]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/appmain.c
mifare usb update
[proxmark3-svn] / armsrc / appmain.c
index 18b8d64a6b10e1e32fd25c4d71d51d5c492b0121..11047b1cbdc75820e41ef104c1b3ab7447da05bd 100644 (file)
@@ -5,18 +5,15 @@
 // Edits by Gerhard de Koning Gans, Sep 2007 (##)\r
 //-----------------------------------------------------------------------------\r
 \r
-\r
 #include <proxmark3.h>\r
+#include <stdlib.h>\r
 #include "apps.h"\r
+#include "legicrf.h"\r
 #ifdef WITH_LCD\r
 #include "fonts.h"\r
 #include "LCD.h"\r
 #endif\r
 \r
-// The large multi-purpose buffer, typically used to hold A/D samples,\r
-// maybe pre-processed in some way.\r
-DWORD BigBuf[16000];\r
-\r
 //=============================================================================\r
 // A buffer where we can queue things up to be sent through the FPGA, for\r
 // any purpose (fake tag, as reader, whatever). We go MSB first, since that\r
@@ -26,6 +23,13 @@ DWORD BigBuf[16000];
 BYTE ToSend[256];\r
 int ToSendMax;\r
 static int ToSendBit;\r
+struct common_area common_area __attribute__((section(".commonarea")));\r
+\r
+void BufferClear(void)\r
+{\r
+       memset(BigBuf,0,sizeof(BigBuf));\r
+       DbpString("Buffer cleared");\r
+}\r
 \r
 void ToSendReset(void)\r
 {\r
@@ -59,10 +63,14 @@ void ToSendStuffBit(int b)
 \r
 void DbpString(char *str)\r
 {\r
+       /* this holds up stuff unless we're connected to usb */\r
+       if (!UsbConnected())\r
+               return;\r
+\r
        UsbCommand c;\r
        c.cmd = CMD_DEBUG_PRINT_STRING;\r
-       c.ext1 = strlen(str);\r
-       memcpy(c.d.asBytes, str, c.ext1);\r
+       c.arg[0] = strlen(str);\r
+       memcpy(c.d.asBytes, str, c.arg[0]);\r
 \r
        UsbSendPacket((BYTE *)&c, sizeof(c));\r
        // TODO fix USB so stupid things like this aren't req'd\r
@@ -71,60 +79,21 @@ void DbpString(char *str)
 \r
 void DbpIntegers(int x1, int x2, int x3)\r
 {\r
+       /* this holds up stuff unless we're connected to usb */\r
+       if (!UsbConnected())\r
+               return;\r
+\r
        UsbCommand c;\r
        c.cmd = CMD_DEBUG_PRINT_INTEGERS;\r
-       c.ext1 = x1;\r
-       c.ext2 = x2;\r
-       c.ext3 = x3;\r
+       c.arg[0] = x1;\r
+       c.arg[1] = x2;\r
+       c.arg[2] = x3;\r
 \r
        UsbSendPacket((BYTE *)&c, sizeof(c));\r
        // XXX\r
        SpinDelay(50);\r
 }\r
 \r
-void AcquireRawAdcSamples125k(BOOL at134khz)\r
-{\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int n = sizeof(BigBuf);\r
-       int i;\r
-\r
-       memset(dest,0,n);\r
-\r
-       if(at134khz) {\r
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);\r
-       } else {\r
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r
-       }\r
-\r
-       // Connect the A/D to the peak-detected low-frequency path.\r
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
-\r
-       // Give it a bit of time for the resonant antenna to settle.\r
-       SpinDelay(50);\r
-\r
-       // Now set up the SSC to get the ADC samples that are now streaming at us.\r
-       FpgaSetupSsc();\r
-\r
-       i = 0;\r
-       for(;;) {\r
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                       SSC_TRANSMIT_HOLDING = 0x43;\r
-                       LED_D_ON();\r
-               }\r
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                       dest[i] = (BYTE)SSC_RECEIVE_HOLDING;\r
-                       i++;\r
-                       LED_D_OFF();\r
-                       if(i >= n) {\r
-                               break;\r
-                       }\r
-               }\r
-       }\r
-       DbpIntegers(dest[0], dest[1], at134khz);\r
-}\r
-\r
 //-----------------------------------------------------------------------------\r
 // Read an ADC channel and block till it completes, then return the result\r
 // in ADC units (0 to 1023). Also a routine to average 32 samples and\r
@@ -134,15 +103,17 @@ static int ReadAdc(int ch)
 {\r
        DWORD d;\r
 \r
-       ADC_CONTROL = ADC_CONTROL_RESET;\r
-       ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) |\r
+       AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;\r
+       AT91C_BASE_ADC->ADC_MR =\r
+               ADC_MODE_PRESCALE(32) |\r
+               ADC_MODE_STARTUP_TIME(16) |\r
                ADC_MODE_SAMPLE_HOLD_TIME(8);\r
-       ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch);\r
+       AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);\r
 \r
-       ADC_CONTROL = ADC_CONTROL_START;\r
-       while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch)))\r
+       AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;\r
+       while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))\r
                ;\r
-       d = ADC_CHANNEL_DATA(ch);\r
+       d = AT91C_BASE_ADC->ADC_CDR[ch];\r
 \r
        return d;\r
 }\r
@@ -158,437 +129,404 @@ static int AvgAdc(int ch)
 \r
        return (a + 15) >> 5;\r
 }\r
-
-/*
- * Sweeps the useful LF range of the proxmark from
- * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
- * reads the voltage in the antenna: the result is a graph
- * which should clearly show the resonating frequency of your
- * LF antenna ( hopefully around 90 if it is tuned to 125kHz!)
