//-----------------------------------------------------------------------------
-// Routines to support ISO 14443 type A.
-//
// Gerhard de Koning Gans - May 2008
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Routines to support ISO 14443 type A.
//-----------------------------------------------------------------------------
+
#include "proxmark3.h"
#include "apps.h"
+#include "util.h"
+#include "string.h"
+
#include "iso14443crc.h"
-static BYTE *trace = (BYTE *) BigBuf;
+static uint8_t *trace = (uint8_t *) BigBuf;
static int traceLen = 0;
static int rsamples = 0;
-static BOOL tracing = TRUE;
-
-typedef enum {
- SEC_D = 1,
- SEC_E = 2,
- SEC_F = 3,
- SEC_X = 4,
- SEC_Y = 5,
- SEC_Z = 6
-} SecType;
-
-static const BYTE OddByteParity[256] = {
+static int tracing = TRUE;
+
+// CARD TO READER
+// Sequence D: 11110000 modulation with subcarrier during first half
+// Sequence E: 00001111 modulation with subcarrier during second half
+// Sequence F: 00000000 no modulation with subcarrier
+// READER TO CARD
+// Sequence X: 00001100 drop after half a period
+// Sequence Y: 00000000 no drop
+// Sequence Z: 11000000 drop at start
+#define SEC_D 0xf0
+#define SEC_E 0x0f
+#define SEC_F 0x00
+#define SEC_X 0x0c
+#define SEC_Y 0x00
+#define SEC_Z 0xc0
+
+static const uint8_t OddByteParity[256] = {
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
// Generate the parity value for a byte sequence
//
//-----------------------------------------------------------------------------
-DWORD GetParity(const BYTE * pbtCmd, int iLen)
+uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
{
int i;
- DWORD dwPar = 0;
+ uint32_t dwPar = 0;
// Generate the encrypted data
for (i = 0; i < iLen; i++) {
return dwPar;
}
-static void AppendCrc14443a(BYTE* data, int len)
+static void AppendCrc14443a(uint8_t* data, int len)
{
ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
}
-BOOL LogTrace(const BYTE * btBytes, int iLen, int iSamples, DWORD dwParity, BOOL bReader)
+int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
{
// Return when trace is full
if (traceLen >= TRACE_LENGTH) return FALSE;
return TRUE;
}
-BOOL LogTraceInfo(byte_t* data, size_t len)
-{
- return LogTrace(data,len,0,GetParity(data,len),TRUE);
-}
-
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
// variables.
STATE_MILLER_Z,
STATE_ERROR_WAIT
} state;
- WORD shiftReg;
+ uint16_t shiftReg;
int bitCnt;
int byteCnt;
int byteCntMax;
DROP_FIRST_HALF,
DROP_SECOND_HALF
} drop;
- BYTE *output;
+ uint8_t *output;
} Uart;
-static BOOL MillerDecoding(int bit)
+static int MillerDecoding(int bit)
{
int error = 0;
int bitright;
Uart.bitBuffer ^= bit;
}
- BOOL EOC = FALSE;
+ int EOC = FALSE;
if(Uart.state != STATE_UNSYNCD) {
Uart.posCnt++;
int posCount;
int syncBit;
int parityBits;
- WORD shiftReg;
+ uint16_t shiftReg;
int buffer;
int buff;
int samples;
SUB_FIRST_HALF,
SUB_SECOND_HALF
} sub;
- BYTE *output;
+ uint8_t *output;
} Demod;
-static BOOL ManchesterDecoding(int v)
+static int ManchesterDecoding(int v)
{
int bit;
int modulation;
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// response from the tag.
- BOOL triggered = TRUE; // FALSE to wait first for card
+ int triggered = TRUE; // FALSE to wait first for card
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
- BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET);
+ uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
// The response (tag -> reader) that we're receiving.
- BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET);
+ uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
// As we receive stuff, we copy it from receivedCmd or receivedResponse
// into trace, along with its length and other annotations.
