]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/appmain.c
Update cmdhfmfu.c (#332)
[proxmark3-svn] / armsrc / appmain.c
index 18b8d64a6b10e1e32fd25c4d71d51d5c492b0121..30d5ed58aed840731bc2e462247fe4d57dde6b42 100644 (file)
-//-----------------------------------------------------------------------------\r
-// The main application code. This is the first thing called after start.c\r
-// executes.\r
-// Jonathan Westhues, Mar 2006\r
-// Edits by Gerhard de Koning Gans, Sep 2007 (##)\r
-//-----------------------------------------------------------------------------\r
-\r
-\r
-#include <proxmark3.h>\r
-#include "apps.h"\r
-#ifdef WITH_LCD\r
-#include "fonts.h"\r
-#include "LCD.h"\r
-#endif\r
-\r
-// The large multi-purpose buffer, typically used to hold A/D samples,\r
-// maybe pre-processed in some way.\r
-DWORD BigBuf[16000];\r
-\r
-//=============================================================================\r
-// A buffer where we can queue things up to be sent through the FPGA, for\r
-// any purpose (fake tag, as reader, whatever). We go MSB first, since that\r
-// is the order in which they go out on the wire.\r
-//=============================================================================\r
-\r
-BYTE ToSend[256];\r
-int ToSendMax;\r
-static int ToSendBit;\r
-\r
-void ToSendReset(void)\r
-{\r
-       ToSendMax = -1;\r
-       ToSendBit = 8;\r
-}\r
-\r
-void ToSendStuffBit(int b)\r
-{\r
-       if(ToSendBit >= 8) {\r
-               ToSendMax++;\r
-               ToSend[ToSendMax] = 0;\r
-               ToSendBit = 0;\r
-       }\r
-\r
-       if(b) {\r
-               ToSend[ToSendMax] |= (1 << (7 - ToSendBit));\r
-       }\r
-\r
-       ToSendBit++;\r
-\r
-       if(ToSendBit >= sizeof(ToSend)) {\r
-               ToSendBit = 0;\r
-               DbpString("ToSendStuffBit overflowed!");\r
-       }\r
-}\r
-\r
-//=============================================================================\r
-// Debug print functions, to go out over USB, to the usual PC-side client.\r
-//=============================================================================\r
-\r
-void DbpString(char *str)\r
-{\r
-       UsbCommand c;\r
-       c.cmd = CMD_DEBUG_PRINT_STRING;\r
-       c.ext1 = strlen(str);\r
-       memcpy(c.d.asBytes, str, c.ext1);\r
-\r
-       UsbSendPacket((BYTE *)&c, sizeof(c));\r
-       // TODO fix USB so stupid things like this aren't req'd\r
-       SpinDelay(50);\r
-}\r
-\r
-void DbpIntegers(int x1, int x2, int x3)\r
-{\r
-       UsbCommand c;\r
-       c.cmd = CMD_DEBUG_PRINT_INTEGERS;\r
-       c.ext1 = x1;\r
-       c.ext2 = x2;\r
-       c.ext3 = x3;\r
-\r
-       UsbSendPacket((BYTE *)&c, sizeof(c));\r
-       // XXX\r
-       SpinDelay(50);\r
-}\r
-\r
-void AcquireRawAdcSamples125k(BOOL at134khz)\r
-{\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int n = sizeof(BigBuf);\r
-       int i;\r
-\r
-       memset(dest,0,n);\r
-\r
-       if(at134khz) {\r
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);\r
-       } else {\r
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r
-       }\r
-\r
-       // Connect the A/D to the peak-detected low-frequency path.\r
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
-\r
-       // Give it a bit of time for the resonant antenna to settle.\r
-       SpinDelay(50);\r
-\r
-       // Now set up the SSC to get the ADC samples that are now streaming at us.\r
-       FpgaSetupSsc();\r
-\r
-       i = 0;\r
-       for(;;) {\r
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                       SSC_TRANSMIT_HOLDING = 0x43;\r
-                       LED_D_ON();\r
-               }\r
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                       dest[i] = (BYTE)SSC_RECEIVE_HOLDING;\r
-                       i++;\r
-                       LED_D_OFF();\r
-                       if(i >= n) {\r
-                               break;\r
-                       }\r
-               }\r
-       }\r
-       DbpIntegers(dest[0], dest[1], at134khz);\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Read an ADC channel and block till it completes, then return the result\r
-// in ADC units (0 to 1023). Also a routine to average 32 samples and\r
-// return that.\r
-//-----------------------------------------------------------------------------\r
-static int ReadAdc(int ch)\r
-{\r
-       DWORD d;\r
-\r
-       ADC_CONTROL = ADC_CONTROL_RESET;\r
-       ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) |\r
-               ADC_MODE_SAMPLE_HOLD_TIME(8);\r
-       ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch);\r
-\r
-       ADC_CONTROL = ADC_CONTROL_START;\r
-       while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch)))\r
-               ;\r
-       d = ADC_CHANNEL_DATA(ch);\r
-\r
-       return d;\r
-}\r
-\r
-static int AvgAdc(int ch)\r
-{\r
-       int i;\r
-       int a = 0;\r
-\r
-       for(i = 0; i < 32; i++) {\r
-               a += ReadAdc(ch);\r
-       }\r
-\r
-       return (a + 15) >> 5;\r
-}\r
+//-----------------------------------------------------------------------------
+// Jonathan Westhues, Mar 2006
+// Edits by Gerhard de Koning Gans, Sep 2007 (##)
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// The main application code. This is the first thing called after start.c
+// executes.
+//-----------------------------------------------------------------------------
+
+#include <stdarg.h>
+
+#include "usb_cdc.h"
+#include "cmd.h"
+#include "proxmark3.h"
+#include "apps.h"
+#include "util.h"
+#include "printf.h"
+#include "string.h"
+#include "legicrf.h"
+#include "hitag2.h"
+#include "hitagS.h"
+#include "lfsampling.h"
+#include "BigBuf.h"
+#include "mifareutil.h"
+#include "pcf7931.h"
+#ifdef WITH_LCD
+ #include "LCD.h"
+#endif
+
+// Craig Young - 14a stand-alone code
+#ifdef WITH_ISO14443a_StandAlone
+ #include "iso14443a.h"
+#endif
+
+//=============================================================================
+// A buffer where we can queue things up to be sent through the FPGA, for
+// any purpose (fake tag, as reader, whatever). We go MSB first, since that
+// is the order in which they go out on the wire.
+//=============================================================================
+
+#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2)  // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits 
+uint8_t ToSend[TOSEND_BUFFER_SIZE];
+int ToSendMax;
+static int ToSendBit;
+struct common_area common_area __attribute__((section(".commonarea")));
+
+void ToSendReset(void)
+{
+       ToSendMax = -1;
+       ToSendBit = 8;
+}
+
+void ToSendStuffBit(int b)
+{
+       if(ToSendBit >= 8) {
+               ToSendMax++;
+               ToSend[ToSendMax] = 0;
+               ToSendBit = 0;
+       }
+
+       if(b) {
+               ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
+       }
+
+       ToSendBit++;
+
+       if(ToSendMax >= sizeof(ToSend)) {
+               ToSendBit = 0;
+               DbpString("ToSendStuffBit overflowed!");
+       }
+}
+
+//=============================================================================
+// Debug print functions, to go out over USB, to the usual PC-side client.
+//=============================================================================
+
+void DbpString(char *str)
+{
+  byte_t len = strlen(str);
+  cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
+}
+
+#if 0
+void DbpIntegers(int x1, int x2, int x3)
+{
+  cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
+}
+#endif
+
+void Dbprintf(const char *fmt, ...) {
+// should probably limit size here; oh well, let's just use a big buffer
+       char output_string[128];
+       va_list ap;
+
+       va_start(ap, fmt);
+       kvsprintf(fmt, output_string, 10, ap);
+       va_end(ap);
+
+       DbpString(output_string);
+}
+
+// prints HEX & ASCII
+void Dbhexdump(int len, uint8_t *d, bool bAsci) {
+       int l=0,i;
+       char ascii[9];
+    
+       while (len>0) {
+               if (len>8) l=8;
+               else l=len;
+               
+               memcpy(ascii,d,l);
+               ascii[l]=0;
+               
+               // filter safe ascii
+               for (i=0;i<l;i++)
+                       if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
+        
+               if (bAsci) {
+                       Dbprintf("%-8s %*D",ascii,l,d," ");
+               } else {
+                       Dbprintf("%*D",l,d," ");
+               }
+        
+               len-=8;
+               d+=8;           
+       }
+}
+
+//-----------------------------------------------------------------------------
+// Read an ADC channel and block till it completes, then return the result
+// in ADC units (0 to 1023). Also a routine to average 32 samples and
+// return that.