- */\r
-void SweepLFrange()\r
+\r
+void MeasureAntennaTuning(void)\r
 {\r
        BYTE *dest = (BYTE *)BigBuf;\r
-       int i;\r
+       int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;\r
+       int vLf125 = 0, vLf134 = 0, vHf = 0;    // in mV\r
 \r
-       // clear buffer\r
+       UsbCommand c;\r
+\r
+       DbpString("Measuring antenna characteristics, please wait.");\r
        memset(BigBuf,0,sizeof(BigBuf));\r
 \r
+/*\r
+ * Sweeps the useful LF range of the proxmark from\r
+ * 46.8kHz (divisor=255) to 600kHz (divisor=19) and\r
+ * read the voltage in the antenna, the result left\r
+ * in the buffer is a graph which should clearly show\r
+ * the resonating frequency of your LF antenna\r
+ * ( hopefully around 95 if it is tuned to 125kHz!)\r
+ */\r
        FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
        for (i=255; i>19; i--) {\r
                FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);\r
                SpinDelay(20);\r
-               dest[i] = (137500 * AvgAdc(4)) >> 18;\r
+               // Vref = 3.3V, and a 10000:240 voltage divider on the input\r
+               // can measure voltages up to 137500 mV\r
+               adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);\r
+               if (i==95)      vLf125 = adcval; // voltage at 125Khz\r
+               if (i==89)      vLf134 = adcval; // voltage at 134Khz\r
+\r
+               dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes\r
+               if(dest[i] > peak) {\r
+                       peakv = adcval;\r
+                       peak = dest[i];\r
+                       peakf = i;\r
+                       ptr = i;\r
+               }\r
        }\r
-}\r
-\r
-void MeasureAntennaTuning(void)\r
-{\r
-// Impedances are Zc = 1/(j*omega*C), in ohms\r
-#define LF_TUNING_CAP_Z        1273    //  1 nF @ 125   kHz\r
-#define HF_TUNING_CAP_Z        235             // 50 pF @ 13.56 MHz\r
-\r
-       int vLf125, vLf134, vHf;        // in mV\r
-\r
-       UsbCommand c;\r
-\r
-       // Let the FPGA drive the low-frequency antenna around 125 kHz.\r
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r
-       SpinDelay(20);\r
-       vLf125 = AvgAdc(4);\r
-       // Vref = 3.3V, and a 10000:240 voltage divider on the input\r
-       // can measure voltages up to 137500 mV\r
-       vLf125 = (137500 * vLf125) >> 10;\r
-\r
-       // Let the FPGA drive the low-frequency antenna around 134 kHz.\r
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);\r
-       SpinDelay(20);\r
-       vLf134 = AvgAdc(4);\r
-       // Vref = 3.3V, and a 10000:240 voltage divider on the input\r
-       // can measure voltages up to 137500 mV\r
-       vLf134 = (137500 * vLf134) >> 10;\r
 \r
        // Let the FPGA drive the high-frequency antenna around 13.56 MHz.\r
        FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
        SpinDelay(20);\r
-       vHf = AvgAdc(5);\r
        // Vref = 3300mV, and an 10:1 voltage divider on the input\r
        // can measure voltages up to 33000 mV\r
-       vHf = (33000 * vHf) >> 10;\r
+       vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;\r
 \r
        c.cmd = CMD_MEASURED_ANTENNA_TUNING;\r
-       c.ext1 = (vLf125 << 0) | (vLf134 << 16);\r
-       c.ext2 = vHf;\r
-       c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16);\r
+       c.arg[0] = (vLf125 << 0) | (vLf134 << 16);\r
+       c.arg[1] = vHf;\r
+       c.arg[2] = peakf | (peakv << 16);\r
        UsbSendPacket((BYTE *)&c, sizeof(c));\r
 }\r
 \r
-void SimulateTagLowFrequency(int period)\r
+void SimulateTagHfListen(void)\r
 {\r
+       BYTE *dest = (BYTE *)BigBuf;\r
+       int n = sizeof(BigBuf);\r
+       BYTE v = 0;\r
        int i;\r
-       BYTE *tab = (BYTE *)BigBuf;\r
-\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);\r
+       int p = 0;\r
 \r
-       PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);\r
+       // We're using this mode just so that I can test it out; the simulated\r
+       // tag mode would work just as well and be simpler.\r
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);\r
 \r
-       PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);\r
-       PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);\r
+       // We need to listen to the high-frequency, peak-detected path.\r
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
 \r
-#define SHORT_COIL()   LOW(GPIO_SSC_DOUT)\r
-#define OPEN_COIL()    HIGH(GPIO_SSC_DOUT)\r
+       FpgaSetupSsc();\r
 \r
        i = 0;\r
        for(;;) {\r
-               while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {\r
-                       if(BUTTON_PRESS()) {\r
-                               return;\r
-                       }\r
-                       WDT_HIT();\r
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {\r
+                       AT91C_BASE_SSC->SSC_THR = 0xff;\r
                }\r
+               if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {\r
+                       BYTE r = (BYTE)AT91C_BASE_SSC->SSC_RHR;\r
 \r
-               LED_D_ON();\r
-               if(tab[i]) {\r
-                       OPEN_COIL();\r
-               } else {\r
-                       SHORT_COIL();\r
-               }\r
-               LED_D_OFF();\r
+                       v <<= 1;\r
+                       if(r & 1) {\r
+                               v |= 1;\r
+                       }\r
+                       p++;\r
+\r
+                       if(p >= 8) {\r
+                               dest[i] = v;\r
+                               v = 0;\r
+                               p = 0;\r
+                               i++;\r
 \r
-               while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {\r
-                       if(BUTTON_PRESS()) {\r
-                               return;\r
+                               if(i >= n) {\r
+                                       break;\r
+                               }\r
                        }\r
-                       WDT_HIT();\r
                }\r
-\r
-               i++;\r
-               if(i == period) i = 0;\r
        }\r
+       DbpString("simulate tag (now type bitsamples)");\r
 }\r
 \r
-// compose fc/8 fc/10 waveform\r
-static void fc(int c, int *n) {\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int idx;\r
-\r
-       // for when we want an fc8 pattern every 4 logical bits\r
-       if(c==0) {\r
-               dest[((*n)++)]=1;\r
