// Hagen Fritsch - June 2010
// Gerhard de Koning Gans - May 2011
// Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
+// piwi - 2019
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
//-----------------------------------------------------------------------------
// Routines to support iClass.
//-----------------------------------------------------------------------------
-// Based on ISO14443a implementation. Still in experimental phase.
// Contribution made during a security research at Radboud University Nijmegen
-//
-// Please feel free to contribute and extend iClass support!!
-//-----------------------------------------------------------------------------
-//
-// FIX:
-// ====
-// We still have sometimes a demodulation error when snooping iClass communication.
-// The resulting trace of a read-block-03 command may look something like this:
-//
-// + 22279: : 0c 03 e8 01
-//
-// ...with an incorrect answer...
-//
-// + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
-//
-// We still left the error signalling bytes in the traces like 0xbb
-//
-// A correct trace should look like this:
-//
-// + 21112: : 0c 03 e8 01
-// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
//
+// Please feel free to contribute and extend iClass support!!
//-----------------------------------------------------------------------------
+#include "iclass.h"
+
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
+#include "printf.h"
#include "common.h"
-#include "cmd.h"
+#include "usb_cdc.h"
#include "iso14443a.h"
+#include "iso15693.h"
// Needed for CRC in emulation mode;
// same construction as in ISO 14443;
// different initial value (CRC_ICLASS)
#include "iso15693tools.h"
#include "protocols.h"
#include "optimized_cipher.h"
-#include "usb_cdc.h" // for usb_poll_validate_length
-
-static int timeout = 4096;
+#include "fpgaloader.h"
+// iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after
+// the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period.
+// 330us = 140 ssp_clk cycles @ 423,75kHz when simulating.
+// 56,64us = 24 ssp_clk_cycles
+#define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 24)
+// times in ssp_clk_cycles @ 3,3625MHz when acting as reader
+#define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER
+// times in samples @ 212kHz when acting as reader
+#define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us
+#define ICLASS_READER_TIMEOUT_UPDATE 3390 // 16000us, nominal 4-15ms
+#define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us
-static int SendIClassAnswer(uint8_t *resp, int respLen, int delay);
-
-//-----------------------------------------------------------------------------
-// The software UART that receives commands from the reader, and its state
-// variables.
-//-----------------------------------------------------------------------------
-static struct {
- enum {
- STATE_UNSYNCD,
- STATE_START_OF_COMMUNICATION,
- STATE_RECEIVING
- } state;
- uint16_t shiftReg;
- int bitCnt;
- int byteCnt;
- int byteCntMax;
- int posCnt;
- int nOutOfCnt;
- int OutOfCnt;
- int syncBit;
- int samples;
- int highCnt;
- int swapper;
- int counter;
- int bitBuffer;
- int dropPosition;
- uint8_t *output;
-} Uart;
-
-static RAMFUNC int OutOfNDecoding(int bit)
-{
- //int error = 0;
- int bitright;
-
- if(!Uart.bitBuffer) {
- Uart.bitBuffer = bit ^ 0xFF0;
- return false;
- }
- else {
- Uart.bitBuffer <<= 4;
- Uart.bitBuffer ^= bit;
- }
-
- /*if(Uart.swapper) {
- Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
- Uart.byteCnt++;
- Uart.swapper = 0;
- if(Uart.byteCnt > 15) { return true; }
- }
- else {
- Uart.swapper = 1;
- }*/
-
- if(Uart.state != STATE_UNSYNCD) {
- Uart.posCnt++;
-
- if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
- bit = 0x00;
- }
- else {
- bit = 0x01;
- }
- if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
- bitright = 0x00;
- }
- else {
- bitright = 0x01;
- }
- if(bit != bitright) { bit = bitright; }
-
-
- // So, now we only have to deal with *bit*, lets see...
- if(Uart.posCnt == 1) {
- // measurement first half bitperiod
- if(!bit) {
- // Drop in first half means that we are either seeing
- // an SOF or an EOF.
-
- if(Uart.nOutOfCnt == 1) {
- // End of Communication
- Uart.state = STATE_UNSYNCD;
- Uart.highCnt = 0;
- if(Uart.byteCnt == 0) {
- // Its not straightforward to show single EOFs
- // So just leave it and do not return true
- Uart.output[0] = 0xf0;
- Uart.byteCnt++;
- }
- else {
- return true;
- }
- }
- else if(Uart.state != STATE_START_OF_COMMUNICATION) {
- // When not part of SOF or EOF, it is an error
- Uart.state = STATE_UNSYNCD;
- Uart.highCnt = 0;
- //error = 4;
- }
- }
- }
- else {
- // measurement second half bitperiod
- // Count the bitslot we are in... (ISO 15693)
- Uart.nOutOfCnt++;
-
- if(!bit) {
- if(Uart.dropPosition) {
- if(Uart.state == STATE_START_OF_COMMUNICATION) {
- //error = 1;
- }
- else {
- //error = 7;
- }
- // It is an error if we already have seen a drop in current frame
- Uart.state = STATE_UNSYNCD;
- Uart.highCnt = 0;
- }
- else {
- Uart.dropPosition = Uart.nOutOfCnt;
- }
- }
-
- Uart.posCnt = 0;
-
-
- if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
- Uart.nOutOfCnt = 0;
-
- if(Uart.state == STATE_START_OF_COMMUNICATION) {
- if(Uart.dropPosition == 4) {
- Uart.state = STATE_RECEIVING;
- Uart.OutOfCnt = 256;
- }
- else if(Uart.dropPosition == 3) {
- Uart.state = STATE_RECEIVING;
- Uart.OutOfCnt = 4;
- //Uart.output[Uart.byteCnt] = 0xdd;
- //Uart.byteCnt++;
- }
- else {
- Uart.state = STATE_UNSYNCD;
- Uart.highCnt = 0;
- }
- Uart.dropPosition = 0;
- }
- else {
- // RECEIVING DATA
- // 1 out of 4
- if(!Uart.dropPosition) {
- Uart.state = STATE_UNSYNCD;
- Uart.highCnt = 0;
- //error = 9;
- }
- else {
- Uart.shiftReg >>= 2;
-
- // Swap bit order
- Uart.dropPosition--;
- //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; }
- //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; }
-
- Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
- Uart.bitCnt += 2;
- Uart.dropPosition = 0;
-
- if(Uart.bitCnt == 8) {
- Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
- Uart.byteCnt++;
- Uart.bitCnt = 0;
- Uart.shiftReg = 0;
- }
- }
- }
- }
- else if(Uart.nOutOfCnt == Uart.OutOfCnt) {
- // RECEIVING DATA
- // 1 out of 256
- if(!Uart.dropPosition) {
- Uart.state = STATE_UNSYNCD;
- Uart.highCnt = 0;
- //error = 3;
- }
- else {
- Uart.dropPosition--;
- Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
- Uart.byteCnt++;
- Uart.bitCnt = 0;
- Uart.shiftReg = 0;
- Uart.nOutOfCnt = 0;
- Uart.dropPosition = 0;
- }
- }
-
- /*if(error) {
- Uart.output[Uart.byteCnt] = 0xAA;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = error & 0xFF;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = 0xAA;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
- Uart.byteCnt++;
- Uart.output[Uart.byteCnt] = 0xAA;
- Uart.byteCnt++;
- return true;
- }*/
- }
-
- }
- else {
- bit = Uart.bitBuffer & 0xf0;
- bit >>= 4;
- bit ^= 0x0F; // drops become 1s ;-)
- if(bit) {
- // should have been high or at least (4 * 128) / fc
- // according to ISO this should be at least (9 * 128 + 20) / fc
- if(Uart.highCnt == 8) {
- // we went low, so this could be start of communication
- // it turns out to be safer to choose a less significant
- // syncbit... so we check whether the neighbour also represents the drop
- Uart.posCnt = 1; // apparently we are busy with our first half bit period
- Uart.syncBit = bit & 8;
- Uart.samples = 3;
- if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
- else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
- if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
- else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
- if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
- if(Uart.syncBit && (Uart.bitBuffer & 8)) {
- Uart.syncBit = 8;
-
- // the first half bit period is expected in next sample
- Uart.posCnt = 0;
- Uart.samples = 3;
- }
- }
- else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
-
- Uart.syncBit <<= 4;
- Uart.state = STATE_START_OF_COMMUNICATION;
- Uart.bitCnt = 0;
- Uart.byteCnt = 0;
- Uart.nOutOfCnt = 0;
- Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
- Uart.dropPosition = 0;
- Uart.shiftReg = 0;
- //error = 0;
- }
- else {
- Uart.highCnt = 0;
- }
- }
- else {
- if(Uart.highCnt < 8) {
- Uart.highCnt++;
- }
- }
- }
+#define ICLASS_BUFFER_SIZE 34 // we expect max 34 bytes as tag answer (response to READ4)
- return false;
-}
//=============================================================================
-// Manchester
-//=============================================================================
-
-static struct {
- enum {
- DEMOD_UNSYNCD,
- DEMOD_START_OF_COMMUNICATION,
- DEMOD_START_OF_COMMUNICATION2,
- DEMOD_START_OF_COMMUNICATION3,
- DEMOD_SOF_COMPLETE,
- DEMOD_MANCHESTER_D,
- DEMOD_MANCHESTER_E,
- DEMOD_END_OF_COMMUNICATION,
- DEMOD_END_OF_COMMUNICATION2,
- DEMOD_MANCHESTER_F,
- DEMOD_ERROR_WAIT
- } state;
- int bitCount;
- int posCount;
- int syncBit;
- uint16_t shiftReg;
- int buffer;
- int buffer2;
- int buffer3;
- int buff;
- int samples;
- int len;
- enum {
- SUB_NONE,
- SUB_FIRST_HALF,
- SUB_SECOND_HALF,
- SUB_BOTH
- } sub;
- uint8_t *output;
-} Demod;
-
-static RAMFUNC int ManchesterDecoding(int v)
-{
- int bit;
- int modulation;
- int error = 0;
-
- bit = Demod.buffer;
- Demod.buffer = Demod.buffer2;
- Demod.buffer2 = Demod.buffer3;
- Demod.buffer3 = v;
-
- if(Demod.buff < 3) {
- Demod.buff++;
- return false;
- }
-
- if(Demod.state==DEMOD_UNSYNCD) {
- Demod.output[Demod.len] = 0xfa;
- Demod.syncBit = 0;
- //Demod.samples = 0;
- Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
-
- if(bit & 0x08) {
- Demod.syncBit = 0x08;
- }
-
- if(bit & 0x04) {
- if(Demod.syncBit) {
- bit <<= 4;
- }
- Demod.syncBit = 0x04;
- }
-
- if(bit & 0x02) {
- if(Demod.syncBit) {
- bit <<= 2;
- }
- Demod.syncBit = 0x02;
- }
-
- if(bit & 0x01 && Demod.syncBit) {
- Demod.syncBit = 0x01;
- }
-
- if(Demod.syncBit) {
- Demod.len = 0;
- Demod.state = DEMOD_START_OF_COMMUNICATION;
- Demod.sub = SUB_FIRST_HALF;
- Demod.bitCount = 0;
- Demod.shiftReg = 0;
- Demod.samples = 0;
- if(Demod.posCount) {
- //if(trigger) LED_A_OFF(); // Not useful in this case...
