// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
// Computer and Communications Security, 2015
//-----------------------------------------------------------------------------
-
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
-#include <pthread.h>
-#include <locale.h>
-#include <math.h>
-#include "proxmark3.h"
-#include "cmdmain.h"
-#include "ui.h"
-#include "util.h"
-#include "nonce2key/crapto1.h"
-#include "nonce2key/crypto1_bs.h"
-#include "parity.h"
-#ifdef __WIN32
- #include <windows.h>
-#endif
-#include <malloc.h>
-#include <assert.h>
+#include "cmdhfmfhard.h"
#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
-#define GOOD_BYTES_REQUIRED 28
+#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
+#define MIN_NONCES_REQUIRED 4000 // 4000-5000 could be good
+#define NONCES_TRIGGER 2500 // every 2500 nonces check if we can crack the key
+#define CRACKING_THRESHOLD 39.00f // as 2^39
+
+#define END_OF_LIST_MARKER 0xFFFFFFFF
static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
static partial_indexed_statelist_t statelist_bitflip;
static statelist_t *candidates = NULL;
+bool thread_check_started = false;
+bool thread_check_done = false;
+bool field_off = false;
+
+pthread_t thread_check;
+
+static void* check_thread();
+static bool generate_candidates(uint16_t, uint16_t);
+static bool brute_force(void);
+
static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
{
uint8_t first_byte = nonce_enc >> 24;
num_good_first_bytes = 0;
}
-
static void free_nonce_list(noncelistentry_t *p)
{
if (p == NULL) {
for (int16_t i = N; i >= N-n+1; i--) {
log_result -= log(i);
}
- return exp(log_result);
+ if ( log_result > 0 )
+ return exp(log_result);
+ else
+ return 0.0;
} else {
if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
double log_result = 0.0;
if ( bytes_read == 0) {
PrintAndLog("File reading error.");
fclose(fnonces);
+ fnonces = NULL;
return 1;
}
cuid = bytes_to_num(read_buf, 4);
total_num_nonces += 2;
}
fclose(fnonces);
+ fnonces = NULL;
PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
return 0;
}
{
clock_t time1 = clock();
bool initialize = true;
- bool field_off = false;
bool finished = false;
bool filter_flip_checked = false;
uint32_t flags = 0;
uint32_t total_num_nonces = 0;
uint32_t next_fivehundred = 500;
uint32_t total_added_nonces = 0;
+ uint32_t idx = 1;
FILE *fnonces = NULL;
UsbCommand resp;
+ field_off = false;
+ thread_check_started = false;
+ thread_check_done = false;
+
printf("Acquiring nonces...\n");
-
+
clearCommandBuffer();
do {
+ if (thread_check_started && !thread_check_done) {
+ sleep(3);
+ continue;
+ }
+
flags = 0;
flags |= initialize ? 0x0001 : 0;
flags |= slow ? 0x0002 : 0;
//printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
- if (nonce_file_write) {
+ if (nonce_file_write && fnonces) {
fwrite(bufp, 1, 9, fnonces);
}
total_num_nonces += num_acquired_nonces;
}
- if (first_byte_num == 256 ) {
+ if (first_byte_num == 256 && !field_off) {
// printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
if (!filter_flip_checked) {
Check_for_FilterFlipProperties();
filter_flip_checked = true;
}
+
num_good_first_bytes = estimate_second_byte_sum();
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
CONFIDENCE_THRESHOLD * 100.0,
num_good_first_bytes);
}
- if (num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
- field_off = true; // switch off field with next SendCommand and then finish
+
+ if (thread_check_started) {
+ if (thread_check_done) {
+ pthread_join (thread_check, 0);
+ thread_check_started = thread_check_done = false;
+ }
+ } else {
+ if (total_added_nonces >= MIN_NONCES_REQUIRED)
+ {
+ num_good_first_bytes = estimate_second_byte_sum();
+ if (total_added_nonces > (NONCES_TRIGGER*idx) || num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
+ pthread_create (&thread_check, NULL, check_thread, NULL);
+ thread_check_started = true;
+ idx++;
+ }
+ }
}
}
if (!initialize) {
if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
- fclose(fnonces);
+ if (fnonces) { // fix segfault on proxmark3 v1 when reset button is pressed
+ fclose(fnonces);
+ fnonces = NULL;
+ }
return 1;
}
+
if (resp.arg[0]) {
- fclose(fnonces);
+ if (fnonces) { // fix segfault on proxmark3 v1 when reset button is pressed
+ fclose(fnonces);
+ fnonces = NULL;
+ }
return resp.arg[0]; // error during nested_hard
}
}
} while (!finished);
-
- if (nonce_file_write) {
+ if (nonce_file_write && fnonces) {
fclose(fnonces);
+ fnonces = NULL;
}
time1 = clock() - time1;
if ( time1 > 0 ) {
- PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
- total_num_nonces,
- ((float)time1)/CLOCKS_PER_SEC,
- total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
+ PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
+ total_num_nonces,
+ ((float)time1)/CLOCKS_PER_SEC,
+ total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
);
}
return 0;
static int init_partial_statelists(void)
{
const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
- const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
+// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
+ const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
printf("Allocating memory for partial statelists...\n");
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
for (uint16_t i = 0; i <= 16; i += 2) {
uint32_t *p = partial_statelist[i].states[odd_even];
p += partial_statelist[i].len[odd_even];
- *p = 0xffffffff;
+ *p = END_OF_LIST_MARKER;
}
}
}
// set len and add End Of List marker
statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
- *p = 0xffffffff;
+ *p = END_OF_LIST_MARKER;
statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
}
if (p == NULL) return NULL;
while (*p < (state & mask)) p++;
- if (*p == 0xffffffff) return NULL; // reached end of list, no match
+ if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
if ((*p & mask) == (state & mask)) return p; // found a match.