-               dest[((*n)++)]=1;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-       }\r
-       //      an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples\r
-       if(c==8) {\r
-               for (idx=0; idx<6; idx++) {\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-               }\r
-       }\r
+void ReadMem(int addr)\r
+{\r
+       const DWORD *data = ((DWORD *)addr);\r
+       int i;\r
 \r
-       //      an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples\r
-       if(c==10) {\r
-               for (idx=0; idx<5; idx++) {\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-               }\r
-       }\r
+       DbpString("Reading memory at address");\r
+       DbpIntegers(0, 0, addr);\r
+       for (i = 0; i < 8; i+= 2)\r
+               DbpIntegers(0, data[i], data[i+1]);\r
 }\r
 \r
-// prepare a waveform pattern in the buffer based on the ID given then\r
-// simulate a HID tag until the button is pressed\r
-static void CmdHIDsimTAG(int hi, int lo)\r
+/* osimage version information is linked in */\r
+extern struct version_information version_information;\r
+/* bootrom version information is pointed to from _bootphase1_version_pointer */\r
+extern char *_bootphase1_version_pointer, _flash_start, _flash_end;\r
+void SendVersion(void)\r
 {\r
-       int n=0, i=0;\r
-       /*\r
-        HID tag bitstream format\r
-        The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits\r
-        A 1 bit is represented as 6 fc8 and 5 fc10 patterns\r
-        A 0 bit is represented as 5 fc10 and 6 fc8 patterns\r
-        A fc8 is inserted before every 4 bits\r
-        A special start of frame pattern is used consisting a0b0 where a and b are neither 0\r
-        nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)\r
-       */\r
-\r
-       if (hi>0xFFF) {\r
-               DbpString("Tags can only have 44 bits.");\r
-               return;\r
-       }\r
-       fc(0,&n);\r
-       // special start of frame marker containing invalid bit sequences\r
-       fc(8,  &n);     fc(8,  &n);     // invalid\r
-       fc(8,  &n);     fc(10, &n); // logical 0\r
-       fc(10, &n);     fc(10, &n); // invalid\r
-       fc(8,  &n);     fc(10, &n); // logical 0\r
-\r
-       WDT_HIT();\r
-       // manchester encode bits 43 to 32\r
-       for (i=11; i>=0; i--) {\r
-               if ((i%4)==3) fc(0,&n);\r
-               if ((hi>>i)&1) {\r
-                       fc(10, &n);     fc(8,  &n);             // low-high transition\r
-               } else {\r
-                       fc(8,  &n);     fc(10, &n);             // high-low transition\r
-               }\r
-       }\r
-\r
-       WDT_HIT();\r
-       // manchester encode bits 31 to 0\r
-       for (i=31; i>=0; i--) {\r
-               if ((i%4)==3) fc(0,&n);\r
-               if ((lo>>i)&1) {\r
-                       fc(10, &n);     fc(8,  &n);             // low-high transition\r
-               } else {\r
-                       fc(8,  &n);     fc(10, &n);             // high-low transition\r
-               }\r
+       char temp[48]; /* Limited data payload in USB packets */\r
+       DbpString("Prox/RFID mark3 RFID instrument");\r
+       \r
+       /* Try to find the bootrom version information. Expect to find a pointer at \r
+        * symbol _bootphase1_version_pointer, perform slight sanity checks on the\r
+        * pointer, then use it.\r
+        */\r
+       char *bootrom_version = *(char**)&_bootphase1_version_pointer;\r
+       if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {\r
+               DbpString("bootrom version information appears invalid");\r
+       } else {\r
+               FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);\r
+               DbpString(temp);\r
        }\r
-\r
-       LED_A_ON();\r
-       SimulateTagLowFrequency(n);\r
-       LED_A_OFF();\r
+       \r
+       FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);\r
+       DbpString(temp);\r
+       \r
+       FpgaGatherVersion(temp, sizeof(temp));\r
+       DbpString(temp);\r
 }\r
 \r
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it\r
-static void CmdHIDdemodFSK(void)\r
+#ifdef WITH_LF\r
+// samy's sniff and repeat routine\r
+void SamyRun()\r
 {\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int m=0, n=0, i=0, idx=0, found=0, lastval=0;\r
-       DWORD hi=0, lo=0;\r
+       DbpString("Stand-alone mode! No PC necessary.");\r
 \r
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r
+       // 3 possible options? no just 2 for now\r
+#define OPTS 2\r
 \r
-       // Connect the A/D to the peak-detected low-frequency path.\r
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
+       int high[OPTS], low[OPTS];\r
 \r
-       // Give it a bit of time for the resonant antenna to settle.\r
-       SpinDelay(50);\r
+       // Oooh pretty -- notify user we're in elite samy mode now\r
+       LED(LED_RED,    200);\r
+       LED(LED_ORANGE, 200);\r
+       LED(LED_GREEN,  200);\r
+       LED(LED_ORANGE, 200);\r
+       LED(LED_RED,    200);\r
+       LED(LED_ORANGE, 200);\r
+       LED(LED_GREEN,  200);\r
+       LED(LED_ORANGE, 200);\r
+       LED(LED_RED,    200);\r
 \r
-       // Now set up the SSC to get the ADC samples that are now streaming at us.\r
-       FpgaSetupSsc();\r
+       int selected = 0;\r
+       int playing = 0;\r
 \r
-       for(;;) {\r
+       // Turn on selected LED\r
+       LED(selected + 1, 0);\r
+\r
+       for (;;)\r
+       {\r
+               UsbPoll(FALSE);\r
                WDT_HIT();\r
-               LED_A_ON();\r
-               if(BUTTON_PRESS()) {\r
-                       LED_A_OFF();\r
-                       return;\r
-               }\r
 \r
-               i = 0;\r
-               m = sizeof(BigBuf);\r
-               memset(dest,128,m);\r
-               for(;;) {\r
-                       if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                               SSC_TRANSMIT_HOLDING = 0x43;\r
-                               LED_D_ON();\r
-                       }\r
-                       if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                               dest[i] = (BYTE)SSC_RECEIVE_HOLDING;\r
-                               // we don't care about actual value, only if it's more or less than a\r
-                               // threshold essentially we capture zero crossings for later analysis\r
-                               if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;\r