- switch(Demod.syncBit) {
- case 0x08: Demod.samples = 3; break;
- case 0x04: Demod.samples = 2; break;
- case 0x02: Demod.samples = 1; break;
- case 0x01: Demod.samples = 0; break;
- }
- // SOF must be long burst... otherwise stay unsynced!!!
- if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
- Demod.state = DEMOD_UNSYNCD;
- }
- }
- else {
- // SOF must be long burst... otherwise stay unsynced!!!
- if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
- Demod.state = DEMOD_UNSYNCD;
- error = 0x88;
- }
-
- }
- error = 0;
-
- }
- }
- else {
- modulation = bit & Demod.syncBit;
- modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
-
- Demod.samples += 4;
-
- if(Demod.posCount==0) {
- Demod.posCount = 1;
- if(modulation) {
- Demod.sub = SUB_FIRST_HALF;
- }
- else {
- Demod.sub = SUB_NONE;
- }
- }
- else {
- Demod.posCount = 0;
- /*(modulation && (Demod.sub == SUB_FIRST_HALF)) {
- if(Demod.state!=DEMOD_ERROR_WAIT) {
- Demod.state = DEMOD_ERROR_WAIT;
- Demod.output[Demod.len] = 0xaa;
- error = 0x01;
- }
- }*/
- //else if(modulation) {
- if(modulation) {
- if(Demod.sub == SUB_FIRST_HALF) {
- Demod.sub = SUB_BOTH;
- }
- else {
- Demod.sub = SUB_SECOND_HALF;
- }
- }
- else if(Demod.sub == SUB_NONE) {
- if(Demod.state == DEMOD_SOF_COMPLETE) {
- Demod.output[Demod.len] = 0x0f;
- Demod.len++;
- Demod.state = DEMOD_UNSYNCD;
-// error = 0x0f;
- return true;
- }
- else {
- Demod.state = DEMOD_ERROR_WAIT;
- error = 0x33;
- }
- /*if(Demod.state!=DEMOD_ERROR_WAIT) {
- Demod.state = DEMOD_ERROR_WAIT;
- Demod.output[Demod.len] = 0xaa;
- error = 0x01;
- }*/
- }
-
- switch(Demod.state) {
- case DEMOD_START_OF_COMMUNICATION:
- if(Demod.sub == SUB_BOTH) {
- //Demod.state = DEMOD_MANCHESTER_D;
- Demod.state = DEMOD_START_OF_COMMUNICATION2;
- Demod.posCount = 1;
- Demod.sub = SUB_NONE;
- }
- else {
- Demod.output[Demod.len] = 0xab;
- Demod.state = DEMOD_ERROR_WAIT;
- error = 0xd2;
- }
- break;
- case DEMOD_START_OF_COMMUNICATION2:
- if(Demod.sub == SUB_SECOND_HALF) {
- Demod.state = DEMOD_START_OF_COMMUNICATION3;
- }
- else {
- Demod.output[Demod.len] = 0xab;
- Demod.state = DEMOD_ERROR_WAIT;
- error = 0xd3;
- }
- break;
- case DEMOD_START_OF_COMMUNICATION3:
- if(Demod.sub == SUB_SECOND_HALF) {
-// Demod.state = DEMOD_MANCHESTER_D;
- Demod.state = DEMOD_SOF_COMPLETE;
- //Demod.output[Demod.len] = Demod.syncBit & 0xFF;
- //Demod.len++;
- }
- else {
- Demod.output[Demod.len] = 0xab;
- Demod.state = DEMOD_ERROR_WAIT;
- error = 0xd4;
- }
- break;
- case DEMOD_SOF_COMPLETE:
- case DEMOD_MANCHESTER_D:
- case DEMOD_MANCHESTER_E:
- // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
- // 00001111 = 1 (0 in 14443)
- if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
- Demod.bitCount++;
- Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
- Demod.state = DEMOD_MANCHESTER_D;
- }
- else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
- Demod.bitCount++;
- Demod.shiftReg >>= 1;
- Demod.state = DEMOD_MANCHESTER_E;
- }
- else if(Demod.sub == SUB_BOTH) {
- Demod.state = DEMOD_MANCHESTER_F;
- }
- else {
- Demod.state = DEMOD_ERROR_WAIT;
- error = 0x55;
- }
- break;
-
- case DEMOD_MANCHESTER_F:
- // Tag response does not need to be a complete byte!
- if(Demod.len > 0 || Demod.bitCount > 0) {
- if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
- Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
- Demod.output[Demod.len] = Demod.shiftReg & 0xff;
- Demod.len++;
- }
-
- Demod.state = DEMOD_UNSYNCD;
- return true;
- }
- else {
- Demod.output[Demod.len] = 0xad;
- Demod.state = DEMOD_ERROR_WAIT;
- error = 0x03;
- }
- break;
-
- case DEMOD_ERROR_WAIT:
- Demod.state = DEMOD_UNSYNCD;
- break;
-
- default:
- Demod.output[Demod.len] = 0xdd;
- Demod.state = DEMOD_UNSYNCD;
- break;
- }
-
- /*if(Demod.bitCount>=9) {
- Demod.output[Demod.len] = Demod.shiftReg & 0xff;
- Demod.len++;
-
- Demod.parityBits <<= 1;
- Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
-
- Demod.bitCount = 0;
- Demod.shiftReg = 0;
- }*/
- if(Demod.bitCount>=8) {
- Demod.shiftReg >>= 1;
- Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
- Demod.len++;
- Demod.bitCount = 0;
- Demod.shiftReg = 0;
- }
-
- if(error) {
- Demod.output[Demod.len] = 0xBB;
- Demod.len++;
- Demod.output[Demod.len] = error & 0xFF;
- Demod.len++;
- Demod.output[Demod.len] = 0xBB;
- Demod.len++;
- Demod.output[Demod.len] = bit & 0xFF;
- Demod.len++;
- Demod.output[Demod.len] = Demod.buffer & 0xFF;
- Demod.len++;
- // Look harder ;-)
- Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
- Demod.len++;
- Demod.output[Demod.len] = Demod.syncBit & 0xFF;
- Demod.len++;
- Demod.output[Demod.len] = 0xBB;
- Demod.len++;
- return true;
- }
-
- }
-
- } // end (state != UNSYNCED)
-
- return false;
-}
-
-//=============================================================================
-// Finally, a `sniffer' for iClass communication
+// A `sniffer' for iClass communication
// Both sides of communication!
//=============================================================================
-
-//-----------------------------------------------------------------------------
-// Record the sequence of commands sent by the reader to the tag, with
-// triggering so that we start recording at the point that the tag is moved
-// near the reader.
-//-----------------------------------------------------------------------------
-void RAMFUNC SnoopIClass(void)
-{
-
-
- // We won't start recording the frames that we acquire until we trigger;
- // a good trigger condition to get started is probably when we see a
- // response from the tag.
- //int triggered = false; // false to wait first for card
-
- // The command (reader -> tag) that we're receiving.
- // The length of a received command will in most cases be no more than 18 bytes.
- // So 32 should be enough!
- #define ICLASS_BUFFER_SIZE 32
- uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
- // The response (tag -> reader) that we're receiving.
- uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
-
- // free all BigBuf memory
- BigBuf_free();
- // The DMA buffer, used to stream samples from the FPGA
- uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
-
- set_tracing(true);
- clear_trace();
- iso14a_set_trigger(false);
-
- int lastRxCounter;
- uint8_t *upTo;
- int smpl;
- int maxBehindBy = 0;
-
- // Count of samples received so far, so that we can include timing
- // information in the trace buffer.
- int samples = 0;
- rsamples = 0;
-
- // Set up the demodulator for tag -> reader responses.
- Demod.output = tagToReaderResponse;
- Demod.len = 0;
- Demod.state = DEMOD_UNSYNCD;
-
- // Setup for the DMA.
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
- upTo = dmaBuf;
- lastRxCounter = DMA_BUFFER_SIZE;
- FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
-
- // And the reader -> tag commands
- memset(&Uart, 0, sizeof(Uart));
- Uart.output = readerToTagCmd;
- Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
- Uart.state = STATE_UNSYNCD;
-
- // And put the FPGA in the appropriate mode
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
- uint32_t time_0 = GetCountSspClk();
- uint32_t time_start = 0;
- uint32_t time_stop = 0;
-
- int div = 0;
- //int div2 = 0;
- int decbyte = 0;
- int decbyter = 0;
-
- // And now we loop, receiving samples.
