#include "fpgaloader.h"
#include "proxmark3.h"
#include "usb_cdc.h"
-#include "cmd.h"
#include "protocols.h"
#include "apps.h"
+#include "util.h"
+
//mifare emulator states
-#define MFEMUL_NOFIELD 0
-#define MFEMUL_IDLE 1
-#define MFEMUL_SELECT1 2
-#define MFEMUL_SELECT2 3
-#define MFEMUL_SELECT3 4
-#define MFEMUL_AUTH1 5
-#define MFEMUL_AUTH2 6
-#define MFEMUL_WORK 7
-#define MFEMUL_WRITEBL2 8
-#define MFEMUL_INTREG_INC 9
-#define MFEMUL_INTREG_DEC 10
-#define MFEMUL_INTREG_REST 11
-#define MFEMUL_HALTED 12
-
-#define cardSTATE_TO_IDLE() { cardSTATE = MFEMUL_IDLE; LED_B_OFF(); LED_C_OFF(); }
+#define MFEMUL_NOFIELD 0
+#define MFEMUL_IDLE 1
+#define MFEMUL_SELECT1 2
+#define MFEMUL_SELECT2 3
+#define MFEMUL_SELECT3 4
+#define MFEMUL_AUTH1 5
+#define MFEMUL_AUTH2 6
+#define MFEMUL_WORK 7
+#define MFEMUL_WRITEBL2 8
+#define MFEMUL_INTREG_INC 9
+#define MFEMUL_INTREG_DEC 10
+#define MFEMUL_INTREG_REST 11
+#define MFEMUL_HALTED 12
#define AC_DATA_READ 0
#define AC_DATA_WRITE 1
-#define AC_DATA_INC 2
-#define AC_DATA_DEC_TRANS_REST 3
+#define AC_DATA_INC 2
+#define AC_DATA_DEC_TRANS_REST 3
#define AC_KEYA_READ 0
#define AC_KEYA_WRITE 1
#define AC_KEYB_READ 2
#define AUTHKEYNONE 0xff
+static int ParamCardSizeBlocks(const char c) {
+ int numBlocks = 16 * 4;
+ switch (c) {
+ case '0' : numBlocks = 5 * 4; break;
+ case '2' : numBlocks = 32 * 4; break;
+ case '4' : numBlocks = 32 * 4 + 8 * 16; break;
+ default: numBlocks = 16 * 4;
+ }
+ return numBlocks;
+}
+
+static uint8_t BlockToSector(int block_num) {
+ if (block_num < 32 * 4) { // 4 blocks per sector
+ return (block_num / 4);
+ } else { // 16 blocks per sector
+ return 32 + (block_num - 32 * 4) / 16;
+ }
+}
+
static bool IsTrailerAccessAllowed(uint8_t blockNo, uint8_t keytype, uint8_t action) {
uint8_t sector_trailer[16];
emlGetMem(sector_trailer, blockNo, 1);
uint8_t AC = ((sector_trailer[7] >> 5) & 0x04)
- | ((sector_trailer[8] >> 2) & 0x02)
+ | ((sector_trailer[8] >> 2) & 0x02)
| ((sector_trailer[8] >> 7) & 0x01);
switch (action) {
case AC_KEYA_READ: {
break;
}
case AC_KEYA_WRITE: {
- return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01))
- || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
+ return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01))
+ || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
break;
}
case AC_KEYB_READ: {
break;
}
case AC_KEYB_WRITE: {
- return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x04))
- || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
+ return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x01))
+ || (keytype == AUTHKEYB && (AC == 0x04 || AC == 0x03)));
break;
}
case AC_AC_READ: {
return ((keytype == AUTHKEYA)
- || (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
+ || (keytype == AUTHKEYB && !(AC == 0x00 || AC == 0x02 || AC == 0x01)));
break;
}
case AC_AC_WRITE: {
return ((keytype == AUTHKEYA && (AC == 0x01))
- || (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05)));
+ || (keytype == AUTHKEYB && (AC == 0x03 || AC == 0x05)));
break;
}
default: return false;
| ((sector_trailer[8] >> 6) & 0x01);
break;
}
- default:
+ default:
return false;
}
-
+
switch (action) {
case AC_DATA_READ: {
return ((keytype == AUTHKEYA && !(AC == 0x03 || AC == 0x05 || AC == 0x07))
- || (keytype == AUTHKEYB && !(AC == 0x07)));
+ || (keytype == AUTHKEYB && !(AC == 0x07)));
break;
}
case AC_DATA_WRITE: {
return ((keytype == AUTHKEYA && (AC == 0x00))
- || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
+ || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x04 || AC == 0x06 || AC == 0x03)));
break;
}
case AC_DATA_INC: {
return ((keytype == AUTHKEYA && (AC == 0x00))
- || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06)));
+ || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06)));
break;
}
case AC_DATA_DEC_TRANS_REST: {
return ((keytype == AUTHKEYA && (AC == 0x00 || AC == 0x06 || AC == 0x01))
- || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
+ || (keytype == AUTHKEYB && (AC == 0x00 || AC == 0x06 || AC == 0x01)));
break;
}
}
-
+
return false;
}
}
-static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len) {
+static void MifareSimInit(uint8_t flags, uint8_t *datain, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len, uint8_t cardsize) {
- #define TAG_RESPONSE_COUNT 5 // number of precompiled responses
- static uint8_t rATQA[] = {0x04, 0x00}; // indicate Mifare classic 1k 4Byte UID
- static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level
- static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level
- static uint8_t rSAKfinal[]= {0x08, 0xb6, 0xdd}; // mifare 1k indicated
- static uint8_t rSAK1[] = {0x04, 0xda, 0x17}; // indicate UID not finished
+ #define TAG_RESPONSE_COUNT 5 // number of precompiled responses
+ static uint8_t rATQA[] = {0x00, 0x00};
+ static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level
+ static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level
+ static uint8_t rSAKfinal[]= {0x00, 0x00, 0x00}; // SAK after UID complete
+ static uint8_t rSAK1[] = {0x00, 0x00, 0x00}; // indicate UID not finished
*uid_len = 4;
// UID can be set from emulator memory or incoming data and can be 4 or 7 bytes long
- if (flags & FLAG_4B_UID_IN_DATA) { // get UID from datain
+ if (flags & FLAG_4B_UID_IN_DATA) { // get UID from datain
memcpy(rUIDBCC1, datain, 4);
} else if (flags & FLAG_7B_UID_IN_DATA) {
rUIDBCC1[0] = 0x88;
*uid_len = 7;
} else {
uint8_t probable_atqa;
- emlGetMemBt(&probable_atqa, 7, 1); // get UID from emul memory - weak guess at length
- if (probable_atqa == 0x00) { // ---------- 4BUID
+ emlGetMemBt(&probable_atqa, 7, 1); // get UID from emul memory - weak guess at length
+ if (probable_atqa == 0x00) { // ---------- 4BUID
emlGetMemBt(rUIDBCC1, 0, 4);
- } else { // ---------- 7BUID
+ } else { // ---------- 7BUID
rUIDBCC1[0] = 0x88;
emlGetMemBt(rUIDBCC1+1, 0, 3);
emlGetMemBt(rUIDBCC2, 3, 4);
case 4:
*cuid = bytes_to_num(rUIDBCC1, 4);
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
- if (MF_DBGLEVEL >= 2) {
- Dbprintf("4B UID: %02x%02x%02x%02x",
- rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3] );
+ if (MF_DBGLEVEL >= MF_DBG_INFO) {
+ Dbprintf("4B UID: %02x%02x%02x%02x",
+ rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3] );
}
break;
case 7:
- rATQA[0] |= 0x40;
*cuid = bytes_to_num(rUIDBCC2, 4);
- rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
- rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
- if (MF_DBGLEVEL >= 2) {
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+ rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+ if (MF_DBGLEVEL >= MF_DBG_INFO) {
Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3] );
}
break;
- default:
+ default:
break;
}
-
+
+ // set SAK based on cardsize
+ switch (cardsize) {
+ case '0': rSAKfinal[0] = 0x09; break; // Mifare Mini
+ case '2': rSAKfinal[0] = 0x10; break; // Mifare 2K
+ case '4': rSAKfinal[0] = 0x18; break; // Mifare 4K
+ default: rSAKfinal[0] = 0x08; // Mifare 1K
+ }
+ ComputeCrc14443(CRC_14443_A, rSAKfinal, 1, rSAKfinal + 1, rSAKfinal + 2);
+ if (MF_DBGLEVEL >= MF_DBG_INFO) {
+ Dbprintf("SAK: %02x", rSAKfinal[0]);
+ }
+
+ // set SAK for incomplete UID
+ rSAK1[0] = 0x04; // Bit 3 indicates incomplete UID
+ ComputeCrc14443(CRC_14443_A, rSAK1, 1, rSAK1 + 1, rSAK1 + 2);
+
+ // set ATQA based on cardsize and UIDlen
+ if (cardsize == '4') {
+ rATQA[0] = 0x02;
+ } else {
+ rATQA[0] = 0x04;
+ }
+ if (*uid_len == 7) {
+ rATQA[0] |= 0x40;
+ }
+ if (MF_DBGLEVEL >= MF_DBG_INFO) {