-                               i++;\r
-                               LED_D_OFF();\r
-                               if(i >= m) {\r
-                                       break;\r
-                               }\r
-                       }\r
-               }\r
+               // Was our button held down or pressed?\r
+               int button_pressed = BUTTON_HELD(1000);\r
+               SpinDelay(300);\r
 \r
-               // FSK demodulator\r
+               // Button was held for a second, begin recording\r
+               if (button_pressed > 0)\r
+               {\r
+                       LEDsoff();\r
+                       LED(selected + 1, 0);\r
+                       LED(LED_RED2, 0);\r
 \r
-               // sync to first lo-hi transition\r
-               for( idx=1; idx<m; idx++) {\r
-                       if (dest[idx-1]<dest[idx])\r
-                               lastval=idx;\r
-                               break;\r
-               }\r
-               WDT_HIT();\r
+                       // record\r
+                       DbpString("Starting recording");\r
 \r
-               // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)\r
-               // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere\r
-               // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10\r
-               for( i=0; idx<m; idx++) {\r
-                       if (dest[idx-1]<dest[idx]) {\r
-                               dest[i]=idx-lastval;\r
-                               if (dest[i] <= 8) {\r
-                                               dest[i]=1;\r
-                               } else {\r
-                                               dest[i]=0;\r
-                               }\r
+                       // wait for button to be released\r
+                       while(BUTTON_PRESS())\r
+                               WDT_HIT();\r
 \r
-                               lastval=idx;\r
-                               i++;\r
-                       }\r
-               }\r
-               m=i;\r
-               WDT_HIT();\r
+                       /* need this delay to prevent catching some weird data */\r
+                       SpinDelay(500);\r
 \r
-               // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns\r
-               lastval=dest[0];\r
-               idx=0;\r
-               i=0;\r
-               n=0;\r
-               for( idx=0; idx<m; idx++) {\r
-                       if (dest[idx]==lastval) {\r
-                               n++;\r
-                       } else {\r
-                               // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,\r
-                               // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets\r
-                               // swallowed up by rounding\r
-                               // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding\r
-                               // special start of frame markers use invalid manchester states (no transitions) by using sequences\r
-                               // like 111000\r
-                               if (dest[idx-1]) {\r
-                                       n=(n+1)/6;                      // fc/8 in sets of 6\r
-                               } else {\r
-                                       n=(n+1)/5;                      // fc/10 in sets of 5\r
-                               }\r
-                               switch (n) {                    // stuff appropriate bits in buffer\r
-                                       case 0:\r
-                                       case 1: // one bit\r
-                                               dest[i++]=dest[idx-1];\r
-                                               break;\r
-                                       case 2: // two bits\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               break;\r
-                                       case 3: // 3 bit start of frame markers\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               break;\r
-                                       // When a logic 0 is immediately followed by the start of the next transmisson\r
-                                       // (special pattern) a pattern of 4 bit duration lengths is created.\r
-                                       case 4:\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               break;\r
-                                       default:        // this shouldn't happen, don't stuff any bits\r
-                                               break;\r
-                               }\r
-                               n=0;\r
-                               lastval=dest[idx];\r
-                       }\r
+                       CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);\r
+                       DbpString("Recorded");\r
+                       DbpIntegers(selected, high[selected], low[selected]);\r
+\r
+                       LEDsoff();\r
+                       LED(selected + 1, 0);\r
+                       // Finished recording\r
+\r
+                       // If we were previously playing, set playing off\r
+                       // so next button push begins playing what we recorded\r
+                       playing = 0;\r
                }\r
-               m=i;\r
-               WDT_HIT();\r
 \r
-               // final loop, go over previously decoded manchester data and decode into usable tag ID\r
-               // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0\r
-               for( idx=0; idx<m-6; idx++) {\r
-                       // search for a start of frame marker\r
-                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
-                       {\r
-                               found=1;\r
-                               idx+=6;\r
-                               if (found && (hi|lo)) {\r
-                                       DbpString("TAG ID");\r
-                                       DbpIntegers(hi, lo, (lo>>1)&0xffff);\r
-                                       hi=0;\r
-                                       lo=0;\r
-                                       found=0;\r
-                               }\r
-                       }\r
-                       if (found) {\r
-                               if (dest[idx] && (!dest[idx+1]) ) {\r
-                                       hi=(hi<<1)|(lo>>31);\r