- for(;;) {
- LED_A_ON();
- WDT_HIT();
- int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
- (DMA_BUFFER_SIZE-1);
- if(behindBy > maxBehindBy) {
- maxBehindBy = behindBy;
- if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
- Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
- goto done;
- }
- }
- if(behindBy < 1) continue;
-
- LED_A_OFF();
- smpl = upTo[0];
- upTo++;
- lastRxCounter -= 1;
- if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
- upTo -= DMA_BUFFER_SIZE;
- lastRxCounter += DMA_BUFFER_SIZE;
- AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
- AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
- }
-
- //samples += 4;
- samples += 1;
-
- if(smpl & 0xF) {
- decbyte ^= (1 << (3 - div));
- }
-
- // FOR READER SIDE COMMUMICATION...
-
- decbyter <<= 2;
- decbyter ^= (smpl & 0x30);
-
- div++;
-
- if((div + 1) % 2 == 0) {
- smpl = decbyter;
- if(OutOfNDecoding((smpl & 0xF0) >> 4)) {
- rsamples = samples - Uart.samples;
- time_stop = (GetCountSspClk()-time_0) << 4;
- LED_C_ON();
-
- //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
- //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
- uint8_t parity[MAX_PARITY_SIZE];
- GetParity(Uart.output, Uart.byteCnt, parity);
- LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, true);
-
- /* And ready to receive another command. */
- Uart.state = STATE_UNSYNCD;
- /* And also reset the demod code, which might have been */
- /* false-triggered by the commands from the reader. */
- Demod.state = DEMOD_UNSYNCD;
- LED_B_OFF();
- Uart.byteCnt = 0;
- }else{
- time_start = (GetCountSspClk()-time_0) << 4;
- }
- decbyter = 0;
- }
-
- if(div > 3) {
- smpl = decbyte;
- if(ManchesterDecoding(smpl & 0x0F)) {
- time_stop = (GetCountSspClk()-time_0) << 4;
-
- rsamples = samples - Demod.samples;
- LED_B_ON();
-
- uint8_t parity[MAX_PARITY_SIZE];
- GetParity(Demod.output, Demod.len, parity);
- LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false);
-
- // And ready to receive another response.
- memset(&Demod, 0, sizeof(Demod));
- Demod.output = tagToReaderResponse;
- Demod.state = DEMOD_UNSYNCD;
- LED_C_OFF();
- }else{
- time_start = (GetCountSspClk()-time_0) << 4;
- }
-
- div = 0;
- decbyte = 0x00;
- }
- //}
-
- if(BUTTON_PRESS()) {
- DbpString("cancelled_a");
- goto done;
- }
- }
-
- DbpString("COMMAND FINISHED");
-
- Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
- Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
-
-done:
- AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
- Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
- Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
- LED_A_OFF();
- LED_B_OFF();
- LED_C_OFF();
- LED_D_OFF();
+void SnoopIClass(uint8_t jam_search_len, uint8_t *jam_search_string) {
+ SnoopIso15693(jam_search_len, jam_search_string);
}
+
void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
- int i;
- for(i = 0; i < 8; i++) {
+ int i;
+ for (i = 0; i < 8; i++) {
rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
}
}
-//-----------------------------------------------------------------------------
-// Wait for commands from reader
-// Stop when button is pressed
-// Or return true when command is captured
-//-----------------------------------------------------------------------------
-static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen)
-{
- // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
- // only, since we are receiving, not transmitting).
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
- // Now run a `software UART' on the stream of incoming samples.
- Uart.output = received;
- Uart.byteCntMax = maxLen;
- Uart.state = STATE_UNSYNCD;
-
- for(;;) {
- WDT_HIT();
-
- if(BUTTON_PRESS()) return false;
-
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
- if(OutOfNDecoding(b & 0x0f)) {
- *len = Uart.byteCnt;
- return true;
- }
- }
- }
-}
-
-static uint8_t encode4Bits(const uint8_t b)
-{
- uint8_t c = b & 0xF;
- // OTA, the least significant bits first
- // The columns are
- // 1 - Bit value to send
- // 2 - Reversed (big-endian)
- // 3 - Encoded
- // 4 - Hex values
-
- switch(c){
- // 1 2 3 4
- case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55
- case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95
- case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65
- case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5
- case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59
- case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99
- case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69
- case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9
- case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56
- case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96
- case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66
- case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6
- case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a
- case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a
- case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a
- default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa
-
- }
-}
-
-//-----------------------------------------------------------------------------
-// Prepare tag messages
-//-----------------------------------------------------------------------------
-static void CodeIClassTagAnswer(const uint8_t *cmd, int len)
-{
-
- /*
- * SOF comprises 3 parts;
- * * An unmodulated time of 56.64 us
- * * 24 pulses of 423.75 KHz (fc/32)
- * * A logic 1, which starts with an unmodulated time of 18.88us
- * followed by 8 pulses of 423.75kHz (fc/32)
- *
- *
- * EOF comprises 3 parts:
- * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated
- * time of 18.88us.
- * - 24 pulses of fc/32
- * - An unmodulated time of 56.64 us
- *
- *
- * A logic 0 starts with 8 pulses of fc/32
- * followed by an unmodulated time of 256/fc (~18,88us).
- *
- * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by
- * 8 pulses of fc/32 (also 18.88us)
- *
- * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag,
- * works like this.
- * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us).
- * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us
- *
- * In this mode the SOF can be written as 00011101 = 0x1D
- * The EOF can be written as 10111000 = 0xb8
- * A logic 1 is 01
- * A logic 0 is 10
- *
- * */
-
- int i;
+// Encode SOF only
+static void CodeIClassTagSOF() {
ToSendReset();
-
- // Send SOF
ToSend[++ToSendMax] = 0x1D;
-
- for(i = 0; i < len; i++) {
- uint8_t b = cmd[i];
- ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half
- ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half
- }
-
- // Send EOF
- ToSend[++ToSendMax] = 0xB8;
- //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end
- // Convert from last byte pos to length
ToSendMax++;
}
-// Only SOF
-static void CodeIClassTagSOF()
-{
- //So far a dummy implementation, not used
- //int lastProxToAirDuration =0;
-
- ToSendReset();
- // Send SOF
- ToSend[++ToSendMax] = 0x1D;
-// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning
- // Convert from last byte pos to length
- ToSendMax++;
+static void AppendCrc(uint8_t *data, int len) {
+ ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1);
}
-#define MODE_SIM_CSN 0
-#define MODE_EXIT_AFTER_MAC 1
-#define MODE_FULLSIM 2
-int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf);
-/**
- * @brief SimulateIClass simulates an iClass card.
- * @param arg0 type of simulation
- * - 0 uses the first 8 bytes in usb data as CSN
- * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
- * in the usb data. This mode collects MAC from the reader, in order to do an offline
- * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
- * - Other : Uses the default CSN (031fec8af7ff12e0)
- * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
- * @param arg2
- * @param datain
- */
-void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
-{
- uint32_t simType = arg0;
- uint32_t numberOfCSNS = arg1;
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
-
- // Enable and clear the trace
- set_tracing(true);
- clear_trace();
- //Use the emulator memory for SIM
- uint8_t *emulator = BigBuf_get_EM_addr();
-
- if(simType == 0) {
- // Use the CSN from commandline
- memcpy(emulator, datain, 8);
- doIClassSimulation(MODE_SIM_CSN,NULL);
- }else if(simType == 1)
- {
- //Default CSN
- uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
- // Use the CSN from commandline
- memcpy(emulator, csn_crc, 8);
- doIClassSimulation(MODE_SIM_CSN,NULL);
- }
- else if(simType == 2)
- {
-
- uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
- Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
- // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
- // in order to collect MAC's from the reader. This can later be used in an offlne-attack
- // in order to obtain the keys, as in the "dismantling iclass"-paper.
- int i = 0;
- for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++)
- {
- // The usb data is 512 bytes, fitting 65 8-byte CSNs in there.
-
- memcpy(emulator, datain+(i*8), 8);
- if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8))
- {
- cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
- return; // Button pressed
- }
- }
- cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8);
-
- }else if(simType == 3){
- //This is 'full sim' mode, where we use the emulator storage for data.
- doIClassSimulation(MODE_FULLSIM, NULL);
- }
- else{
- // We may want a mode here where we hardcode the csns to use (from proxclone).
- // That will speed things up a little, but not required just yet.
- Dbprintf("The mode is not implemented, reserved for future use");
- }
- Dbprintf("Done...");
-
-}
-void AppendCrc(uint8_t* data, int len)
-{
- ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1);
-}
/**
* @brief Does the actual simulation
- * @param csn - csn to use
- * @param breakAfterMacReceived if true, returns after reader MAC has been received.
*/
-int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf)
-{
+int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
+
// free eventually allocated BigBuf memory
BigBuf_free_keep_EM();
- State cipher_state;
-// State cipher_state_reserve;
- uint8_t *csn = BigBuf_get_EM_addr();
- uint8_t *emulator = csn;
- uint8_t sof_data[] = { 0x0F} ;
+ uint16_t page_size = 32 * 8;
+ uint8_t current_page = 0;
+
+ // maintain cipher states for both credit and debit key for each page
+ State cipher_state_KC[8];
+ State cipher_state_KD[8];
+ State *cipher_state = &cipher_state_KD[0];
+
+ uint8_t *emulator = BigBuf_get_EM_addr();
+ uint8_t *csn = emulator;
+
// CSN followed by two CRC bytes
- uint8_t anticoll_data[10] = { 0 };
- uint8_t csn_data[10] = { 0 };
- memcpy(csn_data,csn,sizeof(csn_data));
- Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
+ uint8_t anticoll_data[10];
+ uint8_t csn_data[10];
+ memcpy(csn_data, csn, sizeof(csn_data));
+ Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]);
// Construct anticollision-CSN
- rotateCSN(csn_data,anticoll_data);
+ rotateCSN(csn_data, anticoll_data);
// Compute CRC on both CSNs
- ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]);
- ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]);
+ AppendCrc(anticoll_data, 8);
+ AppendCrc(csn_data, 8);
+
+ uint8_t diversified_key_d[8] = { 0x00 };
+ uint8_t diversified_key_c[8] = { 0x00 };
+ uint8_t *diversified_key = diversified_key_d;
+
+ // configuration block
+ uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
- uint8_t diversified_key[8] = { 0 };
// e-Purse
- uint8_t card_challenge_data[8] = { 0x00 };
- if(simulationMode == MODE_FULLSIM)
- {
- //The diversified key should be stored on block 3
- //Get the diversified key from emulator memory
- memcpy(diversified_key, emulator+(8*3),8);
+ uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
+
+ if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ // initialize from page 0
+ memcpy(conf_block, emulator + 8 * 1, 8);
+ memcpy(card_challenge_data, emulator + 8 * 2, 8); // e-purse
+ memcpy(diversified_key_d, emulator + 8 * 3, 8); // Kd
+ memcpy(diversified_key_c, emulator + 8 * 4, 8); // Kc
+ }
+
+ AppendCrc(conf_block, 8);
+
+ // save card challenge for sim2,4 attack
+ if (reader_mac_buf != NULL) {
+ memcpy(reader_mac_buf, card_challenge_data, 8);
+ }
+
+ if (conf_block[5] & 0x80) {
+ page_size = 256 * 8;
+ }
+
+ // From PicoPass DS:
+ // When the page is in personalization mode this bit is equal to 1.
+ // Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0:
+ // the page is then "in application mode".
+ bool personalization_mode = conf_block[7] & 0x80;
- //Card challenge, a.k.a e-purse is on block 2
- memcpy(card_challenge_data,emulator + (8 * 2) , 8);
- //Precalculate the cipher state, feeding it the CC
- cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key);
+ // chip memory may be divided in 8 pages
+ uint8_t max_page = conf_block[4] & 0x10 ? 0 : 7;
+ // Precalculate the cipher states, feeding it the CC
+ cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
+ cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
+ if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ for (int i = 1; i < max_page; i++) {
+ uint8_t *epurse = emulator + i*page_size + 8*2;
+ uint8_t *Kd = emulator + i*page_size + 8*3;
+ uint8_t *Kc = emulator + i*page_size + 8*4;
+ cipher_state_KD[i] = opt_doTagMAC_1(epurse, Kd);
+ cipher_state_KC[i] = opt_doTagMAC_1(epurse, Kc);
+ }
}
int exitLoop = 0;
uint8_t *modulated_response;
int modulated_response_size = 0;
- uint8_t* trace_data = NULL;
+ uint8_t *trace_data = NULL;
int trace_data_size = 0;
-
// Respond SOF -- takes 1 bytes
- uint8_t *resp_sof = BigBuf_malloc(2);
+ uint8_t *resp_sof = BigBuf_malloc(1);
int resp_sof_Len;
// Anticollision CSN (rotated CSN)
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
- uint8_t *resp_anticoll = BigBuf_malloc(28);
+ uint8_t *resp_anticoll = BigBuf_malloc(22);
int resp_anticoll_len;
- // CSN
+ // CSN (block 0)
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
- uint8_t *resp_csn = BigBuf_malloc(30);
+ uint8_t *resp_csn = BigBuf_malloc(22);
int resp_csn_len;
- // e-Purse
+ // configuration (block 1) picopass 2ks
+ uint8_t *resp_conf = BigBuf_malloc(22);
+ int resp_conf_len;
+
+ // e-Purse (block 2)
// 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
- uint8_t *resp_cc = BigBuf_malloc(20);
+ uint8_t *resp_cc = BigBuf_malloc(18);
int resp_cc_len;
+ // Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only
+ uint8_t *resp_ff = BigBuf_malloc(22);
+ int resp_ff_len;
+ uint8_t ff_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
+ AppendCrc(ff_data, 8);
+
+ // Application Issuer Area (block 5)
+ uint8_t *resp_aia = BigBuf_malloc(22);
+ int resp_aia_len;
+ uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
+ AppendCrc(aia_data, 8);
+
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
int len;
// Prepare card messages
- ToSendMax = 0;
- // First card answer: SOF
+ // First card answer: SOF only
CodeIClassTagSOF();
- memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax;
+ memcpy(resp_sof, ToSend, ToSendMax);
+ resp_sof_Len = ToSendMax;
// Anticollision CSN
- CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data));
- memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax;
-
- // CSN
- CodeIClassTagAnswer(csn_data, sizeof(csn_data));
- memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax;
-
- // e-Purse
- CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data));
- memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax;
+ CodeIso15693AsTag(anticoll_data, sizeof(anticoll_data));
+ memcpy(resp_anticoll, ToSend, ToSendMax);
+ resp_anticoll_len = ToSendMax;
+
+ // CSN (block 0)
+ CodeIso15693AsTag(csn_data, sizeof(csn_data));
+ memcpy(resp_csn, ToSend, ToSendMax);
+ resp_csn_len = ToSendMax;
+
+ // Configuration (block 1)
+ CodeIso15693AsTag(conf_block, sizeof(conf_block));
+ memcpy(resp_conf, ToSend, ToSendMax);
+ resp_conf_len = ToSendMax;
+
+ // e-Purse (block 2)
+ CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data));
+ memcpy(resp_cc, ToSend, ToSendMax);
+ resp_cc_len = ToSendMax;
+
+ // Kd, Kc (blocks 3 and 4)
+ CodeIso15693AsTag(ff_data, sizeof(ff_data));
+ memcpy(resp_ff, ToSend, ToSendMax);
+ resp_ff_len = ToSendMax;
+
+ // Application Issuer Area (block 5)
+ CodeIso15693AsTag(aia_data, sizeof(aia_data));
+ memcpy(resp_aia, ToSend, ToSendMax);
+ resp_aia_len = ToSendMax;
//This is used for responding to READ-block commands or other data which is dynamically generated
- //First the 'trace'-data, not encoded for FPGA
- uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer
- //Then storage for the modulated data
- //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes)
- uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2);
-
- // Start from off (no field generated)
- //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- //SpinDelay(200);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
- SpinDelay(100);
- StartCountSspClk();
- // We need to listen to the high-frequency, peak-detected path.
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
+ uint8_t *data_generic_trace = BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer
+ uint8_t *data_response = BigBuf_malloc( (32 + 2) * 2 + 2);
- // To control where we are in the protocol
- int cmdsRecvd = 0;
- uint32_t time_0 = GetCountSspClk();
- uint32_t t2r_time =0;
- uint32_t r2t_time =0;
-
- LED_A_ON();
bool buttonPressed = false;
- uint8_t response_delay = 1;
- while(!exitLoop) {
- response_delay = 1;
- LED_B_OFF();
- //Signal tracer
- // Can be used to get a trigger for an oscilloscope..
- LED_C_OFF();
-
- if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) {
+ enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE;
+
+ while (!exitLoop) {
+ WDT_HIT();
+
+ uint32_t reader_eof_time = 0;
+ len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time);
+ if (len < 0) {
buttonPressed = true;
break;
}
- r2t_time = GetCountSspClk();
- //Signal tracer
- LED_C_ON();
-
- // Okay, look at the command now.
- if(receivedCmd[0] == ICLASS_CMD_ACTALL ) {
- // Reader in anticollission phase
- modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1;
- trace_data = sof_data;
- trace_data_size = sizeof(sof_data);
- } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) {
- // Reader asks for anticollission CSN
- modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2;
- trace_data = anticoll_data;
- trace_data_size = sizeof(anticoll_data);
- //DbpString("Reader requests anticollission CSN:");
- } else if(receivedCmd[0] == ICLASS_CMD_SELECT) {
- // Reader selects anticollission CSN.
+
+ // Now look at the reader command and provide appropriate responses
+ // default is no response:
+ modulated_response = NULL;
+ modulated_response_size = 0;
+ trace_data = NULL;
+ trace_data_size = 0;
+
+ if (receivedCmd[0] == ICLASS_CMD_ACTALL && len == 1) {
+ // Reader in anticollision phase
+ if (chip_state != HALTED) {
+ modulated_response = resp_sof;
+ modulated_response_size = resp_sof_Len;
+ chip_state = ACTIVATED;
+ }
+
+ } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // identify
+ // Reader asks for anticollision CSN
+ if (chip_state == SELECTED || chip_state == ACTIVATED) {
+ modulated_response = resp_anticoll;
+ modulated_response_size = resp_anticoll_len;
+ trace_data = anticoll_data;
+ trace_data_size = sizeof(anticoll_data);
+ }
+
+ } else if (receivedCmd[0] == ICLASS_CMD_SELECT && len == 9) {
+ // Reader selects anticollision CSN.