+ Dbprintf("ATQA: %02x %02x", rATQA[1], rATQA[0]);
+ }
+
static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = {
- { .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type
- { .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid
- { .response = rUIDBCC2, .response_n = sizeof(rUIDBCC2) }, // Anticollision cascade2 - respond with 2nd part of uid
- { .response = rSAKfinal, .response_n = sizeof(rSAKfinal) }, // Acknowledge select - last cascade
- { .response = rSAK1, .response_n = sizeof(rSAK1) } // Acknowledge select - previous cascades
+ { .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type
+ { .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid
+ { .response = rUIDBCC2, .response_n = sizeof(rUIDBCC2) }, // Anticollision cascade2 - respond with 2nd part of uid
+ { .response = rSAKfinal, .response_n = sizeof(rSAKfinal) }, // Acknowledge select - last cascade
+ { .response = rSAK1, .response_n = sizeof(rSAK1) } // Acknowledge select - previous cascades
};
// Prepare ("precompile") the responses of the anticollision phase. There will be not enough time to do this at the moment the reader sends its REQA or SELECT
- // There are 7 predefined responses with a total of 18 bytes data to transmit. Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
+ // There are 5 predefined responses with a total of 18 bytes data to transmit. Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
// 18 * 8 data bits, 18 * 1 parity bits, 5 start bits, 5 stop bits, 5 correction bits -> need 177 bytes buffer
- #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 177 // number of bytes required for precompiled responses
+ #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 177 // number of bytes required for precompiled responses
uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
/**
- *MIFARE 1K simulate.
+ *MIFARE simulate.
*
*@param flags :
- * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
+ * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK
* FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that
* FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that
- * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished
- * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
+ * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later
* FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack)
*@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
* (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
*/
-void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain)
+void MifareSim(uint8_t flags, uint8_t exitAfterNReads, uint8_t cardsize, uint8_t *datain)
{
+ LED_A_ON();
+
tag_response_info_t *responses;
- uint8_t uid_len = 4;
+ uint8_t uid_len = 4;
uint32_t cuid = 0;
uint8_t cardWRBL = 0;
uint8_t cardAUTHSC = 0;
uint32_t cardINTREG = 0;
uint8_t cardINTBLOCK = 0;
struct Crypto1State mpcs = {0, 0};
- struct Crypto1State *pcs;
- pcs = &mpcs;
- uint32_t numReads = 0;//Counts numer of times reader reads a block
+ struct Crypto1State *pcs = &mpcs;
+ uint32_t numReads = 0; //Counts numer of times reader reads a block
uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedCmd_dec[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE];
uint16_t receivedCmd_len;
uint8_t response[MAX_MIFARE_FRAME_SIZE];
uint8_t response_par[MAX_MIFARE_PARITY_SIZE];
-
- uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
- uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
-
- //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
+ uint8_t fixed_nonce[] = {0x01, 0x02, 0x03, 0x04};
+
+ int num_blocks = ParamCardSizeBlocks(cardsize);
+
+ // Here we collect UID, sector, keytype, NT, AR, NR, NT2, AR2, NR2
// This will be used in the reader-only attack.
