#include "string.h"
#include "iso15693tools.h"
#include "protocols.h"
-#include "cmd.h"
+#include "usb_cdc.h"
#include "BigBuf.h"
#include "fpgaloader.h"
#define arraylen(x) (sizeof(x)/sizeof((x)[0]))
+// Delays in SSP_CLK ticks.
+// SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
+#define DELAY_READER_TO_ARM 8
+#define DELAY_ARM_TO_READER 0
+//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16
+#define DELAY_ARM_TO_TAG 16
+#define DELAY_TAG_TO_ARM 32
+//SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when snooping. All values should be multiples of 16
+#define DELAY_TAG_TO_ARM_SNOOP 32
+#define DELAY_READER_TO_ARM_SNOOP 32
+
+// times in samples @ 212kHz when acting as reader
+//#define ISO15693_READER_TIMEOUT 80 // 80/212kHz = 378us, nominal t1_max=313,9us
+#define ISO15693_READER_TIMEOUT 330 // 330/212kHz = 1558us, should be even enough for iClass tags responding to ACTALL
+#define ISO15693_READER_TIMEOUT_WRITE 4700 // 4700/212kHz = 22ms, nominal 20ms
+
+
static int DEBUG = 0;
+
///////////////////////////////////////////////////////////////////////
// ISO 15693 Part 2 - Air Interface
// This section basically contains transmission and receiving of bits
///////////////////////////////////////////////////////////////////////
// buffers
-#define ISO15693_DMA_BUFFER_SIZE 2048 // must be a power of 2
+#define ISO15693_DMA_BUFFER_SIZE 256 // must be a power of 2
#define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
#define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
+
+// specific LogTrace function for ISO15693: the duration needs to be scaled because otherwise it won't fit into a uint16_t
+bool LogTrace_ISO15693(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag) {
+ uint32_t duration = timestamp_end - timestamp_start;
+ duration /= 32;
+ timestamp_end = timestamp_start + duration;
+ return LogTrace(btBytes, iLen, timestamp_start, timestamp_end, parity, readerToTag);
+}
+
+
// ---------------------------
// Signal Processing
// ---------------------------
// resulting data rate is 26.48 kbit/s (fc/512)
// cmd ... data
// n ... length of data
-static void CodeIso15693AsReader(uint8_t *cmd, int n)
-{
- int i, j;
+void CodeIso15693AsReader(uint8_t *cmd, int n) {
ToSendReset();
- // Give it a bit of slack at the beginning
- for(i = 0; i < 24; i++) {
- ToSendStuffBit(1);
- }
-
// SOF for 1of4
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- for(i = 0; i < n; i++) {
- for(j = 0; j < 8; j += 2) {
- int these = (cmd[i] >> j) & 3;
+ ToSend[++ToSendMax] = 0x84; //10000100
+
+ // data
+ for (int i = 0; i < n; i++) {
+ for (int j = 0; j < 8; j += 2) {
+ int these = (cmd[i] >> j) & 0x03;
switch(these) {
case 0:
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x40; //01000000
break;
case 1:
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x10; //00010000
break;
case 2:
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x04; //00000100
break;
case 3:
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
+ ToSend[++ToSendMax] = 0x01; //00000001
break;
}
}
}
+
// EOF
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
-
- // Fill remainder of last byte with 1
- for(i = 0; i < 4; i++) {
- ToSendStuffBit(1);
- }
+ ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
+
+ ToSendMax++;
+}
+
+// Encode EOF only
+static void CodeIso15693AsReaderEOF() {
+ ToSendReset();
+ ToSend[++ToSendMax] = 0x20;
ToSendMax++;
}
+
// encode data using "1 out of 256" scheme
// data rate is 1,66 kbit/s (fc/8192)
// is designed for more robust communication over longer distances
static void CodeIso15693AsReader256(uint8_t *cmd, int n)
{
- int i, j;
-
ToSendReset();
- // Give it a bit of slack at the beginning
- for(i = 0; i < 24; i++) {
- ToSendStuffBit(1);
- }
-
// SOF for 1of256
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
-
- for(i = 0; i < n; i++) {
- for (j = 0; j<=255; j++) {
- if (cmd[i]==j) {
- ToSendStuffBit(1);
+ ToSend[++ToSendMax] = 0x81; //10000001
+
+ // data
+ for(int i = 0; i < n; i++) {
+ for (int j = 0; j <= 255; j++) {
+ if (cmd[i] == j) {
ToSendStuffBit(0);
- } else {
- ToSendStuffBit(1);
ToSendStuffBit(1);
+ } else {
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
}
}
}
+
// EOF
- ToSendStuffBit(1);
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- ToSendStuffBit(1);
-
- // Fill remainder of last byte with 1
- for(i = 0; i < 4; i++) {
- ToSendStuffBit(1);
- }
+ ToSend[++ToSendMax] = 0x20; //0010 + 0000 padding
ToSendMax++;
}
// }
// }
+static const uint8_t encode_4bits[16] = { 0xaa, 0x6a, 0x9a, 0x5a, 0xa6, 0x66, 0x96, 0x56, 0xa9, 0x69, 0x99, 0x59, 0xa5, 0x65, 0x95, 0x55 };
+
void CodeIso15693AsTag(uint8_t *cmd, size_t len) {
/*
* SOF comprises 3 parts;
ToSend[++ToSendMax] = 0x1D; // 00011101
// data
- for(int i = 0; i < len; i++) {
- for(int j = 0; j < 8; j++) {
- if ((cmd[i] >> j) & 0x01) {
- ToSendStuffBit(0);
- ToSendStuffBit(1);
- } else {
- ToSendStuffBit(1);
- ToSendStuffBit(0);
- }
- }
+ for (int i = 0; i < len; i++) {
+ ToSend[++ToSendMax] = encode_4bits[cmd[i] & 0xF];
+ ToSend[++ToSendMax] = encode_4bits[cmd[i] >> 4];
}
// EOF
// Transmit the command (to the tag) that was placed in cmd[].