-                                       lo=(lo<<1)|0;\r
-                               } else if ( (!dest[idx]) && dest[idx+1]) {\r
-                                       hi=(hi<<1)|(lo>>31);\r
-                                       lo=(lo<<1)|1;\r
-                               } else {\r
-                                       found=0;\r
-                                       hi=0;\r
-                                       lo=0;\r
-                               }\r
-                               idx++;\r
-                       }\r
-                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
+               // Change where to record (or begin playing)\r
+               else if (button_pressed)\r
+               {\r
+                       // Next option if we were previously playing\r
+                       if (playing)\r
+                               selected = (selected + 1) % OPTS;\r
+                       playing = !playing;\r
+\r
+                       LEDsoff();\r
+                       LED(selected + 1, 0);\r
+\r
+                       // Begin transmitting\r
+                       if (playing)\r
                        {\r
-                               found=1;\r
-                               idx+=6;\r
-                               if (found && (hi|lo)) {\r
-                                       DbpString("TAG ID");\r
-                                       DbpIntegers(hi, lo, (lo>>1)&0xffff);\r
-                                       hi=0;\r
-                                       lo=0;\r
-                                       found=0;\r
-                               }\r
+                               LED(LED_GREEN, 0);\r
+                               DbpString("Playing");\r
+                               // wait for button to be released\r
+                               while(BUTTON_PRESS())\r
+                                       WDT_HIT();\r
+                               DbpIntegers(selected, high[selected], low[selected]);\r
+                               CmdHIDsimTAG(high[selected], low[selected], 0);\r
+                               DbpString("Done playing");\r
+                               if (BUTTON_HELD(1000) > 0)\r
+                                       {\r
+                                       DbpString("Exiting");\r
+                                       LEDsoff();\r
+                                       return;\r
+                                       }\r
+\r
+                               /* We pressed a button so ignore it here with a delay */\r
+                               SpinDelay(300);\r
+\r
+                               // when done, we're done playing, move to next option\r
+                               selected = (selected + 1) % OPTS;\r
+                               playing = !playing;\r
+                               LEDsoff();\r
+                               LED(selected + 1, 0);\r
                        }\r
+                       else\r
+                               while(BUTTON_PRESS())\r
+                                       WDT_HIT();\r
                }\r
-               WDT_HIT();\r
        }\r
 }\r
+#endif\r
 \r
-void SimulateTagHfListen(void)\r
+/*\r
+OBJECTIVE\r
+Listen and detect an external reader. Determine the best location\r
+for the antenna.\r
+\r
+INSTRUCTIONS:\r
+Inside the ListenReaderField() function, there is two mode.\r
+By default, when you call the function, you will enter mode 1.\r
+If you press the PM3 button one time, you will enter mode 2.\r
+If you press the PM3 button a second time, you will exit the function.\r
+\r
+DESCRIPTION OF MODE 1:\r
+This mode just listens for an external reader field and lights up green\r
+for HF and/or red for LF. This is the original mode of the detectreader\r
+function.\r
+\r
+DESCRIPTION OF MODE 2:\r
+This mode will visually represent, using the LEDs, the actual strength of the\r
+current compared to the maximum current detected. Basically, once you know\r
+what kind of external reader is present, it will help you spot the best location to place\r
+your antenna. You will probably not get some good results if there is a LF and a HF reader\r
+at the same place! :-)\r
+\r
+LIGHT SCHEME USED:\r
+*/\r
+static const char LIGHT_SCHEME[] = {\r
+               0x0, /* ----     | No field detected */\r
+               0x1, /* X---     | 14% of maximum current detected */\r
+               0x2, /* -X--     | 29% of maximum current detected */\r
+               0x4, /* --X-     | 43% of maximum current detected */\r
+               0x8, /* ---X     | 57% of maximum current detected */\r
+               0xC, /* --XX     | 71% of maximum current detected */\r
+               0xE, /* -XXX     | 86% of maximum current detected */\r
+               0xF, /* XXXX     | 100% of maximum current detected */\r
+};\r
+static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);\r
+\r
+void ListenReaderField(int limit)\r
 {\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int n = sizeof(BigBuf);\r
-       BYTE v = 0;\r
-       int i;\r
-       int p = 0;\r
+       int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;\r
+       int hf_av, hf_av_new,  hf_baseline= 0, hf_count= 0, hf_max;\r
+       int mode=1, display_val, display_max, i;\r
 \r
-       // We're using this mode just so that I can test it out; the simulated\r
-       // tag mode would work just as well and be simpler.\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);\r
+#define LF_ONLY                1\r
+#define HF_ONLY                2\r
 \r
-       // We need to listen to the high-frequency, peak-detected path.\r
-       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
+       LEDsoff();\r
 \r
-       FpgaSetupSsc();\r
+       lf_av=lf_max=ReadAdc(ADC_CHAN_LF);\r
+\r
+       if(limit != HF_ONLY) {\r
+               DbpString("LF 125/134 Baseline:");\r
+               DbpIntegers(lf_av,0,0);\r
+               lf_baseline= lf_av;\r
+       }\r
+\r
+       hf_av=hf_max=ReadAdc(ADC_CHAN_HF);\r
+\r
+       if (limit != LF_ONLY) {\r
+               DbpString("HF 13.56 Baseline:");\r
+               DbpIntegers(hf_av,0,0);\r
+               hf_baseline= hf_av;\r
+       }\r
 \r
-       i = 0;\r
        for(;;) {\r
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                       SSC_TRANSMIT_HOLDING = 0xff;\r
+               if (BUTTON_PRESS()) {\r
+                       SpinDelay(500);\r
+                       switch (mode) {\r
