static RAMFUNC int MillerDecoding(int bit)
{
- int error = 0;
+ //int error = 0;
int bitright;
if(!Uart.bitBuffer) {
// measured a drop in first and second half
// which should not be possible
Uart.state = STATE_ERROR_WAIT;
- error = 0x01;
+ //error = 0x01;
}
Uart.posCnt = 0;
if(Uart.drop == DROP_SECOND_HALF) {
// error, should not happen in SOC
Uart.state = STATE_ERROR_WAIT;
- error = 0x02;
+ //error = 0x02;
}
else {
// correct SOC
// Would be STATE_MILLER_Z
// but Z does not follow X, so error
Uart.state = STATE_ERROR_WAIT;
- error = 0x03;
+ //error = 0x03;
}
if(Uart.drop == DROP_SECOND_HALF) {
// We see a '1' and stay in state X
Uart.bitCnt = 0;
Uart.byteCnt = 0;
Uart.parityBits = 0;
- error = 0;
+ //error = 0;
}
else {
Uart.highCnt = 0;
{
int bit;
int modulation;
- int error = 0;
+ //int error = 0;
if(!Demod.buff) {
Demod.buff = 1;
case 0x01: Demod.samples = 0; break;
}
}
- error = 0;
+ //error = 0;
}
}
else {
if(Demod.state!=DEMOD_ERROR_WAIT) {
Demod.state = DEMOD_ERROR_WAIT;
Demod.output[Demod.len] = 0xaa;
- error = 0x01;
+ //error = 0x01;
}
}
else if(modulation) {
else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
- error = 0x02;
+ //error = 0x02;
}
break;
else {
Demod.output[Demod.len] = 0xad;
Demod.state = DEMOD_ERROR_WAIT;
- error = 0x03;
+ //error = 0x03;
}
break;
DbpString("COMMAND FINISHED");
- Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
- Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
-
done:
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
- Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
- Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
+ Dbprintf("maxBehindBy=%x, Uart.state=%x, Uart.byteCnt=%x", maxBehindBy, Uart.state, Uart.byteCnt);
+ Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
uint8_t *receivedCmd = (uint8_t *)BigBuf;
int len;
- int i;
- int u;
- uint8_t b;
+ //int i;
+ //int u;
+ //uint8_t b;
// To control where we are in the protocol
int order = 0;
int cmdsRecvd = 0;
- int fdt_indicator;
+ //int fdt_indicator;
memset(receivedCmd, 0x44, 400);
// doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
// Okay, look at the command now.
lastorder = order;
- i = 1; // first byte transmitted
+ //i = 1; // first byte transmitted
if(receivedCmd[0] == 0x26) {
// Received a REQUEST
resp = resp1; respLen = resp1Len; order = 1;
// Look at last parity bit to determine timing of answer
if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
// 1236, so correction bit needed
- i = 0;
+ //i = 0;
}
memset(receivedCmd, 0x44, 32);
if(respLen <= 0) continue;
//----------------------------
- u = 0;
- b = 0x00;
- fdt_indicator = FALSE;
+ //u = 0;
+ //b = 0x00;
+ //fdt_indicator = FALSE;
EmSendCmd14443aRaw(resp, respLen, receivedCmd[0] == 0x52);
/* // Modulate Manchester
byte_t nt_diff = 0;
LED_A_OFF();
byte_t par = 0;
- byte_t par_mask = 0xff;
+ //byte_t par_mask = 0xff;
byte_t par_low = 0;
int led_on = TRUE;
uint8_t uid[8];
{
LED_A_ON();
memcpy(nt_attacked, nt, 4);
- par_mask = 0xf8;
+ //par_mask = 0xf8;
par_low = par & 0x07;
}
int cardSTATE = MFEMUL_NOFIELD;
int _7BUID = 0;
int vHf = 0; // in mV
- int nextCycleTimeout = 0;
+ //int nextCycleTimeout = 0;
int res;
// uint32_t timer = 0;
uint32_t selTimer = 0;
uint8_t cardWRBL = 0;
uint8_t cardAUTHSC = 0;
uint8_t cardAUTHKEY = 0xff; // no authentication
- uint32_t cardRn = 0;
+ //uint32_t cardRn = 0;
uint32_t cardRr = 0;
uint32_t cuid = 0;
- uint32_t rn_enc = 0;
+ //uint32_t rn_enc = 0;
uint32_t ans = 0;
uint32_t cardINTREG = 0;
uint8_t cardINTBLOCK = 0;
if(res) break;
}
- nextCycleTimeout = 0;
+ //nextCycleTimeout = 0;
// if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
case MFEMUL_AUTH1:{
if (len == 8) {
// --- crypto
- rn_enc = bytes_to_num(receivedCmd, 4);
- cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1);
+ //rn_enc = bytes_to_num(receivedCmd, 4);
+ //cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1);
cardRr = bytes_to_num(&receivedCmd[4], 4) ^ crypto1_word(pcs, 0, 0);
// test if auth OK
if (cardRr != prng_successor(nonce, 64)){
// LogTrace(NULL, 0, GetDeltaCountUS(), 0, true);
cardSTATE = MFEMUL_AUTH1;
- nextCycleTimeout = 10;
+ //nextCycleTimeout = 10;
break;
}
} else {
// --- crypto
cardSTATE = MFEMUL_AUTH1;
- nextCycleTimeout = 10;
+ //nextCycleTimeout = 10;
break;
}
}
break;
}
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
- nextCycleTimeout = 50;
+ //nextCycleTimeout = 50;
cardSTATE = MFEMUL_WRITEBL2;
cardWRBL = receivedCmd[1];
break;