-static void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t start_time)
-{
+void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time) {
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD);
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
- while (GetCountSspClk() < start_time) ;
+ if (*start_time < DELAY_ARM_TO_TAG) {
+ *start_time = DELAY_ARM_TO_TAG;
+ }
+
+ *start_time = (*start_time - DELAY_ARM_TO_TAG) & 0xfffffff0;
+
+ if (GetCountSspClk() > *start_time) { // we may miss the intended time
+ *start_time = (GetCountSspClk() + 16) & 0xfffffff0; // next possible time
+ }
+
+ while (GetCountSspClk() < *start_time)
+ /* wait */ ;
LED_B_ON();
- for(int c = 0; c < len; c++) {
+ for (int c = 0; c < len; c++) {
uint8_t data = cmd[c];
for (int i = 0; i < 8; i++) {
- uint16_t send_word = (data & 0x80) ? 0x0000 : 0xffff;
+ uint16_t send_word = (data & 0x80) ? 0xffff : 0x0000;
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
AT91C_BASE_SSC->SSC_THR = send_word;
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
WDT_HIT();
}
LED_B_OFF();
+
+ *start_time = *start_time + DELAY_ARM_TO_TAG;
}
//-----------------------------------------------------------------------------
// Transmit the tag response (to the reader) that was placed in cmd[].
//-----------------------------------------------------------------------------
-void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t start_time, bool slow) {
+void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow) {
// don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
- uint8_t shift_delay = start_time & 0x00000007;
+ uint32_t modulation_start_time = *start_time - DELAY_ARM_TO_READER + 3 * 8; // no need to transfer the unmodulated start of SOF
- while (GetCountSspClk() < (start_time & 0xfffffff8)) ;
+ while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time
+ if (slot_time) {
+ modulation_start_time += slot_time; // use next available slot
+ } else {
+ modulation_start_time = (modulation_start_time & 0xfffffff8) + 8; // next possible time
+ }
+ }
+
+ while (GetCountSspClk() < (modulation_start_time & 0xfffffff8))
+ /* wait */ ;
+
+ uint8_t shift_delay = modulation_start_time & 0x00000007;
+
+ *start_time = modulation_start_time + DELAY_ARM_TO_READER - 3 * 8;
LED_C_ON();
uint8_t bits_to_shift = 0x00;
uint8_t bits_to_send = 0x00;
- for(size_t c = 0; c < len; c++) {
- for (int i = 7; i >= 0; i--) {
+ for (size_t c = 0; c < len; c++) {
+ for (int i = (c==0?4:7); i >= 0; i--) {
uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00;
for (int j = 0; j < (slow?4:1); ) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
}
}
LED_C_OFF();
-
}
// false if we are still waiting for some more
//=============================================================================
-#define NOISE_THRESHOLD 160 // don't try to correlate noise
+#define NOISE_THRESHOLD 80 // don't try to correlate noise
+#define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD)
typedef struct DecodeTag {
enum {
STATE_TAG_SOF_LOW,
+ STATE_TAG_SOF_RISING_EDGE,
STATE_TAG_SOF_HIGH,
STATE_TAG_SOF_HIGH_END,
STATE_TAG_RECEIVING_DATA,
- STATE_TAG_EOF
+ STATE_TAG_EOF,
+ STATE_TAG_EOF_TAIL
} state;
int bitCount;
int posCount;
uint8_t *output;
int len;
int sum1, sum2;
+ int threshold_sof;
+ int threshold_half;
+ uint16_t previous_amplitude;
} DecodeTag_t;
-static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint16_t amplitude, DecodeTag_t *DecodeTag)
-{
- switch(DecodeTag->state) {
+static int inline __attribute__((always_inline)) Handle15693SamplesFromTag(uint16_t amplitude, DecodeTag_t *DecodeTag) {
+ switch (DecodeTag->state) {
case STATE_TAG_SOF_LOW:
- // waiting for 12 times low (11 times low is accepted as well)
- if (amplitude < NOISE_THRESHOLD) {
- DecodeTag->posCount++;
- } else {
+ // waiting for a rising edge
+ if (amplitude > NOISE_THRESHOLD + DecodeTag->previous_amplitude) {
if (DecodeTag->posCount > 10) {
- DecodeTag->posCount = 1;
- DecodeTag->sum1 = 0;
- DecodeTag->state = STATE_TAG_SOF_HIGH;
+ DecodeTag->threshold_sof = amplitude - DecodeTag->previous_amplitude; // to be divided by 2
+ DecodeTag->threshold_half = 0;
+ DecodeTag->state = STATE_TAG_SOF_RISING_EDGE;
} else {
DecodeTag->posCount = 0;
}
+ } else {
+ DecodeTag->posCount++;
+ DecodeTag->previous_amplitude = amplitude;
}
break;
+ case STATE_TAG_SOF_RISING_EDGE:
+ if (amplitude > DecodeTag->threshold_sof + DecodeTag->previous_amplitude) { // edge still rising
+ if (amplitude > DecodeTag->threshold_sof + DecodeTag->threshold_sof) { // steeper edge, take this as time reference
+ DecodeTag->posCount = 1;
+ } else {
+ DecodeTag->posCount = 2;
+ }
+ DecodeTag->threshold_sof = (amplitude - DecodeTag->previous_amplitude) / 2;
+ } else {
+ DecodeTag->posCount = 2;
+ DecodeTag->threshold_sof = DecodeTag->threshold_sof/2;
+ }
+ // DecodeTag->posCount = 2;
+ DecodeTag->state = STATE_TAG_SOF_HIGH;
+ break;
+
case STATE_TAG_SOF_HIGH:
// waiting for 10 times high. Take average over the last 8
- if (amplitude > NOISE_THRESHOLD) {
+ if (amplitude > DecodeTag->threshold_sof) {
DecodeTag->posCount++;
if (DecodeTag->posCount > 2) {
- DecodeTag->sum1 += amplitude; // keep track of average high value
+ DecodeTag->threshold_half += amplitude; // keep track of average high value
}
if (DecodeTag->posCount == 10) {
- DecodeTag->sum1 >>= 4; // calculate half of average high value (8 samples)
+ DecodeTag->threshold_half >>= 2; // (4 times 1/2 average)
DecodeTag->state = STATE_TAG_SOF_HIGH_END;
}
} else { // high phase was too short
DecodeTag->posCount = 1;
+ DecodeTag->previous_amplitude = amplitude;