+//-----------------------------------------------------------------------------
+static int ReadAdc(int ch)
+{
+       uint32_t d;
+
+       AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+       AT91C_BASE_ADC->ADC_MR =
+               ADC_MODE_PRESCALE(63  /* was 32 */) |                                                   // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
+               ADC_MODE_STARTUP_TIME(1  /* was 16 */) |                                                // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us     Note: must be > 20us
+               ADC_MODE_SAMPLE_HOLD_TIME(15  /* was 8 */);                                     // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
+
+       // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value. 
+       // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
+       // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. 
+       // 
+       // The maths are:
+       // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
+       //
+       //       v_cap = v_in * (1 - exp(-RC/SHTIM))  =   v_in * (1 - exp(-3))  =  v_in * 0,95                   (i.e. an error of 5%)
+       // 
+       // Note: with the "historic" values in the comments above, the error was 34%  !!!
+       
+       AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
+
+       AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+
+       while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
+               ;
+       d = AT91C_BASE_ADC->ADC_CDR[ch];
+
+       return d;
+}
+
+int AvgAdc(int ch) // was static - merlok
+{
+       int i;
+       int a = 0;
+
+       for(i = 0; i < 32; i++) {
+               a += ReadAdc(ch);
+       }
+
+       return (a + 15) >> 5;
+}
+
+void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[])
+{
+       int i, adcval = 0, peak = 0;
 
 /*
  * Sweeps the useful LF range of the proxmark from
  * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
- * reads the voltage in the antenna: the result is a graph
- * which should clearly show the resonating frequency of your
- * LF antenna ( hopefully around 90 if it is tuned to 125kHz!)
- */\r
-void SweepLFrange()\r
-{\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int i;\r
-\r
-       // clear buffer\r
-       memset(BigBuf,0,sizeof(BigBuf));\r
-\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
-       for (i=255; i>19; i--) {\r
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);\r
-               SpinDelay(20);\r
-               dest[i] = (137500 * AvgAdc(4)) >> 18;\r
-       }\r
-}\r
-\r
-void MeasureAntennaTuning(void)\r
-{\r
-// Impedances are Zc = 1/(j*omega*C), in ohms\r
-#define LF_TUNING_CAP_Z        1273    //  1 nF @ 125   kHz\r
-#define HF_TUNING_CAP_Z        235             // 50 pF @ 13.56 MHz\r
-\r
-       int vLf125, vLf134, vHf;        // in mV\r
-\r
-       UsbCommand c;\r
-\r
-       // Let the FPGA drive the low-frequency antenna around 125 kHz.\r
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r
-       SpinDelay(20);\r
-       vLf125 = AvgAdc(4);\r
-       // Vref = 3.3V, and a 10000:240 voltage divider on the input\r
-       // can measure voltages up to 137500 mV\r
-       vLf125 = (137500 * vLf125) >> 10;\r
-\r
-       // Let the FPGA drive the low-frequency antenna around 134 kHz.\r
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);\r
-       SpinDelay(20);\r
-       vLf134 = AvgAdc(4);\r
-       // Vref = 3.3V, and a 10000:240 voltage divider on the input\r
-       // can measure voltages up to 137500 mV\r
-       vLf134 = (137500 * vLf134) >> 10;\r
-\r
-       // Let the FPGA drive the high-frequency antenna around 13.56 MHz.\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
-       SpinDelay(20);\r
-       vHf = AvgAdc(5);\r
-       // Vref = 3300mV, and an 10:1 voltage divider on the input\r
-       // can measure voltages up to 33000 mV\r
-       vHf = (33000 * vHf) >> 10;\r
-\r
-       c.cmd = CMD_MEASURED_ANTENNA_TUNING;\r
-       c.ext1 = (vLf125 << 0) | (vLf134 << 16);\r
-       c.ext2 = vHf;\r
-       c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16);\r
-       UsbSendPacket((BYTE *)&c, sizeof(c));\r
-}\r
-\r
-void SimulateTagLowFrequency(int period)\r
-{\r
-       int i;\r
-       BYTE *tab = (BYTE *)BigBuf;\r
-\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);\r
-\r
-       PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);\r
-\r
-       PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);\r
-       PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);\r
-\r
-#define SHORT_COIL()   LOW(GPIO_SSC_DOUT)\r
-#define OPEN_COIL()    HIGH(GPIO_SSC_DOUT)\r
-\r
-       i = 0;\r
-       for(;;) {\r
-               while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {\r
-                       if(BUTTON_PRESS()) {\r
-                               return;\r
-                       }\r
-                       WDT_HIT();\r
-               }\r
-\r
-               LED_D_ON();\r
-               if(tab[i]) {\r
-                       OPEN_COIL();\r
-               } else {\r
-                       SHORT_COIL();\r
-               }\r
-               LED_D_OFF();\r
-\r
-               while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {\r
-                       if(BUTTON_PRESS()) {\r
-                               return;\r
-                       }\r
-                       WDT_HIT();\r
-               }\r
-\r
-               i++;\r
-               if(i == period) i = 0;\r
-       }\r
-}\r
-\r
-// compose fc/8 fc/10 waveform\r
-static void fc(int c, int *n) {\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int idx;\r
-\r
-       // for when we want an fc8 pattern every 4 logical bits\r
-       if(c==0) {\r
-               dest[((*n)++)]=1;\r
-               dest[((*n)++)]=1;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-       }\r
-       //      an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples\r
-       if(c==8) {\r
-               for (idx=0; idx<6; idx++) {\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-               }\r
-       }\r
-\r
-       //      an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples\r
-       if(c==10) {\r
-               for (idx=0; idx<5; idx++) {\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-               }\r
-       }\r
-}\r
-\r
-// prepare a waveform pattern in the buffer based on the ID given then\r
-// simulate a HID tag until the button is pressed\r
-static void CmdHIDsimTAG(int hi, int lo)\r
-{\r
-       int n=0, i=0;\r
-       /*\r
-        HID tag bitstream format\r
-        The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits\r
-        A 1 bit is represented as 6 fc8 and 5 fc10 patterns\r
-        A 0 bit is represented as 5 fc10 and 6 fc8 patterns\r
-        A fc8 is inserted before every 4 bits\r
-        A special start of frame pattern is used consisting a0b0 where a and b are neither 0\r
-        nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)\r
-       */\r
-\r
-       if (hi>0xFFF) {\r
-               DbpString("Tags can only have 44 bits.");\r
-               return;\r
-       }\r
-       fc(0,&n);\r
-       // special start of frame marker containing invalid bit sequences\r
-       fc(8,  &n);     fc(8,  &n);     // invalid\r
-       fc(8,  &n);     fc(10, &n); // logical 0\r
-       fc(10, &n);     fc(10, &n); // invalid\r
-       fc(8,  &n);     fc(10, &n); // logical 0\r
-\r
-       WDT_HIT();\r
-       // manchester encode bits 43 to 32\r
-       for (i=11; i>=0; i--) {\r
-               if ((i%4)==3) fc(0,&n);\r
-               if ((hi>>i)&1) {\r
-                       fc(10, &n);     fc(8,  &n);             // low-high transition\r
-               } else {\r
-                       fc(8,  &n);     fc(10, &n);             // high-low transition\r
-               }\r
-       }\r
-\r
-       WDT_HIT();\r
-       // manchester encode bits 31 to 0\r
-       for (i=31; i>=0; i--) {\r
-               if ((i%4)==3) fc(0,&n);\r
-               if ((lo>>i)&1) {\r
-                       fc(10, &n);     fc(8,  &n);             // low-high transition\r
-               } else {\r
-                       fc(8,  &n);     fc(10, &n);             // high-low transition\r
-               }\r
-       }\r
-\r
-       LED_A_ON();\r
-       SimulateTagLowFrequency(n);\r
-       LED_A_OFF();\r
-}\r
-\r
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it\r
-static void CmdHIDdemodFSK(void)\r
-{\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int m=0, n=0, i=0, idx=0, found=0, lastval=0;\r
-       DWORD hi=0, lo=0;\r
-\r
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r
-\r
-       // Connect the A/D to the peak-detected low-frequency path.\r
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
-\r
-       // Give it a bit of time for the resonant antenna to settle.\r
-       SpinDelay(50);\r
-\r
-       // Now set up the SSC to get the ADC samples that are now streaming at us.\r
-       FpgaSetupSsc();\r
-\r
-       for(;;) {\r
-               WDT_HIT();\r
-               LED_A_ON();\r
-               if(BUTTON_PRESS()) {\r
-                       LED_A_OFF();\r
-                       return;\r
-               }\r
-\r
-               i = 0;\r
-               m = sizeof(BigBuf);\r
-               memset(dest,128,m);\r
-               for(;;) {\r
-                       if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                               SSC_TRANSMIT_HOLDING = 0x43;\r
-                               LED_D_ON();\r
-                       }\r
-                       if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                               dest[i] = (BYTE)SSC_RECEIVE_HOLDING;\r
-                               // we don't care about actual value, only if it's more or less than a\r
-                               // threshold essentially we capture zero crossings for later analysis\r
-                               if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;\r
-                               i++;\r
-                               LED_D_OFF();\r
-                               if(i >= m) {\r
-                                       break;\r