// Tag sends the corresponding real CSN
- modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3;
- trace_data = csn_data;
- trace_data_size = sizeof(csn_data);
- //DbpString("Reader selects anticollission CSN:");
- } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) {
- // Read e-purse (88 02)
- modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4;
- trace_data = card_challenge_data;
- trace_data_size = sizeof(card_challenge_data);
- LED_B_ON();
- } else if(receivedCmd[0] == ICLASS_CMD_CHECK) {
+ if (chip_state == ACTIVATED || chip_state == SELECTED) {
+ if (!memcmp(receivedCmd+1, anticoll_data, 8)) {
+ modulated_response = resp_csn;
+ modulated_response_size = resp_csn_len;
+ trace_data = csn_data;
+ trace_data_size = sizeof(csn_data);
+ chip_state = SELECTED;
+ } else {
+ chip_state = IDLE;
+ }
+ } else if (chip_state == HALTED) {
+ // RESELECT with CSN
+ if (!memcmp(receivedCmd+1, csn_data, 8)) {
+ modulated_response = resp_csn;
+ modulated_response_size = resp_csn_len;
+ trace_data = csn_data;
+ trace_data_size = sizeof(csn_data);
+ chip_state = SELECTED;
+ }
+ }
+
+ } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // read block
+ uint16_t blockNo = receivedCmd[1];
+ if (chip_state == SELECTED) {
+ if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
+ // provide defaults for blocks 0 ... 5
+ switch (blockNo) {
+ case 0: // csn (block 00)
+ modulated_response = resp_csn;
+ modulated_response_size = resp_csn_len;
+ trace_data = csn_data;
+ trace_data_size = sizeof(csn_data);
+ break;
+ case 1: // configuration (block 01)
+ modulated_response = resp_conf;
+ modulated_response_size = resp_conf_len;
+ trace_data = conf_block;
+ trace_data_size = sizeof(conf_block);
+ break;
+ case 2: // e-purse (block 02)
+ modulated_response = resp_cc;
+ modulated_response_size = resp_cc_len;
+ trace_data = card_challenge_data;
+ trace_data_size = sizeof(card_challenge_data);
+ // set epurse of sim2,4 attack
+ if (reader_mac_buf != NULL) {
+ memcpy(reader_mac_buf, card_challenge_data, 8);
+ }
+ break;
+ case 3:
+ case 4: // Kd, Kc, always respond with 0xff bytes
+ modulated_response = resp_ff;
+ modulated_response_size = resp_ff_len;
+ trace_data = ff_data;
+ trace_data_size = sizeof(ff_data);
+ break;
+ case 5: // Application Issuer Area (block 05)
+ modulated_response = resp_aia;
+ modulated_response_size = resp_aia_len;
+ trace_data = aia_data;
+ trace_data_size = sizeof(aia_data);
+ break;
+ // default: don't respond
+ }
+ } else if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ if (blockNo == 3 || blockNo == 4) { // Kd, Kc, always respond with 0xff bytes
+ modulated_response = resp_ff;
+ modulated_response_size = resp_ff_len;
+ trace_data = ff_data;
+ trace_data_size = sizeof(ff_data);
+ } else { // use data from emulator memory
+ memcpy(data_generic_trace, emulator + current_page*page_size + 8*blockNo, 8);
+ AppendCrc(data_generic_trace, 8);
+ trace_data = data_generic_trace;
+ trace_data_size = 10;
+ CodeIso15693AsTag(trace_data, trace_data_size);
+ memcpy(data_response, ToSend, ToSendMax);
+ modulated_response = data_response;
+ modulated_response_size = ToSendMax;
+ }
+ }
+ }
+
+ } else if ((receivedCmd[0] == ICLASS_CMD_READCHECK_KD
+ || receivedCmd[0] == ICLASS_CMD_READCHECK_KC) && receivedCmd[1] == 0x02 && len == 2) {
+ // Read e-purse (88 02 || 18 02)
+ if (chip_state == SELECTED) {
+ if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD){
+ cipher_state = &cipher_state_KD[current_page];
+ diversified_key = diversified_key_d;
+ } else {
+ cipher_state = &cipher_state_KC[current_page];
+ diversified_key = diversified_key_c;
+ }
+ modulated_response = resp_cc;
+ modulated_response_size = resp_cc_len;
+ trace_data = card_challenge_data;
+ trace_data_size = sizeof(card_challenge_data);
+ }
+
+ } else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC
+ || receivedCmd[0] == ICLASS_CMD_CHECK_KD) && len == 9) {
// Reader random and reader MAC!!!
- if(simulationMode == MODE_FULLSIM)
- {
- //NR, from reader, is in receivedCmd +1
- opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key);
+ if (chip_state == SELECTED) {
+ if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ //NR, from reader, is in receivedCmd+1
+ opt_doTagMAC_2(*cipher_state, receivedCmd+1, data_generic_trace, diversified_key);
+ trace_data = data_generic_trace;
+ trace_data_size = 4;
+ CodeIso15693AsTag(trace_data, trace_data_size);
+ memcpy(data_response, ToSend, ToSendMax);
+ modulated_response = data_response;
+ modulated_response_size = ToSendMax;
+ //exitLoop = true;
+ } else { // Not fullsim, we don't respond
+ // We do not know what to answer, so lets keep quiet
+ if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
+ if (reader_mac_buf != NULL) {
+ // save NR and MAC for sim 2,4
+ memcpy(reader_mac_buf + 8, receivedCmd + 1, 8);
+ }
+ exitLoop = true;
+ }
+ }
+ }
+ } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
+ if (chip_state == SELECTED) {
+ // Reader ends the session
+ modulated_response = resp_sof;
+ modulated_response_size = resp_sof_Len;
+ chip_state = HALTED;
+ }
+
+ } else if (simulationMode == ICLASS_SIM_MODE_FULL && receivedCmd[0] == ICLASS_CMD_READ4 && len == 4) { // 0x06
+ //Read 4 blocks
+ if (chip_state == SELECTED) {
+ uint8_t blockNo = receivedCmd[1];
+ memcpy(data_generic_trace, emulator + current_page*page_size + blockNo*8, 8 * 4);
+ AppendCrc(data_generic_trace, 8 * 4);
trace_data = data_generic_trace;
- trace_data_size = 4;
- CodeIClassTagAnswer(trace_data , trace_data_size);
+ trace_data_size = 8 * 4 + 2;
+ CodeIso15693AsTag(trace_data, trace_data_size);
memcpy(data_response, ToSend, ToSendMax);
modulated_response = data_response;
modulated_response_size = ToSendMax;
- response_delay = 0;//We need to hurry here...
- //exitLoop = true;
- }else
- { //Not fullsim, we don't respond
- // We do not know what to answer, so lets keep quiet
- modulated_response = resp_sof; modulated_response_size = 0;
- trace_data = NULL;
- trace_data_size = 0;
- if (simulationMode == MODE_EXIT_AFTER_MAC){
- // dbprintf:ing ...
- Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"
- ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]);
- Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len,
- receivedCmd[0], receivedCmd[1], receivedCmd[2],
- receivedCmd[3], receivedCmd[4], receivedCmd[5],
- receivedCmd[6], receivedCmd[7], receivedCmd[8]);
- if (reader_mac_buf != NULL)
- {
- memcpy(reader_mac_buf,receivedCmd+1,8);
+ }
+
+ } else if (receivedCmd[0] == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) {
+ // We're expected to respond with the data+crc, exactly what's already in the receivedCmd
+ // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b
+ if (chip_state == SELECTED) {
+ uint8_t blockNo = receivedCmd[1];
+ if (blockNo == 2) { // update e-purse
+ memcpy(card_challenge_data, receivedCmd+2, 8);
+ CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data));
+ memcpy(resp_cc, ToSend, ToSendMax);
+ resp_cc_len = ToSendMax;
+ cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
+ cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
+ if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ memcpy(emulator + current_page*page_size + 8*2, card_challenge_data, 8);
}
- exitLoop = true;
+ } else if (blockNo == 3) { // update Kd
+ for (int i = 0; i < 8; i++) {
+ if (personalization_mode) {
+ diversified_key_d[i] = receivedCmd[2 + i];
+ } else {
+ diversified_key_d[i] ^= receivedCmd[2 + i];
+ }
+ }
+ cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
+ if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ memcpy(emulator + current_page*page_size + 8*3, diversified_key_d, 8);
+ }
+ } else if (blockNo == 4) { // update Kc
+ for (int i = 0; i < 8; i++) {
+ if (personalization_mode) {
+ diversified_key_c[i] = receivedCmd[2 + i];
+ } else {
+ diversified_key_c[i] ^= receivedCmd[2 + i];
+ }
+ }
+ cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
+ if (simulationMode == ICLASS_SIM_MODE_FULL) {
+ memcpy(emulator + current_page*page_size + 8*4, diversified_key_c, 8);
+ }
+ } else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update any other data block
+ memcpy(emulator + current_page*page_size + 8*blockNo, receivedCmd+2, 8);
}
+ memcpy(data_generic_trace, receivedCmd + 2, 8);
+ AppendCrc(data_generic_trace, 8);
+ trace_data = data_generic_trace;
+ trace_data_size = 10;
+ CodeIso15693AsTag(trace_data, trace_data_size);
+ memcpy(data_response, ToSend, ToSendMax);
+ modulated_response = data_response;
+ modulated_response_size = ToSendMax;
}
- } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
- // Reader ends the session
- modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
- trace_data = NULL;
- trace_data_size = 0;
- } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){
- //Read block
- uint16_t blk = receivedCmd[1];
- //Take the data...
- memcpy(data_generic_trace, emulator+(blk << 3),8);
- //Add crc
- AppendCrc(data_generic_trace, 8);
- trace_data = data_generic_trace;
- trace_data_size = 10;
- CodeIClassTagAnswer(trace_data , trace_data_size);
- memcpy(data_response, ToSend, ToSendMax);
- modulated_response = data_response;
- modulated_response_size = ToSendMax;
- }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM)
- {//Probably the reader wants to update the nonce. Let's just ignore that for now.
- // OBS! If this is implemented, don't forget to regenerate the cipher_state
- //We're expected to respond with the data+crc, exactly what's already in the receivedcmd
- //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b|
-
- //Take the data...
- memcpy(data_generic_trace, receivedCmd+2,8);
- //Add crc
- AppendCrc(data_generic_trace, 8);
- trace_data = data_generic_trace;
- trace_data_size = 10;
- CodeIClassTagAnswer(trace_data , trace_data_size);
- memcpy(data_response, ToSend, ToSendMax);
- modulated_response = data_response;
- modulated_response_size = ToSendMax;
- }
- else if(receivedCmd[0] == ICLASS_CMD_PAGESEL)
- {//Pagesel
- //Pagesel enables to select a page in the selected chip memory and return its configuration block
- //Chips with a single page will not answer to this command
- // It appears we're fine ignoring this.