DecodeTag->state = STATE_TAG_SOF_LOW;
}
break;
case STATE_TAG_SOF_HIGH_END:
- // waiting for a falling edge
- if (amplitude < DecodeTag->sum1) { // signal drops below 50% average high: a falling edge
+ // check for falling edge
+ if (DecodeTag->posCount == 13 && amplitude < DecodeTag->threshold_sof) {
DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF (12 samples low and 12 samples high)
DecodeTag->shiftReg = 0;
DecodeTag->bitCount = 0;
DecodeTag->sum2 = 0;
DecodeTag->posCount = 2;
DecodeTag->state = STATE_TAG_RECEIVING_DATA;
+ // FpgaDisableTracing(); // DEBUGGING
+ // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
+ // amplitude,
+ // DecodeTag->threshold_sof,
+ // DecodeTag->threshold_half/4,
+ // DecodeTag->previous_amplitude); // DEBUGGING
LED_C_ON();
} else {
DecodeTag->posCount++;
if (DecodeTag->posCount > 13) { // high phase too long
DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = amplitude;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
break;
case STATE_TAG_RECEIVING_DATA:
+ // FpgaDisableTracing(); // DEBUGGING
+ // Dbprintf("amplitude = %d, threshold_sof = %d, threshold_half/4 = %d, previous_amplitude = %d",
+ // amplitude,
+ // DecodeTag->threshold_sof,
+ // DecodeTag->threshold_half/4,
+ // DecodeTag->previous_amplitude); // DEBUGGING
if (DecodeTag->posCount == 1) {
DecodeTag->sum1 = 0;
DecodeTag->sum2 = 0;
DecodeTag->sum2 += amplitude;
}
if (DecodeTag->posCount == 8) {
- int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
- int32_t corr_0 = -corr_1;
- int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
- if (corr_EOF > corr_0 && corr_EOF > corr_1) {
+ if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in both halves
if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF
DecodeTag->state = STATE_TAG_EOF;
} else {
DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = amplitude;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
- } else if (corr_1 > corr_0) {
+ } else if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 > DecodeTag->threshold_half) { // modulation in second half
// logic 1
if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF
DecodeTag->lastBit = SOF_PART2; // SOF completed
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
DecodeTag->len++;
+ // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
- DecodeTag->posCount = 0;
- DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
+ return true;
}
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
}
- } else {
+ } else if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
// logic 0
if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF
DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = amplitude;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
} else {
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
DecodeTag->len++;
+ // if (DecodeTag->shiftReg == 0x12 && DecodeTag->len == 1) FpgaDisableTracing(); // DEBUGGING
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = amplitude;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
}
DecodeTag->shiftReg = 0;
}
}
+ } else { // no modulation
+ if (DecodeTag->lastBit == SOF_PART2) { // only SOF (this is OK for iClass)
+ LED_C_OFF();
+ return true;
+ } else {
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
+ }
}
DecodeTag->posCount = 0;
}
DecodeTag->sum2 += amplitude;
}
if (DecodeTag->posCount == 8) {
- int32_t corr_1 = DecodeTag->sum2 - DecodeTag->sum1;
- int32_t corr_0 = -corr_1;
- int32_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 2;
- if (corr_EOF > corr_0 || corr_1 > corr_0) {
+ if (DecodeTag->sum1 > DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // modulation in first half
+ DecodeTag->posCount = 0;
+ DecodeTag->state = STATE_TAG_EOF_TAIL;
+ } else {
DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = amplitude;
DecodeTag->state = STATE_TAG_SOF_LOW;
LED_C_OFF();
- } else {
+ }
+ }
+ DecodeTag->posCount++;
+ break;
+
+ case STATE_TAG_EOF_TAIL:
+ if (DecodeTag->posCount == 1) {
+ DecodeTag->sum1 = 0;
+ DecodeTag->sum2 = 0;
+ }
+ if (DecodeTag->posCount <= 4) {
+ DecodeTag->sum1 += amplitude;
+ } else {
+ DecodeTag->sum2 += amplitude;
+ }
+ if (DecodeTag->posCount == 8) {
+ if (DecodeTag->sum1 < DecodeTag->threshold_half && DecodeTag->sum2 < DecodeTag->threshold_half) { // no modulation in both halves
LED_C_OFF();
return true;
+ } else {
+ DecodeTag->posCount = 0;
+ DecodeTag->previous_amplitude = amplitude;
+ DecodeTag->state = STATE_TAG_SOF_LOW;
+ LED_C_OFF();
}
}
DecodeTag->posCount++;
break;
-
}
return false;
}
-static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len)
-{
+static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data, uint16_t max_len) {
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
DecodeTag->posCount = 0;
DecodeTag->state = STATE_TAG_SOF_LOW;
DecodeTag->output = data;
}
-static void DecodeTagReset(DecodeTag_t *DecodeTag)
-{
+static void DecodeTagReset(DecodeTag_t *DecodeTag) {
DecodeTag->posCount = 0;
DecodeTag->state = STATE_TAG_SOF_LOW;
+ DecodeTag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE;
}
/*
* Receive and decode the tag response, also log to tracebuffer
*/
-static int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, int timeout)
-{
+int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time) {
+
int samples = 0;
- bool gotFrame = false;
+ int ret = 0;
- uint16_t *dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t));
+ uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
// the Decoder data structure
DecodeTag_t DecodeTag = { 0 };
// Setup and start DMA.