-                               }\r
-                       }\r
-               }\r
-\r
-               // FSK demodulator\r
-\r
-               // sync to first lo-hi transition\r
-               for( idx=1; idx<m; idx++) {\r
-                       if (dest[idx-1]<dest[idx])\r
-                               lastval=idx;\r
-                               break;\r
-               }\r
-               WDT_HIT();\r
-\r
-               // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)\r
-               // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere\r
-               // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10\r
-               for( i=0; idx<m; idx++) {\r
-                       if (dest[idx-1]<dest[idx]) {\r
-                               dest[i]=idx-lastval;\r
-                               if (dest[i] <= 8) {\r
-                                               dest[i]=1;\r
-                               } else {\r
-                                               dest[i]=0;\r
-                               }\r
-\r
-                               lastval=idx;\r
-                               i++;\r
-                       }\r
-               }\r
-               m=i;\r
-               WDT_HIT();\r
-\r
-               // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns\r
-               lastval=dest[0];\r
-               idx=0;\r
-               i=0;\r
-               n=0;\r
-               for( idx=0; idx<m; idx++) {\r
-                       if (dest[idx]==lastval) {\r
-                               n++;\r
-                       } else {\r
-                               // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,\r
-                               // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets\r
-                               // swallowed up by rounding\r
-                               // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding\r
-                               // special start of frame markers use invalid manchester states (no transitions) by using sequences\r
-                               // like 111000\r
-                               if (dest[idx-1]) {\r
-                                       n=(n+1)/6;                      // fc/8 in sets of 6\r
-                               } else {\r
-                                       n=(n+1)/5;                      // fc/10 in sets of 5\r
-                               }\r
-                               switch (n) {                    // stuff appropriate bits in buffer\r
-                                       case 0:\r
-                                       case 1: // one bit\r
-                                               dest[i++]=dest[idx-1];\r
-                                               break;\r
-                                       case 2: // two bits\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               break;\r
-                                       case 3: // 3 bit start of frame markers\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               break;\r
-                                       // When a logic 0 is immediately followed by the start of the next transmisson\r
-                                       // (special pattern) a pattern of 4 bit duration lengths is created.\r
-                                       case 4:\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               break;\r
-                                       default:        // this shouldn't happen, don't stuff any bits\r
-                                               break;\r
-                               }\r
-                               n=0;\r
-                               lastval=dest[idx];\r
-                       }\r
-               }\r
-               m=i;\r
-               WDT_HIT();\r
-\r
-               // final loop, go over previously decoded manchester data and decode into usable tag ID\r
-               // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0\r
-               for( idx=0; idx<m-6; idx++) {\r
-                       // search for a start of frame marker\r
-                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
-                       {\r
-                               found=1;\r
-                               idx+=6;\r
-                               if (found && (hi|lo)) {\r
-                                       DbpString("TAG ID");\r
-                                       DbpIntegers(hi, lo, (lo>>1)&0xffff);\r
-                                       hi=0;\r
-                                       lo=0;\r
-                                       found=0;\r
-                               }\r
-                       }\r
-                       if (found) {\r
-                               if (dest[idx] && (!dest[idx+1]) ) {\r
-                                       hi=(hi<<1)|(lo>>31);\r
-                                       lo=(lo<<1)|0;\r
-                               } else if ( (!dest[idx]) && dest[idx+1]) {\r
-                                       hi=(hi<<1)|(lo>>31);\r
-                                       lo=(lo<<1)|1;\r
-                               } else {\r
-                                       found=0;\r
-                                       hi=0;\r
-                                       lo=0;\r
-                               }\r
-                               idx++;\r
-                       }\r
-                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
-                       {\r
-                               found=1;\r
-                               idx+=6;\r
-                               if (found && (hi|lo)) {\r
-                                       DbpString("TAG ID");\r
-                                       DbpIntegers(hi, lo, (lo>>1)&0xffff);\r
-                                       hi=0;\r
-                                       lo=0;\r
-                                       found=0;\r
-                               }\r
-                       }\r
-               }\r
-               WDT_HIT();\r
-       }\r
-}\r
-\r
-void SimulateTagHfListen(void)\r
-{\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int n = sizeof(BigBuf);\r
-       BYTE v = 0;\r
-       int i;\r
-       int p = 0;\r
-\r
-       // We're using this mode just so that I can test it out; the simulated\r
-       // tag mode would work just as well and be simpler.\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);\r
-\r
-       // We need to listen to the high-frequency, peak-detected path.\r
-       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-\r
-       FpgaSetupSsc();\r
-\r
-       i = 0;\r
-       for(;;) {\r
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                       SSC_TRANSMIT_HOLDING = 0xff;\r
-               }\r
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                       BYTE r = (BYTE)SSC_RECEIVE_HOLDING;\r
-\r
-                       v <<= 1;\r
-                       if(r & 1) {\r
-                               v |= 1;\r
-                       }\r
-                       p++;\r
-\r
-                       if(p >= 8) {\r
-                               dest[i] = v;\r
-                               v = 0;\r
-                               p = 0;\r
-                               i++;\r
-\r
-                               if(i >= n) {\r
-                                       break;\r
-                               }\r
-                       }\r
-               }\r
-       }\r
-       DbpString("simulate tag (now type bitsamples)");\r
-}\r
-\r
-void UsbPacketReceived(BYTE *packet, int len)\r
-{\r
-       UsbCommand *c = (UsbCommand *)packet;\r
-\r
-       switch(c->cmd) {\r
-               case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:\r
-                       AcquireRawAdcSamples125k(c->ext1);\r
-                       break;\r
-\r
-               case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:\r
-                       AcquireRawAdcSamplesIso15693();\r
-                       break;\r
-\r
-               case CMD_READER_ISO_15693:\r
-                       ReaderIso15693(c->ext1);\r
-                       break;\r
-\r
-               case CMD_SIMTAG_ISO_15693:\r
-                       SimTagIso15693(c->ext1);\r
-                       break;\r
-\r
-               case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:\r
-                       AcquireRawAdcSamplesIso14443(c->ext1);\r
-                       break;\r
+ * read the voltage in the antenna, the result left
+ * in the buffer is a graph which should clearly show
+ * the resonating frequency of your LF antenna
+ * ( hopefully around 95 if it is tuned to 125kHz!)
+ */
+
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+       for (i=255; i>=19; i--) {
+               WDT_HIT();
+               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
+               SpinDelay(20);
+               adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
+               if (i==95) *vLf125 = adcval; // voltage at 125Khz
+               if (i==89) *vLf134 = adcval; // voltage at 134Khz
+
+               LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
+               if(LF_Results[i] > peak) {
+                       *peakv = adcval;
+                       peak = LF_Results[i];
+                       *peakf = i;
+                       //ptr = i;
+               }
+       }
+
+       for (i=18; i >= 0; i--) LF_Results[i] = 0;
+
+       return;
+}
+
+void MeasureAntennaTuningHfOnly(int *vHf)
+{
+       // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+       LED_A_ON();
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+       SpinDelay(20);
+       *vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
+       LED_A_OFF();
+
+       return;
+}
+
+void MeasureAntennaTuning(int mode)
+{
+       uint8_t LF_Results[256] = {0};
+       int peakv = 0, peakf = 0;
+       int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
+
+       LED_B_ON();
+
+       if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) {
+               // Reverse "standard" order if HF already loaded, to avoid unnecessary swap.