- //Otherwise, we should answer 8bytes (block) + 2bytes CRC
- }
- else {
- //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44
- // Never seen this command before
- Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x",
- len,
- receivedCmd[0], receivedCmd[1], receivedCmd[2],
- receivedCmd[3], receivedCmd[4], receivedCmd[5],
- receivedCmd[6], receivedCmd[7], receivedCmd[8]);
+ } else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) {
+ // Pagesel
+ // Chips with a single page will not answer to this command
+ // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC
+ if (chip_state == SELECTED) {
+ if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) {
+ current_page = receivedCmd[1];
+ memcpy(data_generic_trace, emulator + current_page*page_size + 8*1, 8);
+ memcpy(diversified_key_d, emulator + current_page*page_size + 8*3, 8);
+ memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8);
+ cipher_state = &cipher_state_KD[current_page];
+ personalization_mode = data_generic_trace[7] & 0x80;
+ AppendCrc(data_generic_trace, 8);
+ trace_data = data_generic_trace;
+ trace_data_size = 10;
+ CodeIso15693AsTag(trace_data, trace_data_size);
+ memcpy(data_response, ToSend, ToSendMax);
+ modulated_response = data_response;
+ modulated_response_size = ToSendMax;
+ }
+ }
+
+ } else if (receivedCmd[0] == 0x26 && len == 5) {
+ // standard ISO15693 INVENTORY command. Ignore.
+
+ } else {
+ // don't know how to handle this command
+ char debug_message[250]; // should be enough
+ sprintf(debug_message, "Unhandled command (len = %d) received from reader:", len);
+ for (int i = 0; i < len && strlen(debug_message) < sizeof(debug_message) - 3 - 1; i++) {
+ sprintf(debug_message + strlen(debug_message), " %02x", receivedCmd[i]);
+ }
+ Dbprintf("%s", debug_message);
// Do not respond
- modulated_response = resp_sof; modulated_response_size = 0; //order = 0;
- trace_data = NULL;
- trace_data_size = 0;
}
- if(cmdsRecvd > 100) {
- //DbpString("100 commands later...");
- //break;
- }
- else {
- cmdsRecvd++;
- }
/**
- A legit tag has about 380us delay between reader EOT and tag SOF.
+ A legit tag has about 273,4us delay between reader EOT and tag SOF.
**/
- if(modulated_response_size > 0) {
- SendIClassAnswer(modulated_response, modulated_response_size, response_delay);
- t2r_time = GetCountSspClk();
+ if (modulated_response_size > 0) {
+ uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM;
+ TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false);
+ LogTrace_ISO15693(trace_data, trace_data_size, response_time*32, response_time*32 + modulated_response_size/2, NULL, false);
}
- uint8_t parity[MAX_PARITY_SIZE];
- GetParity(receivedCmd, len, parity);
- LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, true);
-
- if (trace_data != NULL) {
- GetParity(trace_data, trace_data_size, parity);
- LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, false);
- }
- if(!get_tracing()) {
- DbpString("Trace full");
- //break;
- }
}
- //Dbprintf("%x", cmdsRecvd);
- LED_A_OFF();
- LED_B_OFF();
- LED_C_OFF();
-
- if(buttonPressed)
+ if (buttonPressed)
{
DbpString("Button pressed");
}
return buttonPressed;
}
-static int SendIClassAnswer(uint8_t *resp, int respLen, int delay)
-{
- int i = 0, d=0;//, u = 0, d = 0;
- uint8_t b = 0;
+/**
+ * @brief SimulateIClass simulates an iClass card.
+ * @param arg0 type of simulation
+ * - 0 uses the first 8 bytes in usb data as CSN
+ * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
+ * in the usb data. This mode collects MAC from the reader, in order to do an offline
+ * attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
+ * - Other : Uses the default CSN (031fec8af7ff12e0)
+ * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
+ * @param arg2
+ * @param datain
+ */
+void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
+
+ LED_A_ON();
- //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT);
+ uint32_t simType = arg0;
+ uint32_t numberOfCSNS = arg1;
- AT91C_BASE_SSC->SSC_THR = 0x00;
+ // setup hardware for simulation:
+ FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
+ LED_D_OFF();
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
- while(!BUTTON_PRESS()) {
- if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){
- b = AT91C_BASE_SSC->SSC_RHR; (void) b;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){
- b = 0x00;
- if(d < delay) {
- d++;
- }
- else {
- if( i < respLen){
- b = resp[i];
- //Hack
- //b = 0xAC;
- }
- i++;
- }
- AT91C_BASE_SSC->SSC_THR = b;
- }
+ StartCountSspClk();
-// if (i > respLen +4) break;
- if (i > respLen +1) break;
- }
+ // Enable and clear the trace
+ set_tracing(true);
+ clear_trace();
+ //Use the emulator memory for SIM
+ uint8_t *emulator = BigBuf_get_EM_addr();
- return 0;
-}
+ if (simType == ICLASS_SIM_MODE_CSN) {
+ // Use the CSN from commandline
+ memcpy(emulator, datain, 8);
+ doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL);
+ } else if (simType == ICLASS_SIM_MODE_CSN_DEFAULT) {
+ //Default CSN
+ uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
+ // Use the CSN from commandline
+ memcpy(emulator, csn_crc, 8);
+ doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL);
+ } else if (simType == ICLASS_SIM_MODE_READER_ATTACK) {
+ uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
+ Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
+ // In this mode, a number of csns are within datain. We'll simulate each one, one at a time
+ // in order to collect MAC's from the reader. This can later be used in an offline-attack
+ // in order to obtain the keys, as in the "dismantling iclass"-paper.
+ int i;
+ for (i = 0; i < numberOfCSNS && i*16+16 <= USB_CMD_DATA_SIZE; i++) {
+ // The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response).
+ memcpy(emulator, datain+(i*8), 8);
+ if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses+i*16)) {
+ // Button pressed
+ break;
+ }
+ Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
+ datain[i*8+0], datain[i*8+1], datain[i*8+2], datain[i*8+3],
+ datain[i*8+4], datain[i*8+5], datain[i*8+6], datain[i*8+7]);
+ Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x",
+ mac_responses[i*16+ 8], mac_responses[i*16+ 9], mac_responses[i*16+10], mac_responses[i*16+11],
+ mac_responses[i*16+12], mac_responses[i*16+13], mac_responses[i*16+14], mac_responses[i*16+15]);
+ SpinDelay(100); // give the reader some time to prepare for next CSN
+ }
+ cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*16);
+ } else if (simType == ICLASS_SIM_MODE_FULL) {
+ //This is 'full sim' mode, where we use the emulator storage for data.
+ doIClassSimulation(ICLASS_SIM_MODE_FULL, NULL);
+ } else {
+ // We may want a mode here where we hardcode the csns to use (from proxclone).
+ // That will speed things up a little, but not required just yet.
+ Dbprintf("The mode is not implemented, reserved for future use");
+ }
-/// THE READER CODE
+ Dbprintf("Done...");
-//-----------------------------------------------------------------------------
-// Transmit the command (to the tag) that was placed in ToSend[].
-//-----------------------------------------------------------------------------
-static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait)
-{
- int c;
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- AT91C_BASE_SSC->SSC_THR = 0x00;
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
-
- if (wait)
- {
- if(*wait < 10) *wait = 10;
-
- for(c = 0; c < *wait;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
- c++;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
-
- }
-
-
- uint8_t sendbyte;
- bool firstpart = true;
- c = 0;
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-
- // DOUBLE THE SAMPLES!
- if(firstpart) {
- sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4);
- }
- else {
- sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4);
- c++;
- }
- if(sendbyte == 0xff) {
- sendbyte = 0xfe;
- }
- AT91C_BASE_SSC->SSC_THR = sendbyte;
- firstpart = !firstpart;
-
- if(c >= len) {
- break;
- }
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
- if (samples && wait) *samples = (c + *wait) << 3;
+ LED_A_OFF();
}
-//-----------------------------------------------------------------------------
-// Prepare iClass reader command to send to FPGA
-//-----------------------------------------------------------------------------
-void CodeIClassCommand(const uint8_t * cmd, int len)
-{
- int i, j, k;
- uint8_t b;
-
- ToSendReset();
-
- // Start of Communication: 1 out of 4
- ToSend[++ToSendMax] = 0xf0;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x0f;
- ToSend[++ToSendMax] = 0x00;
-
- // Modulate the bytes
- for (i = 0; i < len; i++) {
- b = cmd[i];
- for(j = 0; j < 4; j++) {
- for(k = 0; k < 4; k++) {
- if(k == (b & 3)) {
- ToSend[++ToSendMax] = 0xf0;
- }
- else {
- ToSend[++ToSendMax] = 0x00;
- }
- }
- b >>= 2;
- }
- }
-
- // End of Communication
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0x00;
- ToSend[++ToSendMax] = 0xf0;
- ToSend[++ToSendMax] = 0x00;
-
- // Convert from last character reference to length
- ToSendMax++;
-}
+/// THE READER CODE
-void ReaderTransmitIClass(uint8_t* frame, int len)
-{
- int wait = 0;
- int samples = 0;
+static void ReaderTransmitIClass(uint8_t *frame, int len, uint32_t *start_time) {
- // This is tied to other size changes
- CodeIClassCommand(frame,len);
+ CodeIso15693AsReader(frame, len);
- // Select the card
- TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait);
- if(trigger)
- LED_A_ON();
+ TransmitTo15693Tag(ToSend, ToSendMax, start_time);
- // Store reader command in buffer
- uint8_t par[MAX_PARITY_SIZE];
- GetParity(frame, len, par);
- LogTrace(frame, len, rsamples, rsamples, par, true);
+ uint32_t end_time = *start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF
+ LogTrace_ISO15693(frame, len, *start_time*4, end_time*4, NULL, true);
}
-//-----------------------------------------------------------------------------
-// Wait a certain time for tag response
-// If a response is captured return true
-// If it takes too long return false
-//-----------------------------------------------------------------------------
-static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
-{
- // buffer needs to be 512 bytes
- int c;
-
- // Set FPGA mode to "reader listen mode", no modulation (listen
- // only, since we are receiving, not transmitting).