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ uint32_t dma_start_time = 0;
uint16_t *upTo = dmaBuf;
for(;;) {
if (behindBy == 0) continue;
+ samples++;
+ if (samples == 1) {
+ // DMA has transferred the very first data
+ dma_start_time = GetCountSspClk() & 0xfffffff0;
+ }
+
uint16_t tagdata = *upTo++;
if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
upTo = dmaBuf; // start reading the circular buffer from the beginning
- if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
+ if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
+ ret = -1;
break;
}
}
AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
}
- samples++;
-
if (Handle15693SamplesFromTag(tagdata, &DecodeTag)) {
- gotFrame = true;
+ *eof_time = dma_start_time + samples*16 - DELAY_TAG_TO_ARM; // end of EOF
+ if (DecodeTag.lastBit == SOF_PART2) {
+ *eof_time -= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
+ }
+ if (DecodeTag.len > DecodeTag.max_len) {
+ ret = -2; // buffer overflow
+ }
break;
}
if (samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) {
- DecodeTag.len = 0;
+ ret = -1; // timeout
break;
}
}
FpgaDisableSscDma();
- BigBuf_free();
- if (DEBUG) Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
- samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
+ if (DEBUG) Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d",
+ samples, ret, DecodeTag.state, DecodeTag.lastBit, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
- if (DecodeTag.len > 0) {
- LogTrace(DecodeTag.output, DecodeTag.len, 0, 0, NULL, false);
+ if (ret < 0) {
+ return ret;
}
+ uint32_t sof_time = *eof_time
+ - DecodeTag.len * 8 * 8 * 16 // time for byte transfers
+ - 32 * 16 // time for SOF transfer
+ - (DecodeTag.lastBit != SOF_PART2?32*16:0); // time for EOF transfer
+
+ if (DEBUG) Dbprintf("timing: sof_time = %d, eof_time = %d", sof_time, *eof_time);
+
+ LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, sof_time*4, *eof_time*4, NULL, false);
+
return DecodeTag.len;
}
STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF,
STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4,
STATE_READER_RECEIVE_DATA_1_OUT_OF_4,
- STATE_READER_RECEIVE_DATA_1_OUT_OF_256
+ STATE_READER_RECEIVE_DATA_1_OUT_OF_256,
+ STATE_READER_RECEIVE_JAMMING
} state;
enum {
CODING_1_OUT_OF_4,
int posCount;
int sum1, sum2;
uint8_t *output;
+ uint8_t jam_search_len;
+ uint8_t *jam_search_string;
} DecodeReader_t;
-static void DecodeReaderInit(DecodeReader_t* DecodeReader, uint8_t *data, uint16_t max_len)
-{
+static void DecodeReaderInit(DecodeReader_t* DecodeReader, uint8_t *data, uint16_t max_len, uint8_t jam_search_len, uint8_t *jam_search_string) {
DecodeReader->output = data;
DecodeReader->byteCountMax = max_len;
DecodeReader->state = STATE_READER_UNSYNCD;
DecodeReader->bitCount = 0;
DecodeReader->posCount = 1;
DecodeReader->shiftReg = 0;
+ DecodeReader->jam_search_len = jam_search_len;
+ DecodeReader->jam_search_string = jam_search_string;
}
-static void DecodeReaderReset(DecodeReader_t* DecodeReader)
-{
+static void DecodeReaderReset(DecodeReader_t* DecodeReader) {
DecodeReader->state = STATE_READER_UNSYNCD;
}
-static int inline __attribute__((always_inline)) Handle15693SampleFromReader(uint8_t bit, DecodeReader_t *restrict DecodeReader)
-{
+static int inline __attribute__((always_inline)) Handle15693SampleFromReader(bool bit, DecodeReader_t *DecodeReader) {
switch (DecodeReader->state) {
case STATE_READER_UNSYNCD:
// wait for unmodulated carrier
break;
case STATE_READER_RECEIVE_DATA_1_OUT_OF_4:
- bit = !!bit;
DecodeReader->posCount++;
if (DecodeReader->posCount == 1) {
- DecodeReader->sum1 = bit;
+ DecodeReader->sum1 = bit?1:0;
} else if (DecodeReader->posCount <= 4) {
- DecodeReader->sum1 += bit;
+ if (bit) DecodeReader->sum1++;
} else if (DecodeReader->posCount == 5) {
- DecodeReader->sum2 = bit;
+ DecodeReader->sum2 = bit?1:0;
} else {
- DecodeReader->sum2 += bit;
+ if (bit) DecodeReader->sum2++;
}
if (DecodeReader->posCount == 8) {
DecodeReader->posCount = 0;
if (DecodeReader->byteCount != 0) {
return true;
}
- }
- if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected a 2bit position
+ } else if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected a 2bit position
DecodeReader->shiftReg >>= 2;
DecodeReader->shiftReg |= (DecodeReader->bitCount << 6);
}
}
DecodeReader->bitCount = 0;
DecodeReader->shiftReg = 0;
+ if (DecodeReader->byteCount == DecodeReader->jam_search_len) {
+ if (!memcmp(DecodeReader->output, DecodeReader->jam_search_string, DecodeReader->jam_search_len)) {
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_JAM);
+ DecodeReader->state = STATE_READER_RECEIVE_JAMMING;
+ }
+ }
} else {
DecodeReader->bitCount++;
}
break;
case STATE_READER_RECEIVE_DATA_1_OUT_OF_256:
- bit = !!bit;
DecodeReader->posCount++;
if (DecodeReader->posCount == 1) {
- DecodeReader->sum1 = bit;
+ DecodeReader->sum1 = bit?1:0;
} else if (DecodeReader->posCount <= 4) {
- DecodeReader->sum1 += bit;
+ if (bit) DecodeReader->sum1++;
} else if (DecodeReader->posCount == 5) {
- DecodeReader->sum2 = bit;
- } else {
- DecodeReader->sum2 += bit;
+ DecodeReader->sum2 = bit?1:0;
+ } else if (bit) {
+ DecodeReader->sum2++;
}
if (DecodeReader->posCount == 8) {
DecodeReader->posCount = 0;
if (DecodeReader->byteCount != 0) {
return true;
}
- }
- if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected the bit position
+ } else if (DecodeReader->sum1 >= 3 && DecodeReader->sum2 <= 1) { // detected the bit position
DecodeReader->shiftReg = DecodeReader->bitCount;
}
if (DecodeReader->bitCount == 255) { // we have a full byte
LED_B_OFF();
DecodeReaderReset(DecodeReader);
}
+ if (DecodeReader->byteCount == DecodeReader->jam_search_len) {
+ if (!memcmp(DecodeReader->output, DecodeReader->jam_search_string, DecodeReader->jam_search_len)) {
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_JAM);
+ DecodeReader->state = STATE_READER_RECEIVE_JAMMING;
+ }
+ }
}
DecodeReader->bitCount++;
}
break;
+ case STATE_READER_RECEIVE_JAMMING:
+ DecodeReader->posCount++;
+ if (DecodeReader->Coding == CODING_1_OUT_OF_4) {
+ if (DecodeReader->posCount == 7*16) { // 7 bits jammed
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE); // stop jamming
+ // FpgaDisableTracing();
+ LED_D_OFF();
+ } else if (DecodeReader->posCount == 8*16) {
+ DecodeReader->posCount = 0;
+ DecodeReader->output[DecodeReader->byteCount++] = 0x00;
+ DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4;
+ }
+ } else {
+ if (DecodeReader->posCount == 7*256) { // 7 bits jammend
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE); // stop jamming
+ LED_D_OFF();
+ } else if (DecodeReader->posCount == 8*256) {
+ DecodeReader->posCount = 0;
+ DecodeReader->output[DecodeReader->byteCount++] = 0x00;
+ DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256;
+ }
+ }
+ break;
+
default:
LED_B_OFF();
DecodeReaderReset(DecodeReader);
// the decoder data structure
DecodeReader_t DecodeReader = {0};
- DecodeReaderInit(&DecodeReader, received, max_len);
+ DecodeReaderInit(&DecodeReader, received, max_len, 0, NULL);
// wait for last transfer to complete
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
for (int i = 7; i >= 0; i--) {
if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) {
- *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM_SIM; // end of EOF
+ *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM; // end of EOF
gotFrame = true;
break;
}
- DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128:2048) // time for byte transfers
- 32 // time for SOF transfer
- 16; // time for EOF transfer
- LogTrace(DecodeReader.output, DecodeReader.byteCount, sof_time, *eof_time, NULL, true);
+ LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*32, *eof_time*32, NULL, true);
}
return DecodeReader.byteCount;
}
-// Encode (into the ToSend buffers) an identify request, which is the first
+// Construct an identify (Inventory) request, which is the first
// thing that you must send to a tag to get a response.