- //allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys
+ // allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys
#define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7)
- nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; //*2 for 2 separate attack types (nml, moebius) 36 * 7 * 2 bytes = 504 bytes
+ nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; // *2 for 2 separate attack types (nml, moebius) 36 * 7 * 2 bytes = 504 bytes
memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
- uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; //*2 for 2nd attack type (moebius)
+ uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; // *2 for 2nd attack type (moebius)
memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected));
- uint8_t nonce1_count = 0;
- uint8_t nonce2_count = 0;
- uint8_t moebius_n_count = 0;
+ uint8_t nonce1_count = 0;
+ uint8_t nonce2_count = 0;
+ uint8_t moebius_n_count = 0;
bool gettingMoebius = false;
- uint8_t mM = 0; //moebius_modifier for collection storage
+ uint8_t mM = 0; // moebius_modifier for collection storage
// Authenticate response - nonce
uint32_t nonce;
if (flags & FLAG_RANDOM_NONCE) {
nonce = prand();
} else {
- nonce = bytes_to_num(rAUTH_NT, 4);
+ nonce = bytes_to_num(fixed_nonce, 4);
}
// free eventually allocated BigBuf memory but keep Emulator Memory
BigBuf_free_keep_EM();
- MifareSimInit(flags, datain, &responses, &cuid, &uid_len);
-
+ MifareSimInit(flags, datain, &responses, &cuid, &uid_len, cardsize);
+
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
clear_trace();
set_tracing(true);
ResetSspClk();
-
+
bool finished = false;
bool button_pushed = BUTTON_PRESS();
int cardSTATE = MFEMUL_NOFIELD;
while (!button_pushed && !finished && !usb_poll_validate_length()) {
WDT_HIT();
- // find reader field
if (cardSTATE == MFEMUL_NOFIELD) {
- int vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
+ // wait for reader HF field
+ int vHf = (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10;
if (vHf > MF_MINFIELDV) {
- LED_A_ON();
- cardSTATE_TO_IDLE();
+ LED_D_ON();
+ cardSTATE = MFEMUL_IDLE;
}
button_pushed = BUTTON_PRESS();
continue;
}
//Now, get data
+ FpgaEnableTracing();
int res = EmGetCmd(receivedCmd, &receivedCmd_len, receivedCmd_par);
-
- if (res == 2) { //Field is off!
- LEDsoff();
+
+ if (res == 2) { // Reader has dropped the HF field. Power off.
+ FpgaDisableTracing();
+ LED_D_OFF();
cardSTATE = MFEMUL_NOFIELD;
continue;
} else if (res == 1) { // button pressed
+ FpgaDisableTracing();
button_pushed = true;
break;
}
// WUPA in HALTED state or REQA or WUPA in any other state
if (receivedCmd_len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) {
EmSendPrecompiledCmd(&responses[ATQA]);
+ FpgaDisableTracing();
// init crypto block
crypto1_destroy(pcs);
if (flags & FLAG_RANDOM_NONCE) {
nonce = prand();
}
- LED_B_OFF();
- LED_C_OFF();
cardSTATE = MFEMUL_SELECT1;
continue;
}
-
+
switch (cardSTATE) {
case MFEMUL_NOFIELD:
case MFEMUL_HALTED:
case MFEMUL_IDLE:{
break;
}
+
case MFEMUL_SELECT1:{
// select all - 0x93 0x20
if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) {
- if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL CL1 received");
EmSendPrecompiledCmd(&responses[UIDBCC1]);
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT ALL CL1 received");
break;
}
// select card - 0x93 0x70 ...
if (receivedCmd_len == 9 &&
(receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC1].response, 4) == 0)) {
- if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL1 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
if (uid_len == 4) {
EmSendPrecompiledCmd(&responses[SAKfinal]);
- LED_B_ON();
cardSTATE = MFEMUL_WORK;
- break;
} else if (uid_len == 7) {
EmSendPrecompiledCmd(&responses[SAK1]);
- cardSTATE = MFEMUL_SELECT2;
- break;
+ cardSTATE = MFEMUL_SELECT2;
}
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT CL1 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
+ break;
}
- cardSTATE_TO_IDLE();
+ cardSTATE = MFEMUL_IDLE;
break;
}
+
case MFEMUL_SELECT2:{
// select all cl2 - 0x95 0x20
if (receivedCmd_len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) {
- if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL CL2 received");
EmSendPrecompiledCmd(&responses[UIDBCC2]);