+                               case 1:\r
+                                       mode=2;\r
+                                       DbpString("Signal Strength Mode");\r
+                                       break;\r
+                               case 2:\r
+                               default:\r
+                                       DbpString("Stopped");\r
+                                       LEDsoff();\r
+                                       return;\r
+                                       break;\r
+                       }\r
                }\r
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                       BYTE r = (BYTE)SSC_RECEIVE_HOLDING;\r
+               WDT_HIT();\r
 \r
-                       v <<= 1;\r
-                       if(r & 1) {\r
-                               v |= 1;\r
+               if (limit != HF_ONLY) {\r
+                       if(mode==1) {\r
+                               if (abs(lf_av - lf_baseline) > 10) LED_D_ON();\r
+                               else                               LED_D_OFF();\r
                        }\r
-                       p++;\r
-\r
-                       if(p >= 8) {\r
-                               dest[i] = v;\r
-                               v = 0;\r
-                               p = 0;\r
-                               i++;\r
+                       \r
+                       ++lf_count;\r
+                       lf_av_new= ReadAdc(ADC_CHAN_LF);\r
+                       // see if there's a significant change\r
+                       if(abs(lf_av - lf_av_new) > 10) {\r
+                               DbpString("LF 125/134 Field Change:");\r
+                               DbpIntegers(lf_av,lf_av_new,lf_count);\r
+                               lf_av= lf_av_new;\r
+                               if (lf_av > lf_max)\r
+                                       lf_max = lf_av;\r
+                               lf_count= 0;\r
+                       }\r
+               }\r
 \r
-                               if(i >= n) {\r
+               if (limit != LF_ONLY) {\r
+                       if (mode == 1){\r
+                               if (abs(hf_av - hf_baseline) > 10) LED_B_ON();\r
+                               else                               LED_B_OFF();\r
+                       }\r
+                       \r
+                       ++hf_count;\r
+                       hf_av_new= ReadAdc(ADC_CHAN_HF);\r
+                       // see if there's a significant change\r
+                       if(abs(hf_av - hf_av_new) > 10) {\r
+                               DbpString("HF 13.56 Field Change:");\r
+                               DbpIntegers(hf_av,hf_av_new,hf_count);\r
+                               hf_av= hf_av_new;\r
+                               if (hf_av > hf_max)\r
+                                       hf_max = hf_av;\r
+                               hf_count= 0;\r
+                       }\r
+               }\r
+               \r
+               if(mode == 2) {\r
+                       if (limit == LF_ONLY) {\r
+                               display_val = lf_av;\r
+                               display_max = lf_max;\r
+                       } else if (limit == HF_ONLY) {\r
+                               display_val = hf_av;\r
+                               display_max = hf_max;\r
+                       } else { /* Pick one at random */\r
+                               if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {\r
+                                       display_val = hf_av;\r
+                                       display_max = hf_max;\r
+                               } else {\r
+                                       display_val = lf_av;\r
+                                       display_max = lf_max;\r
+                               }\r
+                       }\r
+                       for (i=0; i<LIGHT_LEN; i++) {\r
+                               if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {\r
+                                       if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();\r
+                                       if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();\r
+                                       if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();\r
+                                       if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();\r
                                        break;\r
                                }\r
                        }\r
                }\r
        }\r
-       DbpString("simulate tag (now type bitsamples)");\r
 }\r
 \r
 void UsbPacketReceived(BYTE *packet, int len)\r
@@ -596,65 +534,118 @@ void UsbPacketReceived(BYTE *packet, int len)
        UsbCommand *c = (UsbCommand *)packet;\r
 \r
        switch(c->cmd) {\r
+#ifdef WITH_LF\r
                case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:\r
-                       AcquireRawAdcSamples125k(c->ext1);\r
+                       AcquireRawAdcSamples125k(c->arg[0]);\r
                        break;\r
+#endif\r
 \r
+#ifdef WITH_LF\r
+               case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:\r
+                       ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);\r
+                       break;\r
+#endif\r
+\r
+#ifdef WITH_ISO15693\r
                case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:\r
                        AcquireRawAdcSamplesIso15693();\r
                        break;\r
+#endif\r
 \r
+               case CMD_BUFF_CLEAR:\r
+                       BufferClear();\r
+                       break;\r
+\r
+#ifdef WITH_ISO15693\r
                case CMD_READER_ISO_15693:\r
-                       ReaderIso15693(c->ext1);\r
+                       ReaderIso15693(c->arg[0]);\r
                        break;\r
+#endif\r
 \r
+               case CMD_READER_LEGIC_RF:\r
+                       LegicRfReader();\r
+                       break;\r
+\r
+#ifdef WITH_ISO15693\r
                case CMD_SIMTAG_ISO_15693:\r
-                       SimTagIso15693(c->ext1);\r
+                       SimTagIso15693(c->arg[0]);\r
                        break;\r
+#endif\r
 \r
+#ifdef WITH_ISO14443b\r
                case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:\r
-                       AcquireRawAdcSamplesIso14443(c->ext1);\r
+                       AcquireRawAdcSamplesIso14443(c->arg[0]);\r