-static void BuildIdentifyRequest(void)
-{
- uint8_t cmd[5];
-
+static void BuildIdentifyRequest(uint8_t *cmd) {
uint16_t crc;
// one sub-carrier, inventory, 1 slot, fast rate
- // AFI is at bit 5 (1<<4) when doing an INVENTORY
- cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
+ cmd[0] = ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1 | ISO15693_REQ_DATARATE_HIGH;
// inventory command code
cmd[1] = 0x01;
// no mask
crc = Iso15693Crc(cmd, 3);
cmd[3] = crc & 0xff;
cmd[4] = crc >> 8;
-
- CodeIso15693AsReader(cmd, sizeof(cmd));
}
// for the response. The response is not demodulated, just left in the buffer
// so that it can be downloaded to a PC and processed there.
//-----------------------------------------------------------------------------
-void AcquireRawAdcSamplesIso15693(void)
-{
- LEDsoff();
+void AcquireRawAdcSamplesIso15693(void) {
LED_A_ON();
uint8_t *dest = BigBuf_get_addr();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
+ LED_D_ON();
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- BuildIdentifyRequest();
+ uint8_t cmd[5];
+ BuildIdentifyRequest(cmd);
+ CodeIso15693AsReader(cmd, sizeof(cmd));
// Give the tags time to energize
- LED_D_ON();
SpinDelay(100);
// Now send the command
- TransmitTo15693Tag(ToSend, ToSendMax, 0);
+ uint32_t start_time = 0;
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
// wait for last transfer to complete
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) ;
}
-void SnoopIso15693(void)
-{
+void SnoopIso15693(uint8_t jam_search_len, uint8_t *jam_search_string) {
+
LED_A_ON();
+
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- BigBuf_free();
clear_trace();
set_tracing(true);
// The DMA buffer, used to stream samples from the FPGA
- uint16_t* dmaBuf = (uint16_t*)BigBuf_malloc(ISO15693_DMA_BUFFER_SIZE*sizeof(uint16_t));
- uint16_t *upTo;
+ uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
// Count of samples received so far, so that we can include timing
// information in the trace buffer.
uint8_t response[ISO15693_MAX_RESPONSE_LENGTH];
DecodeTagInit(&DecodeTag, response, sizeof(response));
- DecodeReader_t DecodeReader = {0};;
+ DecodeReader_t DecodeReader = {0};
uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
- DecodeReaderInit(&DecodeReader, cmd, sizeof(cmd));
+ DecodeReaderInit(&DecodeReader, cmd, sizeof(cmd), jam_search_len, jam_search_string);
// Print some debug information about the buffer sizes
if (DEBUG) {
Dbprintf("Snoop started. Press PM3 Button to stop.");
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNOOP_AMPLITUDE);
+ LED_D_OFF();
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
- // Setup for the DMA.
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
- upTo = dmaBuf;
+ StartCountSspClk();
FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
bool TagIsActive = false;
bool ReaderIsActive = false;
bool ExpectTagAnswer = false;
+ uint32_t dma_start_time = 0;
+ uint16_t *upTo = dmaBuf;
+ uint16_t max_behindBy = 0;
+
// And now we loop, receiving samples.
for(;;) {
uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (ISO15693_DMA_BUFFER_SIZE-1);
-
+ if (behindBy > max_behindBy) {
+ max_behindBy = behindBy;
+ }
+
if (behindBy == 0) continue;
+ samples++;
+ if (samples == 1) {
+ // DMA has transferred the very first data
+ dma_start_time = GetCountSspClk() & 0xfffffff0;
+ }
+
uint16_t snoopdata = *upTo++;
- if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
+ if (upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
upTo = dmaBuf; // start reading the circular buffer from the beginning
- if(behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
+ if (behindBy > (9*ISO15693_DMA_BUFFER_SIZE/10)) {
+ // FpgaDisableTracing();
Dbprintf("About to blow circular buffer - aborted! behindBy=%d, samples=%d", behindBy, samples);
break;
}
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
WDT_HIT();
- if(BUTTON_PRESS()) {
+ if (BUTTON_PRESS()) {
DbpString("Snoop stopped.");
break;
}
}
}
- samples++;
- if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
+ if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
if (Handle15693SampleFromReader(snoopdata & 0x02, &DecodeReader)) {
- FpgaDisableSscDma();
- ExpectTagAnswer = true;
- LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
+ // FpgaDisableSscDma();
+ uint32_t eof_time = dma_start_time + samples*16 + 8 - DELAY_READER_TO_ARM_SNOOP; // end of EOF
+ if (DecodeReader.byteCount > 0) {
+ uint32_t sof_time = eof_time
+ - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128*16:2048*16) // time for byte transfers
+ - 32*16 // time for SOF transfer
+ - 16*16; // time for EOF transfer
+ LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*4, eof_time*4, NULL, true);
+ }
/* And ready to receive another command. */
DecodeReaderReset(&DecodeReader);
/* And also reset the demod code, which might have been */
/* false-triggered by the commands from the reader. */
DecodeTagReset(&DecodeTag);
- upTo = dmaBuf;
- FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
- }
- if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) {
- FpgaDisableSscDma();
+ ReaderIsActive = false;
ExpectTagAnswer = true;
- LogTrace(DecodeReader.output, DecodeReader.byteCount, samples, samples, NULL, true);
+ // upTo = dmaBuf;
+ // samples = 0;
+ // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ // continue;
+ } else if (Handle15693SampleFromReader(snoopdata & 0x01, &DecodeReader)) {
+ // FpgaDisableSscDma();
+ uint32_t eof_time = dma_start_time + samples*16 + 16 - DELAY_READER_TO_ARM_SNOOP; // end of EOF
+ if (DecodeReader.byteCount > 0) {
+ uint32_t sof_time = eof_time
+ - DecodeReader.byteCount * (DecodeReader.Coding==CODING_1_OUT_OF_4?128*16:2048*16) // time for byte transfers
+ - 32*16 // time for SOF transfer
+ - 16*16; // time for EOF transfer
+ LogTrace_ISO15693(DecodeReader.output, DecodeReader.byteCount, sof_time*4, eof_time*4, NULL, true);
+ }
/* And ready to receive another command. */
DecodeReaderReset(&DecodeReader);