+               MeasureAntennaTuningHfOnly(&vHf);
+               MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
+       } else {
+               if (mode & FLAG_TUNE_LF) {
+                       MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results);
+               }
+               if (mode & FLAG_TUNE_HF) {
+                       MeasureAntennaTuningHfOnly(&vHf);
+               }
+       }
+
+       cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LED_B_OFF();
+       return;
+}
+
+void MeasureAntennaTuningHf(void)
+{
+       int vHf = 0;    // in mV
+
+       DbpString("Measuring HF antenna, press button to exit");
+
+       // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+
+       for (;;) {
+               SpinDelay(20);
+               vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
+
+               Dbprintf("%d mV",vHf);
+               if (BUTTON_PRESS()) break;
+       }
+       DbpString("cancelled");
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
+}
+
+
+void ReadMem(int addr)
+{
+       const uint8_t *data = ((uint8_t *)addr);
+
+       Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
+               addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
+}
+
+/* osimage version information is linked in */
+extern struct version_information version_information;
+/* bootrom version information is pointed to from _bootphase1_version_pointer */
+extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
+void SendVersion(void)
+{
+       char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
+       char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
+
+       /* Try to find the bootrom version information. Expect to find a pointer at
+        * symbol _bootphase1_version_pointer, perform slight sanity checks on the
+        * pointer, then use it.
+        */
+       char *bootrom_version = *(char**)&_bootphase1_version_pointer;
+       if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
+               strcat(VersionString, "bootrom version information appears invalid\n");
+       } else {
+               FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
+               strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
+       }
+
+       FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
+       strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
+
+       FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
+       strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
+       FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
+       strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
+
+       // Send Chip ID and used flash memory
+       uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
+       uint32_t compressed_data_section_size = common_area.arg1;
+       cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
+}
+
+// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
+// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
+void printUSBSpeed(void) 
+{
+       Dbprintf("USB Speed:");
+       Dbprintf("  Sending USB packets to client...");
+
+       #define USB_SPEED_TEST_MIN_TIME 1500    // in milliseconds
+       uint8_t *test_data = BigBuf_get_addr();
+       uint32_t end_time;
+
+       uint32_t start_time = end_time = GetTickCount();
+       uint32_t bytes_transferred = 0;
+       
+       LED_B_ON();
+       while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
+               cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
+               end_time = GetTickCount();
+               bytes_transferred += USB_CMD_DATA_SIZE;
+       }
+       LED_B_OFF();
+
+       Dbprintf("  Time elapsed:      %dms", end_time - start_time);
+       Dbprintf("  Bytes transferred: %d", bytes_transferred);
+       Dbprintf("  USB Transfer Speed PM3 -> Client = %d Bytes/s", 
+               1000 * bytes_transferred / (end_time - start_time));
+
+}
+       
+/**
+  * Prints runtime information about the PM3.
+**/
+void SendStatus(void)
+{
+       BigBuf_print_status();
+       Fpga_print_status();
+       printConfig(); //LF Sampling config
+       printUSBSpeed();
+       Dbprintf("Various");
+       Dbprintf("  MF_DBGLEVEL......%d", MF_DBGLEVEL);
+       Dbprintf("  ToSendMax........%d",ToSendMax);
+       Dbprintf("  ToSendBit........%d",ToSendBit);
+
+       cmd_send(CMD_ACK,1,0,0,0,0);
+}
+
+#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
+
+#define OPTS 2
+
+void StandAloneMode()
+{
+       DbpString("Stand-alone mode! No PC necessary.");
+       // Oooh pretty -- notify user we're in elite samy mode now
+       LED(LED_RED,    200);
+       LED(LED_ORANGE, 200);
+       LED(LED_GREEN,  200);
+       LED(LED_ORANGE, 200);
+       LED(LED_RED,    200);
+       LED(LED_ORANGE, 200);
+       LED(LED_GREEN,  200);
+       LED(LED_ORANGE, 200);
+       LED(LED_RED,    200);
+
+}
+
+#endif
+
+
+
+#ifdef WITH_ISO14443a_StandAlone
+void StandAloneMode14a()
+{
+       StandAloneMode();
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+       int selected = 0;
+       int playing = 0, iGotoRecord = 0, iGotoClone = 0;
+       int cardRead[OPTS] = {0};
+       uint8_t readUID[10] = {0};
+       uint32_t uid_1st[OPTS]={0};
+       uint32_t uid_2nd[OPTS]={0};
+       uint32_t uid_tmp1 = 0;
+       uint32_t uid_tmp2 = 0;
+       iso14a_card_select_t hi14a_card[OPTS];
+
+       LED(selected + 1, 0);
+
+       for (;;)
+       {
+               usb_poll();
+               WDT_HIT();
+               SpinDelay(300);
+
+               if (iGotoRecord == 1 || cardRead[selected] == 0)
+               {
+                       iGotoRecord = 0;
+                       LEDsoff();
+                       LED(selected + 1, 0);
+                       LED(LED_RED2, 0);
+
+                       // record
+                       Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
+                       /* need this delay to prevent catching some weird data */
+                       SpinDelay(500);
+                       /* Code for reading from 14a tag */
+                       uint8_t uid[10]  ={0};
+                       uint32_t cuid;
+                       iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
+
+                       for ( ; ; )
+                       {
+                               WDT_HIT();
+                               if (BUTTON_PRESS()) {
+                                       if (cardRead[selected]) {
+                                               Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
+                                               break;
+                                       }
+                                       else if (cardRead[(selected+1)%OPTS]) {
+                                               Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
+                                               selected = (selected+1)%OPTS;
+                                               break; // playing = 1;
+                                       }
+                                       else {
+                                               Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
+                                               SpinDelay(300);
+                                       }
+                               }
+                               if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0))
+                                       continue;
+                               else
+                               {
+                                       Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
+                                       memcpy(readUID,uid,10*sizeof(uint8_t));
+                                       uint8_t *dst = (uint8_t *)&uid_tmp1;
+                                       // Set UID byte order
+                                       for (int i=0; i<4; i++)
+                                               dst[i] = uid[3-i];
+                                       dst = (uint8_t *)&uid_tmp2;
+                                       for (int i=0; i<4; i++)
+                                               dst[i] = uid[7-i];
+                                       if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
+                                               Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
+                                       }
+                                       else {
+                                               if (uid_tmp2) {
+                                                       Dbprintf("Bank[%d] received a 7-byte UID",selected);
+                                                       uid_1st[selected] = (uid_tmp1)>>8;
+                                                       uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
+                                               }
+                                               else {
+                                                       Dbprintf("Bank[%d] received a 4-byte UID",selected);
+                                                       uid_1st[selected] = uid_tmp1;
+                                                       uid_2nd[selected] = uid_tmp2;
+                                               }
+                                               break;
+                                       }
+                               }
+                       }
+                       Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
+                       Dbprintf("SAK = %02X",hi14a_card[selected].sak);
+                       LEDsoff();
+                       LED(LED_GREEN,  200);
+                       LED(LED_ORANGE, 200);
+                       LED(LED_GREEN,  200);
+                       LED(LED_ORANGE, 200);
+
+                       LEDsoff();
+                       LED(selected + 1, 0);
+
+                       // Next state is replay:
+                       playing = 1;
+
+                       cardRead[selected] = 1;
+               }
+               /* MF Classic UID clone */
+               else if (iGotoClone==1)
+               {
+                       iGotoClone=0;
+                       LEDsoff();
+                       LED(selected + 1, 0);
+                       LED(LED_ORANGE, 250);
+
+
+                       // record
+                       Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
+
+                       // wait for button to be released
+                       while(BUTTON_PRESS())
+                       {
+                               // Delay cloning until card is in place
+                               WDT_HIT();
+                       }
+                       Dbprintf("Starting clone. [Bank: %u]", selected);
+                       // need this delay to prevent catching some weird data
+                       SpinDelay(500);
+                       // Begin clone function here:
+                       /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
+                                       UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}};
+                                       memcpy(c.d.asBytes, data, 16);
+                                       SendCommand(&c);
+
+                                       Block read is similar:
+                                       UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}};
+                                       We need to imitate that call with blockNo 0 to set a uid.