return NULL; // no match
}
uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
if (p != NULL) {
- while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) {
+ while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
found_match = true;
// if ((odd_even == ODD_STATE && state == test_state_odd)
bool found_match = false;
uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
if (p != NULL) {
- while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) {
+ while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
found_match = true;
// if ((odd_even == ODD_STATE && state == test_state_odd)
return 4;
}
uint32_t *add_p = candidates->states[odd_even];
- for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != 0xffffffff; p1++) {
+ for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
uint32_t search_mask = 0x000ffff0;
uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
if (p2 != NULL) {
- while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != 0xffffffff) {
+ while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
|| !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
}
// set end of list marker and len
- *add_p = 0xffffffff;
+ *add_p = END_OF_LIST_MARKER;
candidates->len[odd_even] = add_p - candidates->states[odd_even];
candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
return new_candidates;
}
-static void TestIfKeyExists(uint64_t key)
+static bool TestIfKeyExists(uint64_t key)
{
struct Crypto1State *pcs;
pcs = crypto1_create(key);
bool found_even = false;
uint32_t *p_odd = p->states[ODD_STATE];
uint32_t *p_even = p->states[EVEN_STATE];
- while (*p_odd != 0xffffffff) {
+ while (*p_odd != END_OF_LIST_MARKER) {
if ((*p_odd & 0x00ffffff) == state_odd) {
found_odd = true;
break;
}
p_odd++;
}
- while (*p_even != 0xffffffff) {
+ while (*p_even != END_OF_LIST_MARKER) {
if ((*p_even & 0x00ffffff) == state_even) {
found_even = true;
}
}
count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
if (found_odd && found_even) {
- PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.",
- count, log(count)/log(2),
- maximum_states, log(maximum_states)/log(2),
- (count>>23)/60);
+ PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
+ count,
+ log(count)/log(2),
+ maximum_states,
+ log(maximum_states)/log(2)
+ );
if (write_stats) {
fprintf(fstats, "1\n");
}
crypto1_destroy(pcs);
- return;
+ return true;
}
}
fprintf(fstats, "0\n");
}
crypto1_destroy(pcs);
+
+ return false;
}
-static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
+static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
{
printf("Generating crypto1 state candidates... \n");
}
}
}
- printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
+
+ if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
+ printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
init_statelist_cache();
for (uint16_t p = 0; p <= 16; p += 2) {
for (uint16_t q = 0; q <= 16; q += 2) {
if (p*(16-q) + (16-p)*q == sum_a0) {
- printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
- p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
+ // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
+ // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
for (uint16_t r = 0; r <= 16; r += 2) {
for (uint16_t s = 0; s <= 16; s += 2) {
if (r*(16-s) + (16-r)*s == sum_a8) {
// and eliminate the need to calculate the other part
if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
< MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
- add_matching_states(current_candidates, p, r, ODD_STATE);
+ add_matching_states(current_candidates, p, r, ODD_STATE);
if(current_candidates->len[ODD_STATE]) {
- add_matching_states(current_candidates, q, s, EVEN_STATE);
+ add_matching_states(current_candidates, q, s, EVEN_STATE);
} else {
current_candidates->len[EVEN_STATE] = 0;
uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
- *p = 0xffffffff;
+ *p = END_OF_LIST_MARKER;
}
} else {
add_matching_states(current_candidates, q, s, EVEN_STATE);
} else {
current_candidates->len[ODD_STATE] = 0;
uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
- *p = 0xffffffff;
+ *p = END_OF_LIST_MARKER;
}
}
//printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
}
}
-
maximum_states = 0;
for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
}
- printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
+
+ if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
+ float kcalc = log(maximum_states)/log(2);
+ printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
if (write_stats) {
if (maximum_states != 0) {
- fprintf(fstats, "%1.1f;", log(maximum_states)/log(2.0));
+ fprintf(fstats, "%1.1f;", kcalc);
} else {
fprintf(fstats, "%1.1f;", 0.0);
}
}
+ if (kcalc < CRACKING_THRESHOLD) return true;
+
+ return false;
}
static void free_candidates_memory(statelist_t *sl)
const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
- const bitslice_t const * restrict bitsliced_even_state = bitsliced_even_states[block_idx];
+ const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
size_t state_idx;
// set even bits
for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
return key;
}
+static void* check_thread()
+{
+ num_good_first_bytes = estimate_second_byte_sum();
+
+ clock_t time1 = clock();
+ bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+ time1 = clock() - time1;
+ if (time1 > 0) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
+
+ if (cracking || known_target_key != -1) {