/* And also reset the demod code, which might have been */
/* false-triggered by the commands from the reader. */
DecodeTagReset(&DecodeTag);
- upTo = dmaBuf;
- FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ ReaderIsActive = false;
+ ExpectTagAnswer = true;
+ // upTo = dmaBuf;
+ // samples = 0;
+ // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ // continue;
+ } else {
+ ReaderIsActive = (DecodeReader.state >= STATE_READER_RECEIVE_DATA_1_OUT_OF_4);
}
- ReaderIsActive = (DecodeReader.state >= STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF);
}
if (!ReaderIsActive && ExpectTagAnswer) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet
if (Handle15693SamplesFromTag(snoopdata >> 2, &DecodeTag)) {
- FpgaDisableSscDma();
- //Use samples as a time measurement
- LogTrace(DecodeTag.output, DecodeTag.len, samples, samples, NULL, false);
+ // FpgaDisableSscDma();
+ uint32_t eof_time = dma_start_time + samples*16 - DELAY_TAG_TO_ARM_SNOOP; // end of EOF
+ if (DecodeTag.lastBit == SOF_PART2) {
+ eof_time -= 8*16; // needed 8 additional samples to confirm single SOF (iCLASS)
+ }
+ uint32_t sof_time = eof_time
+ - DecodeTag.len * 8 * 8 * 16 // time for byte transfers
+ - 32 * 16 // time for SOF transfer
+ - (DecodeTag.lastBit != SOF_PART2?32*16:0); // time for EOF transfer
+ LogTrace_ISO15693(DecodeTag.output, DecodeTag.len, sof_time*4, eof_time*4, NULL, false);
// And ready to receive another response.
DecodeTagReset(&DecodeTag);
DecodeReaderReset(&DecodeReader);
ExpectTagAnswer = false;
- upTo = dmaBuf;
- FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ TagIsActive = false;
+ // upTo = dmaBuf;
+ // samples = 0;
+ // FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
+ // continue;
+ } else {
+ TagIsActive = (DecodeTag.state >= STATE_TAG_RECEIVING_DATA);
}
- TagIsActive = (DecodeTag.state >= STATE_TAG_RECEIVING_DATA);
}
}
FpgaDisableSscDma();
- BigBuf_free();
-
- LEDsoff();
DbpString("Snoop statistics:");
- Dbprintf(" ExpectTagAnswer: %d", ExpectTagAnswer);
+ Dbprintf(" ExpectTagAnswer: %d, TagIsActive: %d, ReaderIsActive: %d", ExpectTagAnswer, TagIsActive, ReaderIsActive);
Dbprintf(" DecodeTag State: %d", DecodeTag.state);
Dbprintf(" DecodeTag byteCnt: %d", DecodeTag.len);
+ Dbprintf(" DecodeTag posCount: %d", DecodeTag.posCount);
Dbprintf(" DecodeReader State: %d", DecodeReader.state);
Dbprintf(" DecodeReader byteCnt: %d", DecodeReader.byteCount);
+ Dbprintf(" DecodeReader posCount: %d", DecodeReader.posCount);
Dbprintf(" Trace length: %d", BigBuf_get_traceLen());
+ Dbprintf(" Max behindBy: %d", max_behindBy);
}
// Initialize the proxmark as iso15k reader
-static void Iso15693InitReader() {
+void Iso15693InitReader(void) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
- // Setup SSC
- // FpgaSetupSsc();
- // Start from off (no field generated)
- LED_D_OFF();
+ // switch field off and wait until tag resets
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_D_OFF();
SpinDelay(10);
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ // switch field on
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
+ LED_D_ON();
+
+ // initialize SSC and select proper AD input
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- // Give the tags time to energize
- LED_D_ON();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
+ // give tags some time to energize
SpinDelay(250);
}
// uid is in transmission order (which is reverse of display order)
-static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber )
-{
- uint8_t cmd[13];
-
+static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber, uint8_t *cmd) {
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the security status of the block
// followed by the block data
cmd[11] = crc & 0xff;
cmd[12] = crc >> 8;
- CodeIso15693AsReader(cmd, sizeof(cmd));
}
// Now the VICC>VCD responses when we are simulating a tag
-static void BuildInventoryResponse(uint8_t *uid)
-{
+static void BuildInventoryResponse(uint8_t *uid) {
uint8_t cmd[12];
uint16_t crc;
// init ... should we initialize the reader?
// speed ... 0 low speed, 1 hi speed
// *recv will contain the tag's answer
-// return: lenght of received data
-int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time) {
-
- LED_A_ON();
- LED_B_OFF();
- LED_C_OFF();
+// return: length of received data, or -1 for timeout
+int SendDataTag(uint8_t *send, int sendlen, bool init, bool speed_fast, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time) {
- if (init) Iso15693InitReader();
+ if (init) {
+ Iso15693InitReader();
+ StartCountSspClk();
+ }
- int answerLen=0;
+ int answerLen = 0;
- if (!speed) {
- // low speed (1 out of 256)
- CodeIso15693AsReader256(send, sendlen);
- } else {
+ if (speed_fast) {
// high speed (1 out of 4)
CodeIso15693AsReader(send, sendlen);
+ } else {
+ // low speed (1 out of 256)
+ CodeIso15693AsReader256(send, sendlen);
}
- TransmitTo15693Tag(ToSend, ToSendMax, start_time);
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
+ uint32_t end_time = start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF
+ LogTrace_ISO15693(send, sendlen, start_time*4, end_time*4, NULL, true);
// Now wait for a response
if (recv != NULL) {
- answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, DELAY_ISO15693_VCD_TO_VICC_READER * 2);
+ answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, timeout, eof_time);
}
- LED_A_OFF();
+ return answerLen;
+}
+
+
+int SendDataTagEOF(uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time) {
+
+ int answerLen = 0;
+
+ CodeIso15693AsReaderEOF();
+
+ TransmitTo15693Tag(ToSend, ToSendMax, &start_time);
+ uint32_t end_time = start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF
+ LogTrace_ISO15693(NULL, 0, start_time*4, end_time*4, NULL, true);
+
+ // Now wait for a response
+ if (recv != NULL) {
+ answerLen = GetIso15693AnswerFromTag(recv, max_recv_len, timeout, eof_time);
+ }
return answerLen;
}
// Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector.