- //BYTE *trace = (BYTE *)BigBuf;
+ //uint8_t *trace = (uint8_t *)BigBuf;
//int traceLen = 0;
// The DMA buffer, used to stream samples from the FPGA
- SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET;
+ int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
int lastRxCounter;
- SBYTE *upTo;
+ int8_t *upTo;
int smpl;
int maxBehindBy = 0;
FpgaSetupSsc();
upTo = dmaBuf;
lastRxCounter = DMA_BUFFER_SIZE;
- FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE);
+ FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
LED_A_ON();
if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
upTo -= DMA_BUFFER_SIZE;
lastRxCounter += DMA_BUFFER_SIZE;
- AT91C_BASE_PDC_SSC->PDC_RNPR = (DWORD)upTo;
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
samples += 4;
-#define HANDLE_BIT_IF_BODY \
- LED_C_ON(); \
- if(triggered) { \
- trace[traceLen++] = ((rsamples >> 0) & 0xff); \
- trace[traceLen++] = ((rsamples >> 8) & 0xff); \
- trace[traceLen++] = ((rsamples >> 16) & 0xff); \
- trace[traceLen++] = ((rsamples >> 24) & 0xff); \
- trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \
- trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \
- trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \
- trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \
- trace[traceLen++] = Uart.byteCnt; \
- memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \
- traceLen += Uart.byteCnt; \
- if(traceLen > TRACE_LENGTH) break; \
- } \
- /* And ready to receive another command. */ \
- Uart.state = STATE_UNSYNCD; \
- /* And also reset the demod code, which might have been */ \
- /* false-triggered by the commands from the reader. */ \
- Demod.state = DEMOD_UNSYNCD; \
- LED_B_OFF(); \
-
if(MillerDecoding((smpl & 0xF0) >> 4)) {
rsamples = samples - Uart.samples;
- HANDLE_BIT_IF_BODY
+ LED_C_ON();
+ if(triggered) {
+ trace[traceLen++] = ((rsamples >> 0) & 0xff);
+ trace[traceLen++] = ((rsamples >> 8) & 0xff);
+ trace[traceLen++] = ((rsamples >> 16) & 0xff);
+ trace[traceLen++] = ((rsamples >> 24) & 0xff);
+ trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff);
+ trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff);
+ trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff);
+ trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff);
+ trace[traceLen++] = Uart.byteCnt;
+ memcpy(trace+traceLen, receivedCmd, Uart.byteCnt);
+ traceLen += Uart.byteCnt;
+ if(traceLen > TRACE_LENGTH) break;
+ }
+ /* And ready to receive another command. */
+ Uart.state = STATE_UNSYNCD;
+ /* And also reset the demod code, which might have been */
+ /* false-triggered by the commands from the reader. */
+ Demod.state = DEMOD_UNSYNCD;
+ LED_B_OFF();
}
if(ManchesterDecoding(smpl & 0x0F)) {
rsamples = samples - Demod.samples;
LED_D_OFF();
}
-// Prepare communication bits to send to FPGA
-void Sequence(SecType seq)
-{
- ToSendMax++;
- switch(seq) {
- // CARD TO READER
- case SEC_D:
- // Sequence D: 11110000
- // modulation with subcarrier during first half
- ToSend[ToSendMax] = 0xf0;
- break;
- case SEC_E:
- // Sequence E: 00001111
- // modulation with subcarrier during second half
- ToSend[ToSendMax] = 0x0f;
- break;
- case SEC_F:
- // Sequence F: 00000000
- // no modulation with subcarrier
- ToSend[ToSendMax] = 0x00;
- break;
- // READER TO CARD
- case SEC_X:
- // Sequence X: 00001100
- // drop after half a period
- ToSend[ToSendMax] = 0x0c;
- break;
- case SEC_Y:
- default:
- // Sequence Y: 00000000
- // no drop
- ToSend[ToSendMax] = 0x00;
- break;
- case SEC_Z:
- // Sequence Z: 11000000
- // drop at start
- ToSend[ToSendMax] = 0xc0;
- break;
- }
-}
-
//-----------------------------------------------------------------------------