+
+                                       The get and set commands are handled in this file:
+                                       // Work with "magic Chinese" card
+                                       case CMD_MIFARE_CSETBLOCK:
+                                               MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                                               break;
+                                       case CMD_MIFARE_CGETBLOCK:
+                                               MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                                               break;
+
+                               mfCSetUID provides example logic for UID set workflow:
+                                       -Read block0 from card in field with MifareCGetBlock()
+                                       -Configure new values without replacing reserved bytes
+                                                       memcpy(block0, uid, 4); // Copy UID bytes from byte array
+                                                       // Mifare UID BCC
+                                                       block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
+                                                       Bytes 5-7 are reserved SAK and ATQA for mifare classic
+                                       -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it
+                       */
+                       uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
+                       // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo
+                       MifareCGetBlock(0x3F, 1, 0, oldBlock0);
+                       if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1]  && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
+                               Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
+                               playing = 1;
+                       }
+                       else {
+                               Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
+                               memcpy(newBlock0,oldBlock0,16);
+                               // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
+
+                               newBlock0[0] = uid_1st[selected]>>24;
+                               newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
+                               newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
+                               newBlock0[3] = 0xFF & (uid_1st[selected]);
+                               newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
+                               // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain
+                               MifareCSetBlock(0, 0xFF,0, newBlock0);
+                               MifareCGetBlock(0x3F, 1, 0, testBlock0);
+                               if (memcmp(testBlock0,newBlock0,16)==0)
+                               {
+                                       DbpString("Cloned successfull!");
+                                       cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
+                                       playing = 0;
+                                       iGotoRecord = 1;
+                                       selected = (selected+1) % OPTS;
+                               }
+                               else {
+                                       Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
+                                       playing = 1;
+                               }
+                       }
+                       LEDsoff();
+                       LED(selected + 1, 0);
+
+               }
+               // Change where to record (or begin playing)
+               else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
+               {
+                       LEDsoff();
+                       LED(selected + 1, 0);
+
+                       // Begin transmitting
+                       if (playing)
+                       {
+                               LED(LED_GREEN, 0);
+                               DbpString("Playing");
+                               for ( ; ; ) {
+                                       WDT_HIT();
+                                       int button_action = BUTTON_HELD(1000);
+                                       if (button_action == 0) { // No button action, proceed with sim
+                                               uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
+                                               Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
+                                               if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
+                                                       DbpString("Mifare Classic");
+                                                       SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic
+                                               }
+                                               else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
+                                                       DbpString("Mifare Ultralight");
+                                                       SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight
+                                               }
+                                               else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
+                                                       DbpString("Mifare DESFire");
+                                                       SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire
+                                               }
+                                               else {
+                                                       Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
+                                                       SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data);
+                                               }
+                                       }
+                                       else if (button_action == BUTTON_SINGLE_CLICK) {
+                                               selected = (selected + 1) % OPTS;
+                                               Dbprintf("Done playing. Switching to record mode on bank %d",selected);
+                                               iGotoRecord = 1;
+                                               break;
+                                       }
+                                       else if (button_action == BUTTON_HOLD) {
+                                               Dbprintf("Playtime over. Begin cloning...");
+                                               iGotoClone = 1;
+                                               break;
+                                       }
+                                       WDT_HIT();
+                               }
+
+                               /* We pressed a button so ignore it here with a delay */
+                               SpinDelay(300);
+                               LEDsoff();
+                               LED(selected + 1, 0);
+                       }
+                       else
+                               while(BUTTON_PRESS())
+                                       WDT_HIT();
+               }
+       }
+}
+#elif WITH_LF
+// samy's sniff and repeat routine
+void SamyRun()
+{
+       StandAloneMode();
+       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+
+       int high[OPTS], low[OPTS];
+       int selected = 0;
+       int playing = 0;
+       int cardRead = 0;
+
+       // Turn on selected LED
+       LED(selected + 1, 0);
+
+       for (;;)
+       {
+               usb_poll();
+               WDT_HIT();
+
+               // Was our button held down or pressed?
+               int button_pressed = BUTTON_HELD(1000);
+               SpinDelay(300);
+
+               // Button was held for a second, begin recording
+               if (button_pressed > 0 && cardRead == 0)
+               {
+                       LEDsoff();
+                       LED(selected + 1, 0);
+                       LED(LED_RED2, 0);
+
+                       // record
+                       DbpString("Starting recording");
+
+                       // wait for button to be released
+                       while(BUTTON_PRESS())
+                               WDT_HIT();
+
+                       /* need this delay to prevent catching some weird data */
+                       SpinDelay(500);
+
+                       CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
+                       Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]);
+
+                       LEDsoff();
+                       LED(selected + 1, 0);
+                       // Finished recording
+
+                       // If we were previously playing, set playing off
+                       // so next button push begins playing what we recorded
+                       playing = 0;
+                       
+                       cardRead = 1;
+       
+               }
+
+               else if (button_pressed > 0 && cardRead == 1)
+               {
+                                       LEDsoff();
+                                       LED(selected + 1, 0);
+                                       LED(LED_ORANGE, 0);
+
+                                       // record
+                                       Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]);
+
+                                       // wait for button to be released
+                                       while(BUTTON_PRESS())
+                                               WDT_HIT();
+
+                                       /* need this delay to prevent catching some weird data */
+                                       SpinDelay(500);
+
+                                       CopyHIDtoT55x7(0, high[selected], low[selected], 0);
+                                       Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]);
+
+                                       LEDsoff();
+                                       LED(selected + 1, 0);
+                                       // Finished recording
+
+                                       // If we were previously playing, set playing off
+                                       // so next button push begins playing what we recorded
+                                       playing = 0;
+                                       
+                                       cardRead = 0;
+                       
+               }
+
+               // Change where to record (or begin playing)
+               else if (button_pressed)
+               {
+                       // Next option if we were previously playing
+                       if (playing)
+                               selected = (selected + 1) % OPTS;
+                       playing = !playing;
+
+                       LEDsoff();
+                       LED(selected + 1, 0);
+
+                       // Begin transmitting
+                       if (playing)
+                       {
+                               LED(LED_GREEN, 0);
+                               DbpString("Playing");
+                               // wait for button to be released
+                               while(BUTTON_PRESS())
+                                       WDT_HIT();
+                               Dbprintf("%x %x%08x", selected, high[selected], low[selected]);
+                               CmdHIDsimTAG(high[selected], low[selected], 0);
+                               DbpString("Done playing");
+                               if (BUTTON_HELD(1000) > 0)
+                                       {
+                                       DbpString("Exiting");
+                                       LEDsoff();
+                                       return;
+                                       }
+
+                               /* We pressed a button so ignore it here with a delay */
+                               SpinDelay(300);
+
+                               // when done, we're done playing, move to next option
+                               selected = (selected + 1) % OPTS;
+                               playing = !playing;
+                               LEDsoff();
+                               LED(selected + 1, 0);
+                       }
+                       else
+                               while(BUTTON_PRESS())
+                                       WDT_HIT();
+               }
+       }
+}
+
+#endif
+/*
+OBJECTIVE
+Listen and detect an external reader. Determine the best location
+for the antenna.
+
+INSTRUCTIONS:
+Inside the ListenReaderField() function, there is two mode.
+By default, when you call the function, you will enter mode 1.
+If you press the PM3 button one time, you will enter mode 2.
+If you press the PM3 button a second time, you will exit the function.
+
+DESCRIPTION OF MODE 1:
+This mode just listens for an external reader field and lights up green
+for HF and/or red for LF. This is the original mode of the detectreader
+function.