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT ALL CL2 received");
break;
}
// select cl2 card - 0x95 0x70 xxxxxxxxxxxx
- if (receivedCmd_len == 9 &&
+ if (receivedCmd_len == 9 &&
(receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], responses[UIDBCC2].response, 4) == 0)) {
if (uid_len == 7) {
- if (MF_DBGLEVEL >= 4) Dbprintf("SELECT CL2 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
EmSendPrecompiledCmd(&responses[SAKfinal]);
- LED_B_ON();
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("SELECT CL2 %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]);
cardSTATE = MFEMUL_WORK;
break;
}
}
- cardSTATE_TO_IDLE();
+ cardSTATE = MFEMUL_IDLE;
break;
}
+
case MFEMUL_WORK:{
- if (receivedCmd_len != 4) { // all commands must have exactly 4 bytes
+ if (receivedCmd_len != 4) { // all commands must have exactly 4 bytes
break;
}
bool encrypted_data = (cardAUTHKEY != AUTHKEYNONE) ;
memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len);
}
if (!HasValidCRC(receivedCmd_dec, receivedCmd_len)) { // all commands must have a valid CRC
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_TR));
break;
}
+
if (receivedCmd_dec[0] == MIFARE_AUTH_KEYA || receivedCmd_dec[0] == MIFARE_AUTH_KEYB) {
// if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack
- if (receivedCmd_dec[1] >= 16 * 4 && !(flags & FLAG_NR_AR_ATTACK)) {
+ if (receivedCmd_dec[1] >= num_blocks && !(flags & FLAG_NR_AR_ATTACK)) {
//is this the correct response to an auth on a out of range block? marshmellow
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]);
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking", receivedCmd_dec[0], receivedCmd_dec[1], receivedCmd_dec[1]);
break;
}
- cardAUTHSC = receivedCmd_dec[1] / 4; // received block num
+ cardAUTHSC = BlockToSector(receivedCmd_dec[1]); // received block num
cardAUTHKEY = receivedCmd_dec[0] & 0x01;
crypto1_destroy(pcs);//Added by martin
crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
if (!encrypted_data) { // first authentication
- if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
- crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state
- num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce
+ crypto1_word(pcs, cuid ^ nonce, 0); // Update crypto state
+ num_to_bytes(nonce, 4, response); // Send unencrypted nonce
+ EmSendCmd(response, sizeof(nonce));
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
} else { // nested authentication
- if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
- ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
- num_to_bytes(ans, 4, rAUTH_AT);
+ num_to_bytes(nonce, sizeof(nonce), response);
+ uint8_t pcs_in[4] = {0};
+ num_to_bytes(cuid ^ nonce, sizeof(nonce), pcs_in);
+ mf_crypto1_encryptEx(pcs, response, pcs_in, sizeof(nonce), response_par);
+ EmSendCmdPar(response, sizeof(nonce), response_par); // send encrypted nonce
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d", receivedCmd_dec[1], receivedCmd_dec[1], cardAUTHKEY);
}
- EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
cardSTATE = MFEMUL_AUTH1;
break;
}
- if (!encrypted_data) { // all other commands must be encrypted (authenticated)
+
+ // halt can be sent encrypted or in clear
+ if (receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd_dec[1] == 0x00) {
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("--> HALTED.");
+ cardSTATE = MFEMUL_HALTED;
break;
}
- if(receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK
- || receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK
+
+ if(receivedCmd_dec[0] == MIFARE_CMD_READBLOCK
+ || receivedCmd_dec[0] == MIFARE_CMD_WRITEBLOCK
|| receivedCmd_dec[0] == MIFARE_CMD_INC
|| receivedCmd_dec[0] == MIFARE_CMD_DEC
|| receivedCmd_dec[0] == MIFARE_CMD_RESTORE
|| receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) {
- if (receivedCmd_dec[1] >= 16 * 4) {
+ if (receivedCmd_dec[1] >= num_blocks) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]);
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],receivedCmd_dec[1]);
break;
}
- if (receivedCmd_dec[1] / 4 != cardAUTHSC) {
+ if (BlockToSector(receivedCmd_dec[1]) != cardAUTHSC) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],cardAUTHSC);