// Prepare tag messages
//-----------------------------------------------------------------------------
-static void CodeIso14443aAsTag(const BYTE *cmd, int len)
+static void CodeIso14443aAsTag(const uint8_t *cmd, int len)
{
int i;
int oddparity;
ToSendStuffBit(0);
// Send startbit
- Sequence(SEC_D);
+ ToSend[++ToSendMax] = SEC_D;
for(i = 0; i < len; i++) {
int j;
- BYTE b = cmd[i];
+ uint8_t b = cmd[i];
// Data bits
oddparity = 0x01;
for(j = 0; j < 8; j++) {
oddparity ^= (b & 1);
if(b & 1) {
- Sequence(SEC_D);
+ ToSend[++ToSendMax] = SEC_D;
} else {
- Sequence(SEC_E);
+ ToSend[++ToSendMax] = SEC_E;
}
b >>= 1;
}
// Parity bit
if(oddparity) {
- Sequence(SEC_D);
+ ToSend[++ToSendMax] = SEC_D;
} else {
- Sequence(SEC_E);
+ ToSend[++ToSendMax] = SEC_E;
}
}
// Send stopbit
- Sequence(SEC_F);
+ ToSend[++ToSendMax] = SEC_F;
// Flush the buffer in FPGA!!
for(i = 0; i < 5; i++) {
- Sequence(SEC_F);
+ ToSend[++ToSendMax] = SEC_F;
}
// Convert from last byte pos to length
ToSendStuffBit(0);
// Send startbit
- Sequence(SEC_D);
+ ToSend[++ToSendMax] = SEC_D;
// 0
- Sequence(SEC_E);
+ ToSend[++ToSendMax] = SEC_E;
// 0
- Sequence(SEC_E);
+ ToSend[++ToSendMax] = SEC_E;
// 1
- Sequence(SEC_D);
+ ToSend[++ToSendMax] = SEC_D;
// Send stopbit
- Sequence(SEC_F);
+ ToSend[++ToSendMax] = SEC_F;
// Flush the buffer in FPGA!!
for(i = 0; i < 5; i++) {
- Sequence(SEC_F);
+ ToSend[++ToSendMax] = SEC_F;
}
// Convert from last byte pos to length
// Stop when button is pressed
// Or return TRUE when command is captured
//-----------------------------------------------------------------------------
-static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen)
+static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
{
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting).
AT91C_BASE_SSC->SSC_THR = 0x00;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR;
+ uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
if(MillerDecoding((b & 0xf0) >> 4)) {
*len = Uart.byteCnt;
return TRUE;
// This function contains the tag emulation
// Prepare protocol messages
- // static const BYTE cmd1[] = { 0x26 };
-// static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
+ // static const uint8_t cmd1[] = { 0x26 };
+// static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
//
- static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
-// static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
+ static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
+// static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
// UID response
- // static const BYTE cmd2[] = { 0x93, 0x20 };
- //static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
-
-
+ // static const uint8_t cmd2[] = { 0x93, 0x20 };
+ //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
// my desfire
- static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
+ static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
// When reader selects us during cascade1 it will send cmd3
-//BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
-BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
+//uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
+uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
// send cascade2 2nd half of UID
-static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
+static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
-
// When reader selects us during cascade2 it will send cmd3a
-//BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
-BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
+//uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
+uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
- static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
+ static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
- BYTE *resp;
+ uint8_t *resp;
int respLen;
// Longest possible response will be 16 bytes + 2 CRC = 18 bytes
// 166 bytes, since every bit that needs to be send costs us a byte
//
-
// Respond with card type
- BYTE *resp1 = (((BYTE *)BigBuf) + 800);
+ uint8_t *resp1 = (((uint8_t *)BigBuf) + 800);
int resp1Len;
// Anticollision cascade1 - respond with uid
- BYTE *resp2 = (((BYTE *)BigBuf) + 970);
+ uint8_t *resp2 = (((uint8_t *)BigBuf) + 970);
int resp2Len;
// Anticollision cascade2 - respond with 2nd half of uid if asked
// we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
- BYTE *resp2a = (((BYTE *)BigBuf) + 1140);
+ uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140);
int resp2aLen;
// Acknowledge select - cascade 1
- BYTE *resp3 = (((BYTE *)BigBuf) + 1310);
+ uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310);
int resp3Len;
// Acknowledge select - cascade 2
- BYTE *resp3a = (((BYTE *)BigBuf) + 1480);
+ uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480);
int resp3aLen;
// Response to a read request - not implemented atm
- BYTE *resp4 = (((BYTE *)BigBuf) + 1550);
+ uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550);
int resp4Len;
// Authenticate response - nonce
- BYTE *resp5 = (((BYTE *)BigBuf) + 1720);
+ uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720);
int resp5Len;
- BYTE *receivedCmd = (BYTE *)BigBuf;
+ uint8_t *receivedCmd = (uint8_t *)BigBuf;
int len;
int i;
int u;
- BYTE b;
+ uint8_t b;
// To control where we are in the protocol
int order = 0;
int cmdsRecvd = 0;
- BOOL fdt_indicator;
+ int fdt_indicator;
memset(receivedCmd, 0x44, 400);
fdt_indicator = FALSE;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR;
+ volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
(void)b;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
//-----------------------------------------------------------------------------
-static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait)
+static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
{
int c;
c++;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;
+ volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;
+ volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
if (samples) *samples = (c + *wait) << 3;
}
-//-----------------------------------------------------------------------------
-// To generate an arbitrary stream from reader
-//
-//-----------------------------------------------------------------------------
-void ArbitraryFromReader(const BYTE *cmd, int parity, int len)
-{
- int i;
- int j;
- int last;
- BYTE b;
-
- ToSendReset();
-
- // Start of Communication (Seq. Z)
- Sequence(SEC_Z);
- last = 0;
-
- for(i = 0; i < len; i++) {
- // Data bits
- b = cmd[i];
- for(j = 0; j < 8; j++) {
- if(b & 1) {
- // Sequence X
- Sequence(SEC_X);
- last = 1;
- } else {
- if(last == 0) {
- // Sequence Z
- Sequence(SEC_Z);
- }
- else {
- // Sequence Y
- Sequence(SEC_Y);
- last = 0;
- }
- }
- b >>= 1;
-
- }
-
- // Predefined parity bit, the flipper flips when needed, because of flips in byte sent
- if(((parity >> (len - i - 1)) & 1)) {
- // Sequence X
- Sequence(SEC_X);
- last = 1;
- } else {
- if(last == 0) {
- // Sequence Z
- Sequence(SEC_Z);
- }
- else {
- // Sequence Y
- Sequence(SEC_Y);
- last = 0;
- }
- }
- }
-
- // End of Communication
- if(last == 0) {
- // Sequence Z
- Sequence(SEC_Z);
- }
- else {
- // Sequence Y
- Sequence(SEC_Y);
- last = 0;
- }
- // Sequence Y
- Sequence(SEC_Y);
-
- // Just to be sure!