+                       break;\r
+#endif\r
+\r
+#ifdef WITH_ISO14443b\r
+               case CMD_READ_SRI512_TAG:\r
+                       ReadSRI512Iso14443(c->arg[0]);\r
                        break;\r
-
-               case CMD_READ_SRI512_TAG:
-                       ReadSRI512Iso14443(c->ext1);
-                       break;
+               case CMD_READ_SRIX4K_TAG:\r
+                       ReadSRIX4KIso14443(c->arg[0]);\r
+                       break;\r
+#endif\r
 \r
+#ifdef WITH_ISO14443a\r
                case CMD_READER_ISO_14443a:\r
-                       ReaderIso14443a(c->ext1);\r
+                       ReaderIso14443a(c->arg[0]);\r
                        break;\r
+#endif\r
 \r
+#ifdef WITH_ISO14443a\r
+               case CMD_READER_MIFARE:\r
+                       ReaderMifare(c->arg[0]);\r
+                       break;\r
+#endif\r
+      \r
+#ifdef WITH_ISO14443b\r
                case CMD_SNOOP_ISO_14443:\r
                        SnoopIso14443();\r
                        break;\r
+#endif\r
 \r
+#ifdef WITH_ISO14443a\r
                case CMD_SNOOP_ISO_14443a:\r
                        SnoopIso14443a();\r
                        break;\r
+#endif\r
 \r
                case CMD_SIMULATE_TAG_HF_LISTEN:\r
                        SimulateTagHfListen();\r
                        break;\r
 \r
+#ifdef WITH_ISO14443b\r
                case CMD_SIMULATE_TAG_ISO_14443:\r
                        SimulateIso14443Tag();\r
                        break;\r
-\r
+#endif\r
+               \r
+#ifdef WITH_ISO14443a\r
                case CMD_SIMULATE_TAG_ISO_14443a:\r
-                       SimulateIso14443aTag(c->ext1, c->ext2);  // ## Simulate iso14443a tag - pass tag type & UID\r
+                       SimulateIso14443aTag(c->arg[0], c->arg[1]);  // ## Simulate iso14443a tag - pass tag type & UID\r
                        break;\r
+#endif\r
 \r
                case CMD_MEASURE_ANTENNA_TUNING:\r
                        MeasureAntennaTuning();\r
                        break;\r
 \r
+               case CMD_LISTEN_READER_FIELD:\r
+                       ListenReaderField(c->arg[0]);\r
+                       break;\r
+\r
+#ifdef WITH_LF\r
                case CMD_HID_DEMOD_FSK:\r
-                       CmdHIDdemodFSK();                               // Demodulate HID tag\r
+                       CmdHIDdemodFSK(0, 0, 0, 1);                             // Demodulate HID tag\r
                        break;\r
+#endif\r
 \r
+#ifdef WITH_LF\r
                case CMD_HID_SIM_TAG:\r
-                       CmdHIDsimTAG(c->ext1, c->ext2);                                 // Simulate HID tag by ID\r
+                       CmdHIDsimTAG(c->arg[0], c->arg[1], 1);                                  // Simulate HID tag by ID\r
                        break;\r
+#endif\r
 \r
                case CMD_FPGA_MAJOR_MODE_OFF:           // ## FPGA Control\r
                        FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
@@ -662,90 +653,147 @@ void UsbPacketReceived(BYTE *packet, int len)
                        LED_D_OFF(); // LED D indicates field ON or OFF\r
                        break;\r
 \r
-               case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:\r
-               case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: {\r
+#ifdef WITH_LF\r
+               case CMD_READ_TI_TYPE:\r
+                       ReadTItag();\r
+                       break;\r
+#endif\r
+\r
+#ifdef WITH_LF\r
+               case CMD_WRITE_TI_TYPE:\r
+                       WriteTItag(c->arg[0],c->arg[1],c->arg[2]);\r
+                       break;\r
+#endif\r
+\r
+               case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {\r
                        UsbCommand n;\r
                        if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {\r
                                n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;\r
                        } else {\r
                                n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;\r
                        }\r
-                       n.ext1 = c->ext1;\r
-                       memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD));\r
+                       n.arg[0] = c->arg[0];\r
+                       memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(DWORD));\r
                        UsbSendPacket((BYTE *)&n, sizeof(n));\r
                        break;\r
                }\r
+\r
                case CMD_DOWNLOADED_SIM_SAMPLES_125K: {\r
                        BYTE *b = (BYTE *)BigBuf;\r
-                       memcpy(b+c->ext1, c->d.asBytes, 48);\r
+                       memcpy(b+c->arg[0], c->d.asBytes, 48);\r
                        break;\r
                }\r
+\r
+#ifdef WITH_LF\r
                case CMD_SIMULATE_TAG_125K:\r
                        LED_A_ON();\r
-                       SimulateTagLowFrequency(c->ext1);\r
+                       SimulateTagLowFrequency(c->arg[0], 1);\r
                        LED_A_OFF();\r
                        break;\r
-#ifdef WITH_LCD\r
-               case CMD_LCD_RESET:\r
-                       LCDReset();\r
-                       break;\r
 #endif\r
-               case CMD_SWEEP_LF:\r
-                       SweepLFrange();\r
+\r
+               case CMD_READ_MEM:\r
+                       ReadMem(c->arg[0]);\r
                        break;\r
 \r
                case CMD_SET_LF_DIVISOR:\r
-                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);\r
+                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);\r
                        break;\r
+\r
+               case CMD_SET_ADC_MUX:\r
+                       switch(c->arg[0]) {\r
+                               case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;\r
+                               case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;\r
+                               case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;\r
+                               case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;\r
+                       }\r
+                       break;\r
+\r
+               case CMD_VERSION:\r
+                       SendVersion();\r
+                       break;\r
+\r
+#ifdef WITH_LF\r
+               case CMD_LF_SIMULATE_BIDIR:\r
+                       SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);\r
+                       break;\r