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd_dec[0],receivedCmd_dec[1],cardAUTHSC);
break;
}
}
- if (receivedCmd_dec[0] == ISO14443A_CMD_READBLOCK) {
+
+ if (receivedCmd_dec[0] == MIFARE_CMD_READBLOCK) {
uint8_t blockNo = receivedCmd_dec[1];
- if (MF_DBGLEVEL >= 4) {
- Dbprintf("Reader reading block %d (0x%02x)", blockNo, blockNo);
- }
emlGetMem(response, blockNo, 1);
if (IsSectorTrailer(blockNo)) {
- memset(response, 0x00, 6); // keyA can never be read
+ memset(response, 0x00, 6); // keyA can never be read
if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_KEYB_READ)) {
- memset(response+10, 0x00, 6); // keyB cannot be read
+ memset(response+10, 0x00, 6); // keyB cannot be read
}
if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_AC_READ)) {
- memset(response+6, 0x00, 4); // AC bits cannot be read
+ memset(response+6, 0x00, 4); // AC bits cannot be read
}
} else {
if (!IsAccessAllowed(blockNo, cardAUTHKEY, AC_DATA_READ)) {
- memset(response, 0x00, 16); // datablock cannot be read
+ memset(response, 0x00, 16); // datablock cannot be read
}
}
AppendCrc14443a(response, 16);
mf_crypto1_encrypt(pcs, response, 18, response_par);
EmSendCmdPar(response, 18, response_par);
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
+ Dbprintf("Reader reading block %d (0x%02x)", blockNo, blockNo);
+ }
numReads++;
if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
Dbprintf("%d reads done, exiting", numReads);
}
break;
}
- if (receivedCmd_dec[0] == ISO14443A_CMD_WRITEBLOCK) {
+
+ if (receivedCmd_dec[0] == MIFARE_CMD_WRITEBLOCK) {
uint8_t blockNo = receivedCmd_dec[1];
- if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", blockNo, blockNo);
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("RECV 0xA0 write block %d (%02x)", blockNo, blockNo);
cardWRBL = blockNo;
cardSTATE = MFEMUL_WRITEBL2;
break;
}
+
if (receivedCmd_dec[0] == MIFARE_CMD_INC || receivedCmd_dec[0] == MIFARE_CMD_DEC || receivedCmd_dec[0] == MIFARE_CMD_RESTORE) {
uint8_t blockNo = receivedCmd_dec[1];
- if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
if (emlCheckValBl(blockNo)) {
- if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
+ Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
+ }
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking");
break;
}
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) {
+ Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
+ }
cardWRBL = blockNo;
if (receivedCmd_dec[0] == MIFARE_CMD_INC)
cardSTATE = MFEMUL_INTREG_INC;
cardSTATE = MFEMUL_INTREG_REST;
break;
}
+
if (receivedCmd_dec[0] == MIFARE_CMD_TRANSFER) {
uint8_t blockNo = receivedCmd_dec[1];
- if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd_dec[1]))
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
else
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd_dec[0], blockNo, blockNo);
break;
}
- // halt
- if (receivedCmd_dec[0] == ISO14443A_CMD_HALT && receivedCmd_dec[1] == 0x00) {
- if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED.");
- LED_B_OFF();
- LED_C_OFF();
- cardSTATE = MFEMUL_HALTED;
- break;
- }
+
// command not allowed
- if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking");
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Received command not allowed, nacking");
+ cardSTATE = MFEMUL_IDLE;
break;
}
+
case MFEMUL_AUTH1:{
if (receivedCmd_len != 8) {
- cardSTATE_TO_IDLE();
+ cardSTATE = MFEMUL_IDLE;
break;
}
if (ar_nr_collected[i+mM] < 2) {
// if we haven't already collected 2 nonces for this sector
if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) {
- // Avoid duplicates... probably not necessary, ar should vary.
+ // Avoid duplicates... probably not necessary, ar should vary.
if (ar_nr_collected[i+mM]==0) {
// first nonce collect
ar_nr_resp[i+mM].cuid = cuid;
if ( nonce2_count == nonce1_count ) {
// done collecting std test switch to moebius
// first finish incrementing last sample
- ar_nr_collected[i+mM]++;
+ ar_nr_collected[i+mM]++;
// switch to moebius collection
gettingMoebius = true;
mM = ATTACK_KEY_COUNT;
// test if auth OK
if (cardRr != prng_successor(nonce, 64)){
- if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x",
cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B',
cardRr, prng_successor(nonce, 64));
// Shouldn't we respond anything here?