// all demodulation performed in arm rather than host. - greg
//---------------------------------------------------------------------------------------
-void ReaderIso15693(uint32_t parameter)
-{
- LEDsoff();
+void ReaderIso15693(uint32_t parameter) {
+
LED_A_ON();
set_tracing(true);
- int answerLen = 0;
uint8_t TagUID[8] = {0x00};
-
- FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
-
uint8_t answer[ISO15693_MAX_RESPONSE_LENGTH];
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- // Setup SSC
- FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
-
- // Start from off (no field generated)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
-
- // Give the tags time to energize
- LED_D_ON();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
- SpinDelay(200);
- StartCountSspClk();
-
-
// FIRST WE RUN AN INVENTORY TO GET THE TAG UID
// THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
// Now send the IDENTIFY command
- BuildIdentifyRequest();
- TransmitTo15693Tag(ToSend, ToSendMax, 0);
-
- // Now wait for a response
- answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2) ;
- uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
+ uint8_t cmd[5];
+ BuildIdentifyRequest(cmd);
+ uint32_t start_time = 0;
+ uint32_t eof_time;
+ int answerLen = SendDataTag(cmd, sizeof(cmd), true, true, answer, sizeof(answer), start_time, ISO15693_READER_TIMEOUT, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
- if (answerLen >=12) // we should do a better check than this
- {
+ if (answerLen >= 12) { // we should do a better check than this
TagUID[0] = answer[2];
TagUID[1] = answer[3];
TagUID[2] = answer[4];
TagUID[5] = answer[7];
TagUID[6] = answer[8]; // IC Manufacturer code
TagUID[7] = answer[9]; // always E0
-
}
Dbprintf("%d octets read from IDENTIFY request:", answerLen);
TagUID[7],TagUID[6],TagUID[5],TagUID[4],
TagUID[3],TagUID[2],TagUID[1],TagUID[0]);
-
- // Dbprintf("%d octets read from SELECT request:", answerLen2);
- // DbdecodeIso15693Answer(answerLen2,answer2);
- // Dbhexdump(answerLen2,answer2,true);
-
- // Dbprintf("%d octets read from XXX request:", answerLen3);
- // DbdecodeIso15693Answer(answerLen3,answer3);
- // Dbhexdump(answerLen3,answer3,true);
-
// read all pages
if (answerLen >= 12 && DEBUG) {
for (int i = 0; i < 32; i++) { // sanity check, assume max 32 pages
- BuildReadBlockRequest(TagUID, i);
- TransmitTo15693Tag(ToSend, ToSendMax, start_time);
- int answerLen = GetIso15693AnswerFromTag(answer, sizeof(answer), DELAY_ISO15693_VCD_TO_VICC_READER * 2);
- start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
+ uint8_t cmd[13];
+ BuildReadBlockRequest(TagUID, i, cmd);
+ answerLen = SendDataTag(cmd, sizeof(cmd), false, true, answer, sizeof(answer), start_time, ISO15693_READER_TIMEOUT, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
if (answerLen > 0) {
Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen);
DbdecodeIso15693Answer(answerLen, answer);
}
}
- // for the time being, switch field off to protect rdv4.0
+ // for the time being, switch field off to protect RDV4
// note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
}
-// Simulate an ISO15693 TAG.
-// For Inventory command: print command and send Inventory Response with given UID
-// TODO: interpret other reader commands and send appropriate response
-void SimTagIso15693(uint32_t parameter, uint8_t *uid)
-{
- LEDsoff();
- LED_A_ON();
-
+// Initialize the proxmark as iso15k tag
+void Iso15693InitTag(void) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
+ LED_D_OFF();
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
-
StartCountSspClk();
+}
- uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
+
+// Simulate an ISO15693 TAG.
+// For Inventory command: print command and send Inventory Response with given UID
+// TODO: interpret other reader commands and send appropriate response
+void SimTagIso15693(uint32_t parameter, uint8_t *uid) {
+
+ LED_A_ON();
+
+ Iso15693InitTag();
// Build a suitable response to the reader INVENTORY command
BuildInventoryResponse(uid);
// Listen to reader
while (!BUTTON_PRESS()) {
+ uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
uint32_t eof_time = 0, start_time = 0;
int cmd_len = GetIso15693CommandFromReader(cmd, sizeof(cmd), &eof_time);
if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
- start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM - DELAY_ARM_TO_READER_SIM;
- TransmitTo15693Reader(ToSend, ToSendMax, start_time, slow);
+ start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM;
+ TransmitTo15693Reader(ToSend, ToSendMax, &start_time, 0, slow);
}
Dbprintf("%d bytes read from reader:", cmd_len);
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LEDsoff();
+ LED_D_OFF();
+ LED_A_OFF();
}
// Since there is no standardized way of reading the AFI out of a tag, we will brute force it
// (some manufactures offer a way to read the AFI, though)
-void BruteforceIso15693Afi(uint32_t speed)
-{
- LEDsoff();
+void BruteforceIso15693Afi(uint32_t speed) {
LED_A_ON();
uint8_t data[6];
uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH];
-
- int datalen=0, recvlen=0;
-
- Iso15693InitReader();
- StartCountSspClk();
+ int datalen = 0, recvlen = 0;
+ uint32_t eof_time;
// first without AFI
// Tags should respond without AFI and with AFI=0 even when AFI is active
data[1] = ISO15693_INVENTORY;
data[2] = 0; // mask length
datalen = Iso15693AddCrc(data,3);
- recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), 0);