+#endif\r
+\r
 #ifdef WITH_LCD\r
+               case CMD_LCD_RESET:\r
+                       LCDReset();\r
+                       break;\r
                case CMD_LCD:\r
-                       LCDSend(c->ext1);\r
+                       LCDSend(c->arg[0]);\r
                        break;\r
 #endif\r
-        case CMD_SETUP_WRITE:\r
+               case CMD_SETUP_WRITE:\r
                case CMD_FINISH_WRITE:\r
                case CMD_HARDWARE_RESET:\r
                        USB_D_PLUS_PULLUP_OFF();\r
                        SpinDelay(1000);\r
                        SpinDelay(1000);\r
-                       RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET;\r
+                       AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;\r
                        for(;;) {\r
                                // We're going to reset, and the bootrom will take control.\r
                        }\r
                        break;\r
 \r
-\r
+               case CMD_START_FLASH:\r
+                       if(common_area.flags.bootrom_present) {\r
+                               common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;\r
+                       }\r
+                       USB_D_PLUS_PULLUP_OFF();\r
+                       AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;\r
+                       for(;;);\r
+                       break;\r
+                       \r
+               case CMD_DEVICE_INFO: {\r
+                       UsbCommand c;\r
+                       c.cmd = CMD_DEVICE_INFO;\r
+                       c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;\r
+                       if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;\r
+                       UsbSendPacket((BYTE*)&c, sizeof(c));\r
+               }\r
+                       break;\r
                default:\r
                        DbpString("unknown command");\r
                        break;\r
        }\r
 }\r
 \r
-void AppMain(void)\r
+void  __attribute__((noreturn)) AppMain(void)\r
 {\r
-       memset(BigBuf,0,sizeof(BigBuf));\r
        SpinDelay(100);\r
+       \r
+       if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {\r
+               /* Initialize common area */\r
+               memset(&common_area, 0, sizeof(common_area));\r
+               common_area.magic = COMMON_AREA_MAGIC;\r
+               common_area.version = 1;\r
+       }\r
+       common_area.flags.osimage_present = 1;\r
 \r
-    LED_D_OFF();\r
-    LED_C_OFF();\r
-    LED_B_OFF();\r
-    LED_A_OFF();\r
+       LED_D_OFF();\r
+       LED_C_OFF();\r
+       LED_B_OFF();\r
+       LED_A_OFF();\r
 \r
        UsbStart();\r
 \r
        // The FPGA gets its clock from us from PCK0 output, so set that up.\r
-       PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0);\r
-       PIO_DISABLE = (1 << GPIO_PCK0);\r
-       PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0;\r
+       AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;\r
+       AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;\r
+       AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;\r
        // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz\r
-       PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK |\r
-               PMC_CLK_PRESCALE_DIV_4;\r
-       PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0);\r
+       AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |\r
+               AT91C_PMC_PRES_CLK_4;\r
+       AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;\r
 \r
        // Reset SPI\r
-       SPI_CONTROL = SPI_CONTROL_RESET;\r
+       AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;\r
        // Reset SSC\r
-       SSC_CONTROL = SSC_CONTROL_RESET;\r
+       AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;\r
 \r
        // Load the FPGA image, which we have stored in our flash.\r
        FpgaDownloadAndGo();\r
@@ -755,14 +803,14 @@ void AppMain(void)
        LCDInit();\r
 \r
        // test text on different colored backgrounds\r
-    LCDString(" The quick brown fox  ",        &FONT6x8,1,1+8*0,WHITE  ,BLACK );\r
-    LCDString("  jumped over the     ",        &FONT6x8,1,1+8*1,BLACK  ,WHITE );\r
-    LCDString("     lazy dog.        ",        &FONT6x8,1,1+8*2,YELLOW ,RED   );\r
-    LCDString(" AaBbCcDdEeFfGgHhIiJj ",        &FONT6x8,1,1+8*3,RED    ,GREEN );\r
-    LCDString(" KkLlMmNnOoPpQqRrSsTt ",        &FONT6x8,1,1+8*4,MAGENTA,BLUE  );\r
-    LCDString("UuVvWwXxYyZz0123456789",        &FONT6x8,1,1+8*5,BLUE   ,YELLOW);\r
-    LCDString("`-=[]_;',./~!@#$%^&*()",        &FONT6x8,1,1+8*6,BLACK  ,CYAN  );\r
-    LCDString("     _+{}|:\\\"<>?     ",&FONT6x8,1,1+8*7,BLUE  ,MAGENTA);\r
+       LCDString(" The quick brown fox  ",     (char *)&FONT6x8,1,1+8*0,WHITE  ,BLACK );\r
+       LCDString("  jumped over the     ",     (char *)&FONT6x8,1,1+8*1,BLACK  ,WHITE );\r
+       LCDString("     lazy dog.        ",     (char *)&FONT6x8,1,1+8*2,YELLOW ,RED   );\r
+       LCDString(" AaBbCcDdEeFfGgHhIiJj ",     (char *)&FONT6x8,1,1+8*3,RED    ,GREEN );\r
+       LCDString(" KkLlMmNnOoPpQqRrSsTt ",     (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE  );\r
+       LCDString("UuVvWwXxYyZz0123456789",     (char *)&FONT6x8,1,1+8*5,BLUE   ,YELLOW);\r
+       LCDString("`-=[]_;',./~!@#$%^&*()",     (char *)&FONT6x8,1,1+8*6,BLACK  ,CYAN  );\r
+       LCDString("     _+{}|:\\\"<>?     ",(char *)&FONT6x8,1,1+8*7,BLUE  ,MAGENTA);\r
 \r
        // color bands\r
        LCDFill(0, 1+8* 8, 132, 8, BLACK);\r
@@ -779,27 +827,10 @@ void AppMain(void)
        for(;;) {\r
                UsbPoll(FALSE);\r
                WDT_HIT();\r
-       }\r
-}\r
 \r
-void SpinDelay(int ms)\r
-{\r
-       int ticks = (48000*ms) >> 10;\r
-\r
-       // Borrow a PWM unit for my real-time clock\r
-       PWM_ENABLE = PWM_CHANNEL(0);\r
-       // 48 MHz / 1024 gives 46.875 kHz\r
-       PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);\r
-       PWM_CH_DUTY_CYCLE(0) = 0;\r
-       PWM_CH_PERIOD(0) = 0xffff;\r
-\r
-       WORD start = (WORD)PWM_CH_COUNTER(0);\r
-\r
-       for(;;) {\r
-               WORD now = (WORD)PWM_CH_COUNTER(0);\r
-               if(now == (WORD)(start + ticks)) {\r
-                       return;\r
-               }\r
-               WDT_HIT();\r
+#ifdef WITH_LF\r
+               if (BUTTON_HELD(1000) > 0)\r
+                       SamyRun();\r
+#endif\r
        }\r
 }\r
Impressum, Datenschutz