- Sequence(SEC_Y);
- Sequence(SEC_Y);
- Sequence(SEC_Y);
-
- // Convert from last character reference to length
- ToSendMax++;
-}
-
//-----------------------------------------------------------------------------
// Code a 7-bit command without parity bit
// This is especially for 0x26 and 0x52 (REQA and WUPA)
//-----------------------------------------------------------------------------
-void ShortFrameFromReader(const BYTE bt)
+void ShortFrameFromReader(const uint8_t bt)
{
int j;
int last;
- BYTE b;
+ uint8_t b;
ToSendReset();
// Start of Communication (Seq. Z)
- Sequence(SEC_Z);
+ ToSend[++ToSendMax] = SEC_Z;
last = 0;
b = bt;
for(j = 0; j < 7; j++) {
if(b & 1) {
// Sequence X
- Sequence(SEC_X);
+ ToSend[++ToSendMax] = SEC_X;
last = 1;
} else {
if(last == 0) {
// Sequence Z
- Sequence(SEC_Z);
+ ToSend[++ToSendMax] = SEC_Z;
}
else {
// Sequence Y
- Sequence(SEC_Y);
+ ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
}
// End of Communication
if(last == 0) {
// Sequence Z
- Sequence(SEC_Z);
+ ToSend[++ToSendMax] = SEC_Z;
}
else {
// Sequence Y
- Sequence(SEC_Y);
+ ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
// Sequence Y
- Sequence(SEC_Y);
+ ToSend[++ToSendMax] = SEC_Y;
// Just to be sure!
- Sequence(SEC_Y);
- Sequence(SEC_Y);
- Sequence(SEC_Y);
+ ToSend[++ToSendMax] = SEC_Y;
+ ToSend[++ToSendMax] = SEC_Y;
+ ToSend[++ToSendMax] = SEC_Y;
// Convert from last character reference to length
ToSendMax++;
// Prepare reader command to send to FPGA
//
//-----------------------------------------------------------------------------
-void CodeIso14443aAsReaderPar(const BYTE * cmd, int len, DWORD dwParity)
+void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
{
int i, j;
int last;
- BYTE b;
+ uint8_t b;
ToSendReset();
// Start of Communication (Seq. Z)
- Sequence(SEC_Z);
+ ToSend[++ToSendMax] = SEC_Z;
last = 0;
// Generate send structure for the data bits
for (j = 0; j < 8; j++) {
if (b & 1) {
// Sequence X
- Sequence(SEC_X);
+ ToSend[++ToSendMax] = SEC_X;
last = 1;
} else {
if (last == 0) {
// Sequence Z
- Sequence(SEC_Z);
+ ToSend[++ToSendMax] = SEC_Z;
} else {
// Sequence Y
- Sequence(SEC_Y);
+ ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
}
// Get the parity bit
if ((dwParity >> i) & 0x01) {
// Sequence X
- Sequence(SEC_X);
+ ToSend[++ToSendMax] = SEC_X;
last = 1;
} else {
if (last == 0) {
// Sequence Z
- Sequence(SEC_Z);
+ ToSend[++ToSendMax] = SEC_Z;
} else {
// Sequence Y
- Sequence(SEC_Y);
+ ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
}
// End of Communication
if (last == 0) {
// Sequence Z
- Sequence(SEC_Z);
+ ToSend[++ToSendMax] = SEC_Z;
} else {
// Sequence Y
- Sequence(SEC_Y);
+ ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
// Sequence Y
- Sequence(SEC_Y);
+ ToSend[++ToSendMax] = SEC_Y;
// Just to be sure!