- uint32_t start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
+ uint32_t start_time = GetCountSspClk();
+ recvlen = SendDataTag(data, datalen, true, speed, recv, sizeof(recv), 0, ISO15693_READER_TIMEOUT, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
WDT_HIT();
if (recvlen>=12) {
Dbprintf("NoAFI UID=%s", Iso15693sprintUID(NULL, &recv[2]));
for (int i = 0; i < 256; i++) {
data[2] = i & 0xFF;
datalen = Iso15693AddCrc(data,4);
- recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time);
- start_time = GetCountSspClk() + DELAY_ISO15693_VICC_TO_VCD_READER;
+ recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time, ISO15693_READER_TIMEOUT, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
WDT_HIT();
if (recvlen >= 12) {
Dbprintf("AFI=%i UID=%s", i, Iso15693sprintUID(NULL, &recv[2]));
Dbprintf("AFI Bruteforcing done.");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LEDsoff();
+ LED_D_OFF();
+ LED_A_OFF();
+
}
// Allows to directly send commands to the tag via the client
void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]) {
+ LED_A_ON();
+
int recvlen = 0;
uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
-
- LED_A_ON();
+ uint32_t eof_time;
+
+ uint16_t timeout;
+ bool request_answer = false;
+
+ switch (data[1]) {
+ case ISO15693_WRITEBLOCK:
+ case ISO15693_LOCKBLOCK:
+ case ISO15693_WRITE_MULTI_BLOCK:
+ case ISO15693_WRITE_AFI:
+ case ISO15693_LOCK_AFI:
+ case ISO15693_WRITE_DSFID:
+ case ISO15693_LOCK_DSFID:
+ timeout = ISO15693_READER_TIMEOUT_WRITE;
+ request_answer = data[0] & ISO15693_REQ_OPTION;
+ break;
+ default:
+ timeout = ISO15693_READER_TIMEOUT;
+ }
if (DEBUG) {
Dbprintf("SEND:");
Dbhexdump(datalen, data, false);
}
- recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0);
-
- if (recv) {
- if (DEBUG) {
- Dbprintf("RECV:");
- Dbhexdump(recvlen, recvbuf, false);
- DbdecodeIso15693Answer(recvlen, recvbuf);
- }
-
- cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
+ recvlen = SendDataTag(data, datalen, true, speed, (recv?recvbuf:NULL), sizeof(recvbuf), 0, timeout, &eof_time);
+ if (request_answer) { // send a single EOF to get the tag response
+ recvlen = SendDataTagEOF((recv?recvbuf:NULL), sizeof(recvbuf), 0, ISO15693_READER_TIMEOUT, &eof_time);
}
-
+
// for the time being, switch field off to protect rdv4.0
// note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
+ if (recv) {
+ if (DEBUG) {
+ Dbprintf("RECV:");
+ if (recvlen > 0) {
+ Dbhexdump(recvlen, recvbuf, false);
+ DbdecodeIso15693Answer(recvlen, recvbuf);
+ }
+ }
+ if (recvlen > ISO15693_MAX_RESPONSE_LENGTH) {
+ recvlen = ISO15693_MAX_RESPONSE_LENGTH;
+ }
+ cmd_send(CMD_ACK, recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
+ }
+
LED_A_OFF();
}
//
//-----------------------------------------------------------------------------
-// Set the UID to the tag (based on Iceman work).
-void SetTag15693Uid(uint8_t *uid)
-{
- uint8_t cmd[4][9] = {0x00};
+// Set the UID on Magic ISO15693 tag (based on Iceman's LUA-script).
+void SetTag15693Uid(uint8_t *uid) {
+
+ LED_A_ON();
+
+ uint8_t cmd[4][9] = {
+ {ISO15693_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x3e, 0x00, 0x00, 0x00, 0x00},
+ {ISO15693_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x3f, 0x69, 0x96, 0x00, 0x00},
+ {ISO15693_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x38},
+ {ISO15693_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x39}
+ };
uint16_t crc;
int recvlen = 0;
uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH];
-
- LED_A_ON();
-
- // Command 1 : 02213E00000000
- cmd[0][0] = 0x02;
- cmd[0][1] = 0x21;
- cmd[0][2] = 0x3e;
- cmd[0][3] = 0x00;
- cmd[0][4] = 0x00;
- cmd[0][5] = 0x00;
- cmd[0][6] = 0x00;
-
- // Command 2 : 02213F69960000
- cmd[1][0] = 0x02;
- cmd[1][1] = 0x21;
- cmd[1][2] = 0x3f;
- cmd[1][3] = 0x69;
- cmd[1][4] = 0x96;
- cmd[1][5] = 0x00;
- cmd[1][6] = 0x00;
+ uint32_t eof_time;
// Command 3 : 022138u8u7u6u5 (where uX = uid byte X)
- cmd[2][0] = 0x02;
- cmd[2][1] = 0x21;
- cmd[2][2] = 0x38;
cmd[2][3] = uid[7];
cmd[2][4] = uid[6];
cmd[2][5] = uid[5];
cmd[2][6] = uid[4];
// Command 4 : 022139u4u3u2u1 (where uX = uid byte X)
- cmd[3][0] = 0x02;
- cmd[3][1] = 0x21;
- cmd[3][2] = 0x39;
cmd[3][3] = uid[3];
cmd[3][4] = uid[2];
cmd[3][5] = uid[1];
cmd[3][6] = uid[0];
- for (int i=0; i<4; i++) {
+ uint32_t start_time = 0;
+
+ for (int i = 0; i < 4; i++) {
// Add the CRC
crc = Iso15693Crc(cmd[i], 7);
cmd[i][7] = crc & 0xff;
cmd[i][8] = crc >> 8;
+ recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), i==0?true:false, true, recvbuf, sizeof(recvbuf), start_time, ISO15693_READER_TIMEOUT_WRITE, &eof_time);
+ start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
if (DEBUG) {
Dbprintf("SEND:");
Dbhexdump(sizeof(cmd[i]), cmd[i], false);
- }
-
- recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), true, 1, recvbuf, sizeof(recvbuf), 0);
-
- if (DEBUG) {
Dbprintf("RECV:");
- Dbhexdump(recvlen, recvbuf, false);
- DbdecodeIso15693Answer(recvlen, recvbuf);
+ if (recvlen > 0) {
+ Dbhexdump(recvlen, recvbuf, false);
+ DbdecodeIso15693Answer(recvlen, recvbuf);
+ }
}
-
- cmd_send(CMD_ACK, recvlen>ISO15693_MAX_RESPONSE_LENGTH?ISO15693_MAX_RESPONSE_LENGTH:recvlen, 0, 0, recvbuf, ISO15693_MAX_RESPONSE_LENGTH);
+ // Note: need to know if we expect an answer from one of the magic commands
+ // if (recvlen < 0) {
+ // break;
+ // }
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
+ cmd_send(CMD_ACK, recvlen, 0, 0, recvbuf, recvlen);
LED_A_OFF();
}