+ field_off = brute_force(); // switch off field with next SendCommand and then finish
+ }
+
+ thread_check_done = true;
+
+ return (void *) NULL;
+}
+
static void* crack_states_thread(void* x){
const size_t thread_id = (size_t)x;
size_t current_bucket = thread_id;
return NULL;
}
-static void brute_force(void)
+static bool brute_force(void)
{
+ bool ret = false;
if (known_target_key != -1) {
PrintAndLog("Looking for known target key in remaining key space...");
- TestIfKeyExists(known_target_key);
+ ret = TestIfKeyExists(known_target_key);
} else {
- PrintAndLog("Brute force phase starting.");
- time_t start, end;
- time(&start);
- keys_found = 0;
+ if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
+
+ PrintAndLog("Brute force phase starting.");
+ time_t start, end;
+ time(&start);
+ keys_found = 0;
foundkey = 0;
-
- crypto1_bs_init();
- PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
- PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24));
- // convert to 32 bit little-endian
+ crypto1_bs_init();
+
+ PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
+ PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
+ // convert to 32 bit little-endian
crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
-
- PrintAndLog("Bitslicing nonces...");
- for(size_t tests = 0; tests < NONCE_TESTS; tests++){
- uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
- uint8_t test_parity = brute_force_nonces[tests]->par_enc;
- // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
- crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
- // convert to 32 bit little-endian
- crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
+
+ PrintAndLog("Bitslicing nonces...");
+ for(size_t tests = 0; tests < NONCE_TESTS; tests++){
+ uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
+ uint8_t test_parity = brute_force_nonces[tests]->par_enc;
+ // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
+ crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
+ // convert to 32 bit little-endian
+ crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
}
- total_states_tested = 0;
+ total_states_tested = 0;
- // count number of states to go
- bucket_count = 0;
- for (statelist_t *p = candidates; p != NULL; p = p->next) {
- buckets[bucket_count] = p;
- bucket_count++;
- }
+ // count number of states to go
+ bucket_count = 0;
+ for (statelist_t *p = candidates; p != NULL; p = p->next) {
+ buckets[bucket_count] = p;
+ bucket_count++;
+ }
#ifndef __WIN32
- thread_count = sysconf(_SC_NPROCESSORS_CONF);
+ thread_count = sysconf(_SC_NPROCESSORS_CONF);
if ( thread_count < 1)
thread_count = 1;
#endif /* _WIN32 */
- pthread_t threads[thread_count];
-
- // enumerate states using all hardware threads, each thread handles one bucket
- PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu32" states...", thread_count, bucket_count, maximum_states);
-
- for(size_t i = 0; i < thread_count; i++){
- pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
- }
- for(size_t i = 0; i < thread_count; i++){
- pthread_join(threads[i], 0);
- }
+ pthread_t threads[thread_count];
- time(&end);
- unsigned long elapsed_time = difftime(end, start);
- if(keys_found){
+ // enumerate states using all hardware threads, each thread handles one bucket
+ PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
+
+ for(size_t i = 0; i < thread_count; i++){
+ pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
+ }
+ for(size_t i = 0; i < thread_count; i++){
+ pthread_join(threads[i], 0);
+ }
+
+ time(&end);
+ unsigned long elapsed_time = difftime(end, start);
+
+ if (keys_found && TestIfKeyExists(foundkey)) {
PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %u seconds", total_states_tested, keys_found, elapsed_time);
PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
- } else {
+ ret = true;
+ } else {
PrintAndLog("Fail! Tested %"PRIu32" states, in %u seconds", total_states_tested, elapsed_time);
}
- // reset this counter for the next call
- nonces_to_bruteforce = 0;
+
+ // reset this counter for the next call
+ nonces_to_bruteforce = 0;
}
+
+ return ret;
}
int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
candidates = NULL;
}
fclose(fstats);
+ fstats = NULL;
} else {
init_nonce_memory();
- if (nonce_file_read) { // use pre-acquired data from file nonces.bin
+ if (nonce_file_read) { // use pre-acquired data from file nonces.bin
if (read_nonce_file() != 0) {
return 3;
}
Check_for_FilterFlipProperties();
num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
- } else { // acquire nonces.
+ PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
+
+ clock_t time1 = clock();
+ bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+ time1 = clock() - time1;
+ if (time1 > 0)
+ PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
+
+ if (cracking)
+ brute_force();
+ } else { // acquire nonces.
uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
if (is_OK != 0) {
return is_OK;
// best_first_bytes[7],
// best_first_bytes[8],
// best_first_bytes[9] );
- PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
- clock_t time1 = clock();
- generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
- time1 = clock() - time1;
- if ( time1 > 0 )
- PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
-
- brute_force();
free_nonces_memory();
free_statelist_cache();
free_candidates_memory(candidates);
candidates = NULL;
- }
+ }
return 0;
}