- Sequence(SEC_Y);
- Sequence(SEC_Y);
- Sequence(SEC_Y);
+ ToSend[++ToSendMax] = SEC_Y;
+ ToSend[++ToSendMax] = SEC_Y;
+ ToSend[++ToSendMax] = SEC_Y;
// Convert from last character reference to length
ToSendMax++;
// If a response is captured return TRUE
// If it takes to long return FALSE
//-----------------------------------------------------------------------------
-static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer
+static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
{
// buffer needs to be 512 bytes
int c;
Demod.len = 0;
Demod.state = DEMOD_UNSYNCD;
- BYTE b;
+ uint8_t b;
if (elapsed) *elapsed = 0;
c = 0;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
if(c < 512) { c++; } else { return FALSE; }
- b = (BYTE)AT91C_BASE_SSC->SSC_RHR;
- if(ManchesterDecoding((b & 0xf0) >> 4)) {
+ b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ if(ManchesterDecoding((b>>4) & 0xf)) {
*samples = ((c - 1) << 3) + 4;
return TRUE;
}
}
}
-void ReaderTransmitShort(const BYTE* bt)
+void ReaderTransmitShort(const uint8_t* bt)
{
int wait = 0;
int samples = 0;
if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE);
}
-void ReaderTransmitPar(BYTE* frame, int len, DWORD par)
+void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
{
int wait = 0;
int samples = 0;
// This is tied to other size changes
- // BYTE* frame_addr = ((BYTE*)BigBuf) + 2024;
+ // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
CodeIso14443aAsReaderPar(frame,len,par);
// Select the card
}
-void ReaderTransmit(BYTE* frame, int len)
+void ReaderTransmit(uint8_t* frame, int len)
{
// Generate parity and redirect
ReaderTransmitPar(frame,len,GetParity(frame,len));
}
-BOOL ReaderReceive(BYTE* receivedAnswer)
+int ReaderReceive(uint8_t* receivedAnswer)
{
int samples = 0;
if (!GetIso14443aAnswerFromTag(receivedAnswer,100,&samples,0)) return FALSE;
// Read an ISO 14443a tag. Send out commands and store answers.
//
//-----------------------------------------------------------------------------
-void ReaderIso14443a(DWORD parameter)
+void ReaderIso14443a(uint32_t parameter)
{
// Anticollision
- BYTE wupa[] = { 0x52 };
- BYTE sel_all[] = { 0x93,0x20 };
- BYTE sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
- BYTE sel_all_c2[] = { 0x95,0x20 };
- BYTE sel_uid_c2[] = { 0x95,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ uint8_t wupa[] = { 0x52 };
+ uint8_t sel_all[] = { 0x93,0x20 };
+ uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ uint8_t sel_all_c2[] = { 0x95,0x20 };
+ uint8_t sel_uid_c2[] = { 0x95,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
// Mifare AUTH
- BYTE mf_auth[] = { 0x60,0x00,0xf5,0x7b };
-// BYTE mf_nr_ar[] = { 0x00,0x00,0x00,0x00 };
+ uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+// uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00 };
- BYTE* receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes
+ uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
traceLen = 0;
// Setup SSC
SpinDelay(200);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc();
// Now give it time to spin up.
// Signal field is on with the appropriate LED
// Read an ISO 14443a tag. Send out commands and store answers.
//
//-----------------------------------------------------------------------------
-void ReaderMifare(DWORD parameter)
+void ReaderMifare(uint32_t parameter)
{
// Anticollision
- BYTE wupa[] = { 0x52 };
- BYTE sel_all[] = { 0x93,0x20 };
- BYTE sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ uint8_t wupa[] = { 0x52 };
+ uint8_t sel_all[] = { 0x93,0x20 };
+ uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
// Mifare AUTH
- BYTE mf_auth[] = { 0x60,0x00,0xf5,0x7b };
- BYTE mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+ uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
- BYTE* receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes
+ uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
traceLen = 0;
tracing = false;
SpinDelay(200);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc();
// Now give it time to spin up.
// Signal field is on with the appropriate LED
byte_t par = 0;
byte_t par_mask = 0xff;
byte_t par_low = 0;
- BOOL led_on = TRUE;
+ int led_on = TRUE;
tracing = FALSE;
byte_t nt[4];
}
}
- LogTraceInfo(sel_uid+2,4);
- LogTraceInfo(nt,4);
- LogTraceInfo(par_list,8);
- LogTraceInfo(ks_list,8);
+ LogTrace(sel_uid+2,4,0,GetParity(sel_uid+2,4),TRUE);
+ LogTrace(nt,4,0,GetParity(nt,4),TRUE);
+ LogTrace(par_list,8,0,GetParity(par_list,8),TRUE);
+ LogTrace(ks_list,8,0,GetParity(ks_list,8),TRUE);
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);