+
+DESCRIPTION OF MODE 2:
+This mode will visually represent, using the LEDs, the actual strength of the
+current compared to the maximum current detected. Basically, once you know
+what kind of external reader is present, it will help you spot the best location to place
+your antenna. You will probably not get some good results if there is a LF and a HF reader
+at the same place! :-)
+
+LIGHT SCHEME USED:
+*/
+static const char LIGHT_SCHEME[] = {
+               0x0, /* ----     | No field detected */
+               0x1, /* X---     | 14% of maximum current detected */
+               0x2, /* -X--     | 29% of maximum current detected */
+               0x4, /* --X-     | 43% of maximum current detected */
+               0x8, /* ---X     | 57% of maximum current detected */
+               0xC, /* --XX     | 71% of maximum current detected */
+               0xE, /* -XXX     | 86% of maximum current detected */
+               0xF, /* XXXX     | 100% of maximum current detected */
+};
+static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
+
+void ListenReaderField(int limit)
+{
+       int lf_av, lf_av_new, lf_baseline= 0, lf_max;
+       int hf_av, hf_av_new,  hf_baseline= 0, hf_max;
+       int mode=1, display_val, display_max, i;
+
+#define LF_ONLY                                                1
+#define HF_ONLY                                                2
+#define REPORT_CHANGE                          10    // report new values only if they have changed at least by REPORT_CHANGE
+
+
+       // switch off FPGA - we don't want to measure our own signal
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
+       LEDsoff();
+
+       lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
+
+       if(limit != HF_ONLY) {
+               Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
+               lf_baseline = lf_av;
+       }
+
+       hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
+
+       if (limit != LF_ONLY) {
+               Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
+               hf_baseline = hf_av;
+       }
+
+       for(;;) {
+               if (BUTTON_PRESS()) {
+                       SpinDelay(500);
+                       switch (mode) {
+                               case 1:
+                                       mode=2;
+                                       DbpString("Signal Strength Mode");
+                                       break;
+                               case 2:
+                               default:
+                                       DbpString("Stopped");
+                                       LEDsoff();
+                                       return;
+                                       break;
+                       }
+               }
+               WDT_HIT();
+
+               if (limit != HF_ONLY) {
+                       if(mode == 1) {
+                               if (ABS(lf_av - lf_baseline) > REPORT_CHANGE) 
+                                       LED_D_ON();
+                               else
+                                       LED_D_OFF();
+                       }
+
+                       lf_av_new = AvgAdc(ADC_CHAN_LF);
+                       // see if there's a significant change
+                       if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
+                               Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
+                               lf_av = lf_av_new;
+                               if (lf_av > lf_max)
+                                       lf_max = lf_av;
+                       }
+               }
+
+               if (limit != LF_ONLY) {
+                       if (mode == 1){
+                               if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)   
+                                       LED_B_ON();
+                               else
+                                       LED_B_OFF();
+                       }
+
+                       hf_av_new = AvgAdc(ADC_CHAN_HF);
+                       // see if there's a significant change
+                       if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
+                               Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
+                               hf_av = hf_av_new;
+                               if (hf_av > hf_max)
+                                       hf_max = hf_av;
+                       }
+               }
+
+               if(mode == 2) {
+                       if (limit == LF_ONLY) {
+                               display_val = lf_av;
+                               display_max = lf_max;
+                       } else if (limit == HF_ONLY) {
+                               display_val = hf_av;
+                               display_max = hf_max;
+                       } else { /* Pick one at random */
+                               if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
+                                       display_val = hf_av;
+                                       display_max = hf_max;
+                               } else {
+                                       display_val = lf_av;
+                                       display_max = lf_max;
+                               }
+                       }
+                       for (i=0; i<LIGHT_LEN; i++) {
+                               if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
+                                       if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
+                                       if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
+                                       if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
+                                       if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
+                                       break;
+                               }
+                       }
+               }
+       }
+}
+
+void UsbPacketReceived(uint8_t *packet, int len)
+{
+       UsbCommand *c = (UsbCommand *)packet;
+
+//  Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
+  
+       switch(c->cmd) {
+#ifdef WITH_LF
+               case CMD_SET_LF_SAMPLING_CONFIG:
+                       setSamplingConfig((sample_config *) c->d.asBytes);
+                       break;
+               case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
+                       cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0);
+                       break;
+               case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
+                       ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+                       break;
+               case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
+                       cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
+                       break;
+               case CMD_HID_DEMOD_FSK:
+                       CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
+                       break;
+               case CMD_HID_SIM_TAG:
+                       CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
+                       break;
+               case CMD_FSK_SIM_TAG:
+                       CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_ASK_SIM_TAG:
+                       CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_PSK_SIM_TAG:
+                       CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_HID_CLONE_TAG:
+                       CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+                       break;
+               case CMD_IO_DEMOD_FSK:
+                       CmdIOdemodFSK(c->arg[0], 0, 0, 1);
+                       break;
+               case CMD_IO_CLONE_TAG:
+                       CopyIOtoT55x7(c->arg[0], c->arg[1]);
+                       break;
+               case CMD_EM410X_DEMOD:
+                       CmdEM410xdemod(c->arg[0], 0, 0, 1);
+                       break;
+               case CMD_EM410X_WRITE_TAG:
+                       WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
+                       break;
+               case CMD_READ_TI_TYPE:
+                       ReadTItag();
+                       break;
+               case CMD_WRITE_TI_TYPE:
+                       WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
+                       break;
+               case CMD_SIMULATE_TAG_125K:
+                       LED_A_ON();
+                       SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
+                       LED_A_OFF();
+                       break;
+               case CMD_LF_SIMULATE_BIDIR:
+                       SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
+                       break;
+               case CMD_INDALA_CLONE_TAG:
+                       CopyIndala64toT55x7(c->arg[0], c->arg[1]);                                      
+                       break;
+               case CMD_INDALA_CLONE_TAG_L:
+                       CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
+                       break;
+               case CMD_T55XX_READ_BLOCK:
+                       T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
+                       break;
+               case CMD_T55XX_WRITE_BLOCK:
+                       T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+                       break;
+               case CMD_T55XX_WAKEUP:
+                       T55xxWakeUp(c->arg[0]);
+                       break;
+               case CMD_T55XX_RESET_READ:
+                       T55xxResetRead();
+                       break;
+               case CMD_PCF7931_READ:
+                       ReadPCF7931();
+                       break;
+               case CMD_PCF7931_WRITE:
+                       WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
+                       break;
+               case CMD_EM4X_READ_WORD:
+                       EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]);
+                       break;
+               case CMD_EM4X_WRITE_WORD:
+                       EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
+                       break;
+               case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
+                       CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
+                       break;
+               case CMD_VIKING_CLONE_TAG:
+                       CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
+                       break;
+               case CMD_COTAG:
+                       Cotag(c->arg[0]);
+                       break;
+#endif
+
+#ifdef WITH_HITAG
+               case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
+                       SnoopHitag(c->arg[0]);
+                       break;
+               case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
+                       SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
+                       break;
+               case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
