
-       // Now do the acquisition 
+       SendForward(fwd_bit_count);
+
+       // Now do the acquisition
        i = 0;
        for(;;) {
                if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
@@ -1748,27 +1945,26 @@ void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
                        if (i >= m) break;
                }
        }
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
        LED_D_OFF();
 }
 
-void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { 
-  uint8_t fwd_bit_count;
-  //If password mode do login
-  if (PwdMode == 1) Login(Pwd);
-       
-  forward_ptr = forwardLink_data; 
-  fwd_bit_count  = Prepare_Cmd( FWD_CMD_WRITE ); 
-  fwd_bit_count += Prepare_Addr( Address ); 
-  fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); 
-
-  SendForward(fwd_bit_count); 
-  
-  //Wait for write to complete 
+void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
+
+       uint8_t fwd_bit_count;
+
+       //If password mode do login
+       if (PwdMode == 1) EM4xLogin(Pwd);
+
+       forward_ptr = forwardLink_data;
+       fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+       fwd_bit_count += Prepare_Addr( Address );
+       fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+
+       SendForward(fwd_bit_count);
+
+       //Wait for write to complete
        SpinDelay(20);
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
        LED_D_OFF();
 }
-
Impressum, Datenschutz