// Right now, we don't nack or anything, which causes the
// reader to do a WUPA after a while. /Martin
// -- which is the correct response. /piwi
- cardAUTHKEY = AUTHKEYNONE; // not authenticated
- cardSTATE_TO_IDLE();
+ cardAUTHKEY = AUTHKEYNONE; // not authenticated
+ cardSTATE = MFEMUL_IDLE;
break;
}
- ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
- num_to_bytes(ans, 4, rAUTH_AT);
- EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
- if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c.", cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B');
- LED_C_ON();
+ ans = prng_successor(nonce, 96);
+ num_to_bytes(ans, 4, response);
+ mf_crypto1_encrypt(pcs, response, 4, response_par);
+ EmSendCmdPar(response, 4, response_par);
+ FpgaDisableTracing();
+ if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("AUTH COMPLETED for sector %d with key %c.", cardAUTHSC, cardAUTHKEY == AUTHKEYA ? 'A' : 'B');
cardSTATE = MFEMUL_WORK;
break;
}
+
case MFEMUL_WRITEBL2:{
if (receivedCmd_len == 18) {
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, receivedCmd_dec);
if (IsSectorTrailer(cardWRBL)) {
emlGetMem(response, cardWRBL, 1);
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYA_WRITE)) {
- memcpy(receivedCmd_dec, response, 6); // don't change KeyA
+ memcpy(receivedCmd_dec, response, 6); // don't change KeyA
}
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_KEYB_WRITE)) {
- memcpy(receivedCmd_dec+10, response+10, 6); // don't change KeyA
+ memcpy(receivedCmd_dec+10, response+10, 6); // don't change KeyA
}
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_AC_WRITE)) {
- memcpy(receivedCmd_dec+6, response+6, 4); // don't change AC bits
+ memcpy(receivedCmd_dec+6, response+6, 4); // don't change AC bits
}
} else {
if (!IsAccessAllowed(cardWRBL, cardAUTHKEY, AC_DATA_WRITE)) {
- memcpy(receivedCmd_dec, response, 16); // don't change anything
+ memcpy(receivedCmd_dec, response, 16); // don't change anything
}
}
emlSetMem(receivedCmd_dec, cardWRBL, 1);
- EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); // always ACK?
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); // always ACK?
cardSTATE = MFEMUL_WORK;
break;
}
}
- cardSTATE_TO_IDLE();
+ cardSTATE = MFEMUL_IDLE;
break;
}
+
case MFEMUL_INTREG_INC:{
if (receivedCmd_len == 6) {
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- cardSTATE_TO_IDLE();
+ cardSTATE = MFEMUL_IDLE;
break;
}
cardINTREG = cardINTREG + ans;
+ cardSTATE = MFEMUL_WORK;
}
- cardSTATE = MFEMUL_WORK;
break;
}
+
case MFEMUL_INTREG_DEC:{
if (receivedCmd_len == 6) {
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- cardSTATE_TO_IDLE();
+ cardSTATE = MFEMUL_IDLE;
break;
}
+ cardINTREG = cardINTREG - ans;
+ cardSTATE = MFEMUL_WORK;
}
- cardINTREG = cardINTREG - ans;
- cardSTATE = MFEMUL_WORK;
break;
}
+
case MFEMUL_INTREG_REST:{
mf_crypto1_decryptEx(pcs, receivedCmd, receivedCmd_len, (uint8_t*)&ans);
if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
- cardSTATE_TO_IDLE();
+ cardSTATE = MFEMUL_IDLE;
break;
}
cardSTATE = MFEMUL_WORK;
break;
}
- }
+
+ } // end of switch
+
+ FpgaDisableTracing();
button_pushed = BUTTON_PRESS();
- }
+
+ } // end of while
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) {
- for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
+ if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= MF_DBG_INFO) {
+ for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) {
if (ar_nr_collected[i] == 2) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
ar_nr_resp[i].ar2 //AR2
);
}
- }
- for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
+ }
+ for ( uint8_t i = ATTACK_KEY_COUNT; i < ATTACK_KEY_COUNT*2; i++) {
if (ar_nr_collected[i] == 2) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i<ATTACK_KEY_COUNT/2) ? "keyA" : "keyB", ar_nr_resp[i].sector);
- Dbprintf("../tools/mfkey/mfkey32v2 %08x %08x %08x %08x %08x %08x %08x",
+ Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x %08x",
ar_nr_resp[i].cuid, //UID
ar_nr_resp[i].nonce, //NT
ar_nr_resp[i].nr, //NR1
}
}
}
- if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen());
+ if (MF_DBGLEVEL >= MF_DBG_INFO) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", get_tracing(), BigBuf_get_traceLen());
if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK
//Send the collected ar_nr in the response
- cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,button_pushed,0,&ar_nr_resp,sizeof(ar_nr_resp));
+ cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, button_pushed, 0, &ar_nr_resp, sizeof(ar_nr_resp));
}
+
+ LED_A_OFF();
}