+                       ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
+                       break;
+               case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
+                       SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
+                       break;
+               case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
+                       check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
+                       break;
+               case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge
+                       ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
+                       break;
+               case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge
+                       WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
+                       break;
+#endif
 
+#ifdef WITH_ISO15693
+               case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
+                       AcquireRawAdcSamplesIso15693();
+                       break;
+               case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
+                       RecordRawAdcSamplesIso15693();
+                       break;
+                       
+               case CMD_ISO_15693_COMMAND:
+                       DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+                       break;
+                                       
+               case CMD_ISO_15693_FIND_AFI:
+                       BruteforceIso15693Afi(c->arg[0]);
+                       break;  
+                       
+               case CMD_ISO_15693_DEBUG:
+                       SetDebugIso15693(c->arg[0]);
+                       break;
+
+               case CMD_READER_ISO_15693:
+                       ReaderIso15693(c->arg[0]);
+                       break;
+               case CMD_SIMTAG_ISO_15693:
+                       SimTagIso15693(c->arg[0], c->d.asBytes);
+                       break;
+#endif
+
+#ifdef WITH_LEGICRF
+               case CMD_SIMULATE_TAG_LEGIC_RF:
+                       LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
+                       break;
+
+               case CMD_WRITER_LEGIC_RF:
+                       LegicRfWriter(c->arg[1], c->arg[0]);
+                       break;
+
+               case CMD_READER_LEGIC_RF:
+                       LegicRfReader(c->arg[0], c->arg[1]);
+                       break;
+#endif
+
+#ifdef WITH_ISO14443b
                case CMD_READ_SRI512_TAG:
-                       ReadSRI512Iso14443(c->ext1);
-                       break;
-\r
-               case CMD_READER_ISO_14443a:\r
-                       ReaderIso14443a(c->ext1);\r
-                       break;\r
-\r
-               case CMD_SNOOP_ISO_14443:\r
-                       SnoopIso14443();\r
-                       break;\r
-\r
-               case CMD_SNOOP_ISO_14443a:\r
-                       SnoopIso14443a();\r
-                       break;\r
-\r
-               case CMD_SIMULATE_TAG_HF_LISTEN:\r
-                       SimulateTagHfListen();\r
-                       break;\r
-\r
-               case CMD_SIMULATE_TAG_ISO_14443:\r
-                       SimulateIso14443Tag();\r
-                       break;\r
-\r
-               case CMD_SIMULATE_TAG_ISO_14443a:\r
-                       SimulateIso14443aTag(c->ext1, c->ext2);  // ## Simulate iso14443a tag - pass tag type & UID\r
-                       break;\r
-\r
-               case CMD_MEASURE_ANTENNA_TUNING:\r
-                       MeasureAntennaTuning();\r
-                       break;\r
-\r
-               case CMD_HID_DEMOD_FSK:\r
-                       CmdHIDdemodFSK();                               // Demodulate HID tag\r
-                       break;\r
-\r
-               case CMD_HID_SIM_TAG:\r
-                       CmdHIDsimTAG(c->ext1, c->ext2);                                 // Simulate HID tag by ID\r
-                       break;\r
-\r
-               case CMD_FPGA_MAJOR_MODE_OFF:           // ## FPGA Control\r
-                       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
-                       SpinDelay(200);\r
-                       LED_D_OFF(); // LED D indicates field ON or OFF\r
-                       break;\r
-\r
-               case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:\r
-               case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: {\r
-                       UsbCommand n;\r
-                       if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {\r
-                               n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;\r
-                       } else {\r
-                               n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;\r
-                       }\r
-                       n.ext1 = c->ext1;\r
-                       memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD));\r
-                       UsbSendPacket((BYTE *)&n, sizeof(n));\r
-                       break;\r
-               }\r
-               case CMD_DOWNLOADED_SIM_SAMPLES_125K: {\r
-                       BYTE *b = (BYTE *)BigBuf;\r
-                       memcpy(b+c->ext1, c->d.asBytes, 48);\r
-                       break;\r
-               }\r
-               case CMD_SIMULATE_TAG_125K:\r
-                       LED_A_ON();\r
-                       SimulateTagLowFrequency(c->ext1);\r
-                       LED_A_OFF();\r
-                       break;\r
-#ifdef WITH_LCD\r
-               case CMD_LCD_RESET:\r
-                       LCDReset();\r
-                       break;\r
-#endif\r
-               case CMD_SWEEP_LF:\r
-                       SweepLFrange();\r
-                       break;\r
-\r
-               case CMD_SET_LF_DIVISOR:\r
-                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);\r
-                       break;\r
-#ifdef WITH_LCD\r
-               case CMD_LCD:\r
-                       LCDSend(c->ext1);\r
-                       break;\r
-#endif\r
-        case CMD_SETUP_WRITE:\r
-               case CMD_FINISH_WRITE:\r
-               case CMD_HARDWARE_RESET:\r
-                       USB_D_PLUS_PULLUP_OFF();\r
-                       SpinDelay(1000);\r
-                       SpinDelay(1000);\r
-                       RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET;\r
-                       for(;;) {\r
-                               // We're going to reset, and the bootrom will take control.\r
-                       }\r
-                       break;\r
-\r
-\r
-               default:\r
-                       DbpString("unknown command");\r
-                       break;\r
-       }\r
-}\r
-\r
-void AppMain(void)\r
-{\r
-       memset(BigBuf,0,sizeof(BigBuf));\r
-       SpinDelay(100);\r
-\r
-    LED_D_OFF();\r
-    LED_C_OFF();\r
-    LED_B_OFF();\r
-    LED_A_OFF();\r
-\r
-       UsbStart();\r
-\r
-       // The FPGA gets its clock from us from PCK0 output, so set that up.\r
-       PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0);\r
-       PIO_DISABLE = (1 << GPIO_PCK0);\r
-       PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0;\r
-       // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz\r
-       PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK |\r
-               PMC_CLK_PRESCALE_DIV_4;\r
-       PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0);\r
-\r
-       // Reset SPI\r
-       SPI_CONTROL = SPI_CONTROL_RESET;\r
-       // Reset SSC\r
-       SSC_CONTROL = SSC_CONTROL_RESET;\r
-\r
-       // Load the FPGA image, which we have stored in our flash.\r
-       FpgaDownloadAndGo();\r
-\r
-#ifdef WITH_LCD\r
-\r
-       LCDInit();\r
-\r
-       // test text on different colored backgrounds\r
-    LCDString(" The quick brown fox  ",        &FONT6x8,1,1+8*0,WHITE  ,BLACK );\r
-    LCDString("  jumped over the     ",        &FONT6x8,1,1+8*1,BLACK  ,WHITE );\r
-    LCDString("     lazy dog.        ",        &FONT6x8,1,1+8*2,YELLOW ,RED   );\r
-    LCDString(" AaBbCcDdEeFfGgHhIiJj ",        &FONT6x8,1,1+8*3,RED    ,GREEN );\r
-    LCDString(" KkLlMmNnOoPpQqRrSsTt ",        &FONT6x8,1,1+8*4,MAGENTA,BLUE  );\r
-    LCDString("UuVvWwXxYyZz0123456789",        &FONT6x8,1,1+8*5,BLUE   ,YELLOW);\r
-    LCDString("`-=[]_;',./~!@#$%^&*()",        &FONT6x8,1,1+8*6,BLACK  ,CYAN  );\r
-    LCDString("     _+{}|:\\\"<>?     ",&FONT6x8,1,1+8*7,BLUE  ,MAGENTA);\r
-\r
-       // color bands\r
-       LCDFill(0, 1+8* 8, 132, 8, BLACK);\r
-       LCDFill(0, 1+8* 9, 132, 8, WHITE);\r
-       LCDFill(0, 1+8*10, 132, 8, RED);\r
-       LCDFill(0, 1+8*11, 132, 8, GREEN);\r
-       LCDFill(0, 1+8*12, 132, 8, BLUE);\r
-       LCDFill(0, 1+8*13, 132, 8, YELLOW);\r
-       LCDFill(0, 1+8*14, 132, 8, CYAN);\r
-       LCDFill(0, 1+8*15, 132, 8, MAGENTA);\r
-\r
-#endif\r
-\r
-       for(;;) {\r
-               UsbPoll(FALSE);\r
-               WDT_HIT();\r
-       }\r
-}\r
-\r
-void SpinDelay(int ms)\r
-{\r
-       int ticks = (48000*ms) >> 10;\r
-\r
-       // Borrow a PWM unit for my real-time clock\r
-       PWM_ENABLE = PWM_CHANNEL(0);\r
-       // 48 MHz / 1024 gives 46.875 kHz\r
-       PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);\r
-       PWM_CH_DUTY_CYCLE(0) = 0;\r
-       PWM_CH_PERIOD(0) = 0xffff;\r
-\r
-       WORD start = (WORD)PWM_CH_COUNTER(0);\r
-\r
-       for(;;) {\r
-               WORD now = (WORD)PWM_CH_COUNTER(0);\r
-               if(now == (WORD)(start + ticks)) {\r
-                       return;\r
-               }\r
-               WDT_HIT();\r
-       }\r
-}\r
+                       ReadSTMemoryIso14443b(0x0F);
+                       break;
+               case CMD_READ_SRIX4K_TAG:
+                       ReadSTMemoryIso14443b(0x7F);
+                       break;
+               case CMD_SNOOP_ISO_14443B:
+                       SnoopIso14443b();
+                       break;
+               case CMD_SIMULATE_TAG_ISO_14443B:
+                       SimulateIso14443bTag();
+                       break;
+               case CMD_ISO_14443B_COMMAND:
+                       SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+                       break;
+#endif
+
+#ifdef WITH_ISO14443a
+               case CMD_SNOOP_ISO_14443a:
+                       SnoopIso14443a(c->arg[0]);
+                       break;
+               case CMD_READER_ISO_14443a:
+                       ReaderIso14443a(c);
+                       break;
+               case CMD_SIMULATE_TAG_ISO_14443a:
+                       SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);  // ## Simulate iso14443a tag - pass tag type & UID
+                       break;
+                       
+               case CMD_EPA_PACE_COLLECT_NONCE:
+                       EPA_PACE_Collect_Nonce(c);
+                       break;
+               case CMD_EPA_PACE_REPLAY:
+                       EPA_PACE_Replay(c);
+                       break;
+                       
+               case CMD_READER_MIFARE:
+                       ReaderMifare(c->arg[0]);
+                       break;