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
-
- // Now get the answer from the card
- Demod.output = receivedResponse;
- Demod.len = 0;
- Demod.state = DEMOD_UNSYNCD;
-
- uint8_t b;
- if (elapsed) *elapsed = 0;
- bool skip = false;
-
- c = 0;
- for(;;) {
- WDT_HIT();
-
- if(BUTTON_PRESS()) return false;
-
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
- if (elapsed) (*elapsed)++;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- if(c < timeout) { c++; } else { return false; }
- b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- skip = !skip;
- if(skip) continue;
-
- if(ManchesterDecoding(b & 0x0f)) {
- *samples = c << 3;
- return true;
- }
- }
- }
-}
-
-int ReaderReceiveIClass(uint8_t* receivedAnswer)
-{
- int samples = 0;
- if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return false;
- rsamples += samples;
- uint8_t parity[MAX_PARITY_SIZE];
- GetParity(receivedAnswer, Demod.len, parity);
- LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,false);
- if(samples == 0) return false;
- return Demod.len;
-}
-
-void setupIclassReader()
-{
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- // Reset trace buffer
- set_tracing(true);
- clear_trace();
-
- // Setup SSC
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
- // Start from off (no field generated)
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
-
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
- // Now give it time to spin up.
- // Signal field is on with the appropriate LED
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- SpinDelay(200);
- LED_A_ON();
-
-}
-
-bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries)
-{
- while(retries-- > 0)
- {
- ReaderTransmitIClass(command, cmdsize);
- if(expected_size == ReaderReceiveIClass(resp)){
+static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, size_t max_resp_size,
+ uint8_t expected_size, uint8_t tries, uint32_t start_time, uint32_t timeout, uint32_t *eof_time) {
+ while (tries-- > 0) {
+ ReaderTransmitIClass(command, cmdsize, &start_time);
+ if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, timeout, eof_time)) {
return true;
}
}
return false;//Error
}
+
/**
- * @brief Talks to an iclass tag, sends the commands to get CSN and CC.
- * @param card_data where the CSN and CC are stored for return
- * @return 0 = fail
- * 1 = Got CSN
- * 2 = Got CSN and CC
+ * @brief Selects an iclass tag
+ * @param card_data where the CSN is stored for return
+ * @return false = fail
+ * true = success
*/
-uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key)
-{
- static uint8_t act_all[] = { 0x0a };
- //static uint8_t identify[] = { 0x0c };
- static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 };
- static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- static uint8_t readcheck_cc[]= { 0x88, 0x02 };
- if (use_credit_key)
- readcheck_cc[0] = 0x18;
- else
- readcheck_cc[0] = 0x88;
+static bool selectIclassTag(uint8_t *card_data, uint32_t *eof_time) {
+ uint8_t act_all[] = { 0x0a };
+ uint8_t identify[] = { 0x0c };
+ uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t resp[ICLASS_BUFFER_SIZE];
- uint8_t read_status = 0;
+ uint32_t start_time = GetCountSspClk();
// Send act_all
- ReaderTransmitIClass(act_all, 1);
+ ReaderTransmitIClass(act_all, 1, &start_time);
// Card present?
- if(!ReaderReceiveIClass(resp)) return read_status;//Fail
+ if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return false; //Fail
+
//Send Identify
- ReaderTransmitIClass(identify, 1);
+ start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ ReaderTransmitIClass(identify, 1, &start_time);
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
- uint8_t len = ReaderReceiveIClass(resp);
- if(len != 10) return read_status;//Fail
+ uint8_t len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
+ if (len != 10) return false; //Fail
//Copy the Anti-collision CSN to our select-packet
- memcpy(&select[1],resp,8);
+ memcpy(&select[1], resp, 8);
//Select the card
- ReaderTransmitIClass(select, sizeof(select));
+ start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
+ ReaderTransmitIClass(select, sizeof(select), &start_time);
//We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
- len = ReaderReceiveIClass(resp);
- if(len != 10) return read_status;//Fail
+ len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
+ if (len != 10) return false; //Fail
- //Success - level 1, we got CSN
+ //Success - we got CSN
//Save CSN in response data
- memcpy(card_data,resp,8);
+ memcpy(card_data, resp, 8);
- //Flag that we got to at least stage 1, read CSN
- read_status = 1;
-
- // Card selected, now read e-purse (cc) (only 8 bytes no CRC)
- ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc));
- if(ReaderReceiveIClass(resp) == 8) {
- //Save CC (e-purse) in response data
- memcpy(card_data+8,resp,8);
- read_status++;
- }
-
- return read_status;
-}
-uint8_t handshakeIclassTag(uint8_t *card_data) {
- return handshakeIclassTag_ext(card_data, false);
+ return true;
}
-// Reader iClass Anticollission
-void ReaderIClass(uint8_t arg0) {
+// Select an iClass tag and read all blocks which are always readable without authentication
+void ReaderIClass(uint8_t flags) {
- uint8_t card_data[6 * 8]={0};
+ LED_A_ON();
+
+ uint8_t card_data[6 * 8] = {0};
memset(card_data, 0xFF, sizeof(card_data));
- uint8_t last_csn[8]={0,0,0,0,0,0,0,0};
uint8_t resp[ICLASS_BUFFER_SIZE];
- memset(resp, 0xFF, sizeof(resp));
//Read conf block CRC(0x01) => 0xfa 0x22
- uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22};
+ uint8_t readConf[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22};
+ //Read e-purse block CRC(0x02) => 0x61 0x10
+ uint8_t readEpurse[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x02, 0x61, 0x10};
//Read App Issuer Area block CRC(0x05) => 0xde 0x64
- uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64};
+ uint8_t readAA[] = {ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64};
- int read_status= 0;
uint8_t result_status = 0;
- // flag to read until one tag is found successfully
- bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
- // flag to only try 5 times to find one tag then return
- bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY;
- // if neither abort_after_read nor try_once then continue reading until button pressed.
-
- bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY;
- // test flags for what blocks to be sure to read
- uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF;
- uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC;
- uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA;
- set_tracing(true);
- setupIclassReader();
+ if (flags & FLAG_ICLASS_READER_INIT) {
+ Iso15693InitReader();
+ }
- uint16_t tryCnt=0;
- bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
- while(!userCancelled)
- {
- // if only looking for one card try 2 times if we missed it the first time
- if (try_once && tryCnt > 2) break;
- tryCnt++;
- if(!get_tracing()) {
- DbpString("Trace full");
- break;
- }
- WDT_HIT();
+ if (flags & FLAG_ICLASS_READER_CLEARTRACE) {
+ set_tracing(true);
+ clear_trace();
+ StartCountSspClk();
+ }
+
+ uint32_t start_time = 0;
+ uint32_t eof_time = 0;
- read_status = handshakeIclassTag_ext(card_data, use_credit_key);
+ if (selectIclassTag(resp, &eof_time)) {
+ result_status = FLAG_ICLASS_READER_CSN;
+ memcpy(card_data, resp, 8);
- if(read_status == 0) continue;
- if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
- if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC;
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
- // handshakeIclass returns CSN|CC, but the actual block
- // layout is CSN|CONFIG|CC, so here we reorder the data,
- // moving CC forward 8 bytes
- memcpy(card_data+16,card_data+8, 8);
//Read block 1, config
- if(flagReadConfig) {
- if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10))
- {
+ if (flags & FLAG_ICLASS_READER_CONF) {
+ if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
result_status |= FLAG_ICLASS_READER_CONF;
memcpy(card_data+8, resp, 8);
} else {
- Dbprintf("Failed to dump config block");
+ Dbprintf("Failed to read config block");
}
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
- //Read block 5, AA
- if(flagReadAA) {
- if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10))
- {
- result_status |= FLAG_ICLASS_READER_AA;
- memcpy(card_data+(8*5), resp, 8);
+ //Read block 2, e-purse
+ if (flags & FLAG_ICLASS_READER_CC) {
+ if (sendCmdGetResponseWithRetries(readEpurse, sizeof(readEpurse), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
+ result_status |= FLAG_ICLASS_READER_CC;
+ memcpy(card_data + (8*2), resp, 8);
} else {
- //Dbprintf("Failed to dump AA block");
+ Dbprintf("Failed to read e-purse");
}
+ start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
}
- // 0 : CSN
- // 1 : Configuration
- // 2 : e-purse
- // (3,4 write-only, kc and kd)
- // 5 Application issuer area
- //
- //Then we can 'ship' back the 8 * 6 bytes of data,
- // with 0xFF:s in block 3 and 4.
-
- LED_B_ON();
- //Send back to client, but don't bother if we already sent this -
- // only useful if looping in arm (not try_once && not abort_after_read)
- if(memcmp(last_csn, card_data, 8) != 0)
- {
- // If caller requires that we get Conf, CC, AA, continue until we got it
- if( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) {
- cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data));
- if(abort_after_read) {
- LED_A_OFF();
- LED_B_OFF();
- return;
- }
- //Save that we already sent this....