+               case CMD_MIFARE_READBL:
+                       MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_MIFAREU_READBL:
+                       MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
+                       break;
+               case CMD_MIFAREUC_AUTH:
+                       MifareUC_Auth(c->arg[0],c->d.asBytes);
+                       break;
+               case CMD_MIFAREU_READCARD:
+                       MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_MIFAREUC_SETPWD: 
+                       MifareUSetPwd(c->arg[0], c->d.asBytes);
+                       break;
+               case CMD_MIFARE_READSC:
+                       MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_MIFARE_WRITEBL:
+                       MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               //case CMD_MIFAREU_WRITEBL_COMPAT:
+                       //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
+                       //break;
+               case CMD_MIFAREU_WRITEBL:
+                       MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
+                       break;
+               case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
+                       MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_MIFARE_NESTED:
+                       MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_MIFARE_CHKKEYS:
+                       MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_SIMULATE_MIFARE_CARD:
+                       Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               
+               // emulator
+               case CMD_MIFARE_SET_DBGMODE:
+                       MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_MIFARE_EML_MEMCLR:
+                       MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_MIFARE_EML_MEMSET:
+                       MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_MIFARE_EML_MEMGET:
+                       MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_MIFARE_EML_CARDLOAD:
+                       MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+                       
+               // Work with "magic Chinese" card
+               case CMD_MIFARE_CSETBLOCK:
+                       MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_MIFARE_CGETBLOCK:
+                       MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_MIFARE_CIDENT:
+                       MifareCIdent();
+                       break;
+                       
+               // mifare sniffer
+               case CMD_MIFARE_SNIFFER:
+                       SniffMifare(c->arg[0]);
+                       break;
+
+#endif
+
+#ifdef WITH_ICLASS
+               // Makes use of ISO14443a FPGA Firmware
+               case CMD_SNOOP_ICLASS:
+                       SnoopIClass();
+                       break;
+               case CMD_SIMULATE_TAG_ICLASS:
+                       SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+                       break;
+               case CMD_READER_ICLASS:
+                       ReaderIClass(c->arg[0]);
+                       break;
+               case CMD_READER_ICLASS_REPLAY:
+                       ReaderIClass_Replay(c->arg[0], c->d.asBytes);
+                       break;
+               case CMD_ICLASS_EML_MEMSET:
+                       emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
+                       break;
+               case CMD_ICLASS_WRITEBLOCK:
+                       iClass_WriteBlock(c->arg[0], c->d.asBytes);
+                       break;
+               case CMD_ICLASS_READCHECK:  // auth step 1
+                       iClass_ReadCheck(c->arg[0], c->arg[1]);
+                       break;
+               case CMD_ICLASS_READBLOCK:
+                       iClass_ReadBlk(c->arg[0]);
+                       break;
+               case CMD_ICLASS_AUTHENTICATION: //check
+                       iClass_Authentication(c->d.asBytes);
+                       break;
+               case CMD_ICLASS_DUMP:
+                       iClass_Dump(c->arg[0], c->arg[1]);
+                       break;
+               case CMD_ICLASS_CLONE:
+                       iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
+                       break;
+#endif
+#ifdef WITH_HFSNOOP
+               case CMD_HF_SNIFFER:
+                       HfSnoop(c->arg[0], c->arg[1]);
+                       break;
+#endif
+
+               case CMD_BUFF_CLEAR:
+                       BigBuf_Clear();
+                       break;
+
+               case CMD_MEASURE_ANTENNA_TUNING:
+                       MeasureAntennaTuning(c->arg[0]);
+                       break;
+
+               case CMD_MEASURE_ANTENNA_TUNING_HF:
+                       MeasureAntennaTuningHf();
+                       break;
+
+               case CMD_LISTEN_READER_FIELD:
+                       ListenReaderField(c->arg[0]);
+                       break;
+
+               case CMD_FPGA_MAJOR_MODE_OFF:           // ## FPGA Control
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+                       SpinDelay(200);
+                       LED_D_OFF(); // LED D indicates field ON or OFF
+                       break;
+
+               case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
+
+                       LED_B_ON();
+                       uint8_t *BigBuf = BigBuf_get_addr();
+                       for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
+                               size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
+                               cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
+                       }
+                       // Trigger a finish downloading signal with an ACK frame
+                       cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
+                       LED_B_OFF();
+                       break;
+
+               case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
+                       uint8_t *b = BigBuf_get_addr();
+                       memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
+                       cmd_send(CMD_ACK,0,0,0,0,0);
+                       break;
+               }       
+               case CMD_READ_MEM:
+                       ReadMem(c->arg[0]);
+                       break;
+
+               case CMD_SET_LF_DIVISOR:
+                       FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
+                       break;
+
+               case CMD_SET_ADC_MUX:
+                       switch(c->arg[0]) {
+                               case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
+                               case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
+                               case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
+                               case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
+                       }
+                       break;
+
+               case CMD_VERSION:
+                       SendVersion();
+                       break;
+               case CMD_STATUS:
+                       SendStatus();
+                       break;
+               case CMD_PING:
+                       cmd_send(CMD_ACK,0,0,0,0,0);
+                       break;
+#ifdef WITH_LCD
+               case CMD_LCD_RESET:
+                       LCDReset();
+                       break;
+               case CMD_LCD:
+                       LCDSend(c->arg[0]);
+                       break;
+#endif
+               case CMD_SETUP_WRITE:
+               case CMD_FINISH_WRITE:
+               case CMD_HARDWARE_RESET:
+                       usb_disable();
+                       SpinDelay(1000);
+                       SpinDelay(1000);
+                       AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
+                       for(;;) {
+                               // We're going to reset, and the bootrom will take control.
+                       }
+                       break;
+
+               case CMD_START_FLASH:
+                       if(common_area.flags.bootrom_present) {
+                               common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
+                       }
+                       usb_disable();
+                       AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
+                       for(;;);
+                       break;
+
+               case CMD_DEVICE_INFO: {
+                       uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
+                       if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
+                       cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);     
+                       break;
+               }
+               default:
+                       Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
+                       break;
+       }
+}
+
+void  __attribute__((noreturn)) AppMain(void)
+{
+       SpinDelay(100);
+       clear_trace();
+       if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
+               /* Initialize common area */
+               memset(&common_area, 0, sizeof(common_area));
+               common_area.magic = COMMON_AREA_MAGIC;
+               common_area.version = 1;
+       }
+       common_area.flags.osimage_present = 1;
+
+       LED_D_OFF();
+       LED_C_OFF();
+       LED_B_OFF();
+       LED_A_OFF();
+
+       // Init USB device
+  usb_enable();
+
+       // The FPGA gets its clock from us from PCK0 output, so set that up.
+       AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
+       AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
+       AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
+       // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
+       AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
+               AT91C_PMC_PRES_CLK_4; //  4 for 24Mhz pck0, 2 for 48 MHZ pck0
+       AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
+
+       // Reset SPI
+       AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
+       // Reset SSC
+       AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
+
+       // Load the FPGA image, which we have stored in our flash.
+       // (the HF version by default)
+       FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+
+       StartTickCount();
+       
+#ifdef WITH_LCD
+       LCDInit();
+#endif
+
+  byte_t rx[sizeof(UsbCommand)];
+       size_t rx_len;
+  
+       for(;;) {
+    if (usb_poll()) {
+      rx_len = usb_read(rx,sizeof(UsbCommand));
+      if (rx_len) {
+        UsbPacketReceived(rx,rx_len);
+      }
+    }
+               WDT_HIT();
+
+#ifdef WITH_LF
+#ifndef WITH_ISO14443a_StandAlone
+               if (BUTTON_HELD(1000) > 0)
+                       SamyRun();
+#endif
+#endif
+#ifdef WITH_ISO14443a
+#ifdef WITH_ISO14443a_StandAlone
+               if (BUTTON_HELD(1000) > 0)
+                       StandAloneMode14a();
+#endif
+#endif
+       }
+}
Impressum, Datenschutz