- memcpy(last_csn, card_data, 8);
+ //Read block 5, AA
+ if (flags & FLAG_ICLASS_READER_AA) {
+ if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time)) {
+ result_status |= FLAG_ICLASS_READER_AA;
+ memcpy(card_data + (8*5), resp, 8);
+ } else {
+ Dbprintf("Failed to read AA block");
}
-
}
- LED_B_OFF();
- userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
- }
- if (userCancelled) {
- cmd_send(CMD_ACK,0xFF,0,0,card_data, 0);
- } else {
- cmd_send(CMD_ACK,0,0,0,card_data, 0);
}
- LED_A_OFF();
-}
-
-void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
-
- uint8_t card_data[USB_CMD_DATA_SIZE]={0};
- uint16_t block_crc_LUT[255] = {0};
-
- {//Generate a lookup table for block crc
- for(int block = 0; block < 255; block++){
- char bl = block;
- block_crc_LUT[block] = iclass_crc16(&bl ,1);
- }
- }
- //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
-
- uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
-
- uint16_t crc = 0;
- uint8_t cardsize=0;
- uint8_t mem=0;
-
- static struct memory_t{
- int k16;
- int book;
- int k2;
- int lockauth;
- int keyaccess;
- } memory;
-
- uint8_t resp[ICLASS_BUFFER_SIZE];
-
- setupIclassReader();
- set_tracing(true);
-
- while(!BUTTON_PRESS()) {
- WDT_HIT();
-
- if(!get_tracing()) {
- DbpString("Trace full");
- break;
- }
-
- uint8_t read_status = handshakeIclassTag(card_data);
- if(read_status < 2) continue;
+ cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data));
- //for now replay captured auth (as cc not updated)
- memcpy(check+5,MAC,4);
-
- if(!sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5))
- {
- Dbprintf("Error: Authentication Fail!");
- continue;
- }
-
- //first get configuration block (block 1)
- crc = block_crc_LUT[1];
- read[1]=1;
- read[2] = crc >> 8;
- read[3] = crc & 0xff;
-
- if(!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10))
- {
- Dbprintf("Dump config (block 1) failed");
- continue;
- }
+ LED_A_OFF();
+}
- mem=resp[5];
- memory.k16= (mem & 0x80);
- memory.book= (mem & 0x20);
- memory.k2= (mem & 0x8);
- memory.lockauth= (mem & 0x2);
- memory.keyaccess= (mem & 0x1);
- cardsize = memory.k16 ? 255 : 32;
- WDT_HIT();
- //Set card_data to all zeroes, we'll fill it with data
- memset(card_data,0x0,USB_CMD_DATA_SIZE);
- uint8_t failedRead =0;
- uint32_t stored_data_length =0;
- //then loop around remaining blocks
- for(int block=0; block < cardsize; block++){
-
- read[1]= block;
- crc = block_crc_LUT[block];
- read[2] = crc >> 8;
- read[3] = crc & 0xff;
-
- if(sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10))
- {
- Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
- block, resp[0], resp[1], resp[2],
- resp[3], resp[4], resp[5],
- resp[6], resp[7]);
-
- //Fill up the buffer
- memcpy(card_data+stored_data_length,resp,8);
- stored_data_length += 8;
- if(stored_data_length +8 > USB_CMD_DATA_SIZE)
- {//Time to send this off and start afresh
- cmd_send(CMD_ACK,
- stored_data_length,//data length
- failedRead,//Failed blocks?
- 0,//Not used ATM
- card_data, stored_data_length);
- //reset
- stored_data_length = 0;
- failedRead = 0;
- }
+void iClass_Check(uint8_t *NRMAC) {
+ uint8_t check[9] = {ICLASS_CMD_CHECK_KD, 0x00};
+ uint8_t resp[4];
+ memcpy(check+1, NRMAC, 8);
+ uint32_t eof_time;
+ bool isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 3, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time);
+ cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp));
+}
- }else{
- failedRead = 1;
- stored_data_length +=8;//Otherwise, data becomes misaligned
- Dbprintf("Failed to dump block %d", block);
- }
- }
- //Send off any remaining data
- if(stored_data_length > 0)
- {
- cmd_send(CMD_ACK,
- stored_data_length,//data length
- failedRead,//Failed blocks?
- 0,//Not used ATM
- card_data, stored_data_length);
- }
- //If we got here, let's break
- break;
+void iClass_Readcheck(uint8_t block, bool use_credit_key) {
+ uint8_t readcheck[2] = {ICLASS_CMD_READCHECK_KD, block};
+ if (use_credit_key) {
+ readcheck[0] = ICLASS_CMD_READCHECK_KC;
}
- //Signal end of transmission
- cmd_send(CMD_ACK,
- 0,//data length
- 0,//Failed blocks?
- 0,//Not used ATM
- card_data, 0);
-
- LED_A_OFF();
+ uint8_t resp[8];
+ uint32_t eof_time;
+ bool isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 8, 3, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time);
+ cmd_send(CMD_ACK, isOK, 0, 0, resp, sizeof(resp));
}
-void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) {
- uint8_t readcheck[] = { keyType, blockNo };
- uint8_t resp[] = {0,0,0,0,0,0,0,0};
- size_t isOK = 0;
- isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6);
- cmd_send(CMD_ACK,isOK,0,0,0,0);
-}
-void iClass_Authentication(uint8_t *MAC) {
- uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- uint8_t resp[ICLASS_BUFFER_SIZE];
- memcpy(check+5,MAC,4);
- bool isOK;
- isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6);
- cmd_send(CMD_ACK,isOK,0,0,0,0);
-}
-bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
+static bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
- char bl = blockNo;
+ uint8_t bl = blockNo;
uint16_t rdCrc = iclass_crc16(&bl, 1);
readcmd[2] = rdCrc >> 8;
readcmd[3] = rdCrc & 0xff;
- uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
- bool isOK = false;
+ uint8_t resp[10];
+ uint32_t eof_time;
- //readcmd[1] = blockNo;
- isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10);
+ bool isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, sizeof(resp), 10, 10, 0, ICLASS_READER_TIMEOUT_OTHERS, &eof_time);
memcpy(readdata, resp, sizeof(resp));
return isOK;
}
+
void iClass_ReadBlk(uint8_t blockno) {
- uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
- bool isOK = false;
- isOK = iClass_ReadBlock(blockno, readblockdata);
+
+ LED_A_ON();
+
+ uint8_t readblockdata[10];
+ bool isOK = iClass_ReadBlock(blockno, readblockdata);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
+
+ LED_A_OFF();
}
-void iClass_Dump(uint8_t blockno, uint8_t numblks) {
- uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
+
+void iClass_Dump(uint8_t startblock, uint8_t numblks) {
+
+ LED_A_ON();
+
+ uint8_t readblockdata[USB_CMD_DATA_SIZE+2] = {0};
bool isOK = false;
- uint8_t blkCnt = 0;
-
- BigBuf_free();
- uint8_t *dataout = BigBuf_malloc(255*8);
- if (dataout == NULL){
- Dbprintf("out of memory");
- OnError(1);
- return;
+ uint16_t blkCnt = 0;
+
+ if (numblks > USB_CMD_DATA_SIZE / 8) {
+ numblks = USB_CMD_DATA_SIZE / 8;
}
- memset(dataout,0xFF,255*8);
-
- for (;blkCnt < numblks; blkCnt++) {
- isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
- if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again
- isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
- if (!isOK) {
- Dbprintf("Block %02X failed to read", blkCnt+blockno);
- break;
- }
+
+ for (blkCnt = 0; blkCnt < numblks; blkCnt++) {
+ isOK = iClass_ReadBlock(startblock+blkCnt, readblockdata+8*blkCnt);
+ if (!isOK) {
+ Dbprintf("Block %02X failed to read", startblock+blkCnt);
+ break;
}
- memcpy(dataout+(blkCnt*8),readblockdata,8);
}
- //return pointer to dump memory in arg3
- cmd_send(CMD_ACK,isOK,blkCnt,BigBuf_max_traceLen(),0,0);
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LEDsoff();
- BigBuf_free();
+ LED_D_OFF();
+
+ cmd_send(CMD_ACK, isOK, blkCnt, 0, readblockdata, blkCnt*8);
+
+ LED_A_OFF();
}
-bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
- uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
- //uint8_t readblockdata[10];
- //write[1] = blockNo;
+
+static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
+
+ uint8_t write[16] = {ICLASS_CMD_UPDATE, blockNo};
memcpy(write+2, data, 12); // data + mac
- char *wrCmd = (char *)(write+1);
- uint16_t wrCrc = iclass_crc16(wrCmd, 13);
- write[14] = wrCrc >> 8;
- write[15] = wrCrc & 0xff;
- uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0};
+ AppendCrc(write+1, 13);
+ uint8_t resp[10];
bool isOK = false;
+ uint32_t eof_time = 0;
- isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
- if (isOK) { //if reader responded correctly
- //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
- if (memcmp(write+2,resp,8)) { //if response is not equal to write values
- if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
- //error try again
- isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10);
- }
-
+ isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 3, 0, ICLASS_READER_TIMEOUT_UPDATE, &eof_time);
+ if (!isOK) {
+ return false;
+ }
+
+ uint8_t all_ff[8] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
+ if (blockNo == 2) {
+ if (memcmp(data+4, resp, 4) || memcmp(data, resp+4, 4)) { // check response. e-purse update swaps first and second half
+ return false;
+ }
+ } else if (blockNo == 3 || blockNo == 4) {
+ if (memcmp(all_ff, resp, 8)) { // check response. Key updates always return 0xffffffffffffffff
+ return false;
+ }
+ } else {
+ if (memcmp(data, resp, 8)) { // check response. All other updates return unchanged data
+ return false;
}
}
- return isOK;
+
+ return true;
}
+
void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
+
+ LED_A_ON();
+
bool isOK = iClass_WriteBlock_ext(blockNo, data);
- if (isOK){
- Dbprintf("Write block [%02x] successful",blockNo);
+ if (isOK) {
+ Dbprintf("Write block [%02x] successful", blockNo);
} else {
- Dbprintf("Write block [%02x] failed",blockNo);
+ Dbprintf("Write block [%02x] failed", blockNo);
}
- cmd_send(CMD_ACK,isOK,0,0,0,0);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
+
+ cmd_send(CMD_ACK, isOK, 0, 0, 0, 0);
+ LED_A_OFF();
}
+
void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
- int i;
+
+ LED_A_ON();
+
int written = 0;
- int total_block = (endblock - startblock) + 1;
- for (i = 0; i < total_block;i++){
+ int total_blocks = (endblock - startblock) + 1;
+
+ for (uint8_t block = startblock; block <= endblock; block++) {
// block number
- if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
- Dbprintf("Write block [%02x] successful",i + startblock);
+ if (iClass_WriteBlock_ext(block, data + (block-startblock)*12)) {
+ Dbprintf("Write block [%02x] successful", block);
written++;
} else {
- if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){
- Dbprintf("Write block [%02x] successful",i + startblock);
- written++;
- } else {
- Dbprintf("Write block [%02x] failed",i + startblock);
- }
+ Dbprintf("Write block [%02x] failed", block);
}
}
- if (written == total_block)
+
+ if (written == total_blocks)
Dbprintf("Clone complete");
else
- Dbprintf("Clone incomplete");
+ Dbprintf("Clone incomplete");
- cmd_send(CMD_ACK,1,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LEDsoff();
+ LED_D_OFF();
+
+ cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
+ LED_A_OFF();
}