]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - client/fpga_compress.c
Update cmdmain.c
[proxmark3-svn] / client / fpga_compress.c
index 9e0946b28c9274b2590dd5e6491f1b7adddd457b..a672ab585e99ffbcd75c4d7ab25d391f05c6c480 100644 (file)
 // at your option, any later version. See the LICENSE.txt file for the text of
 // the license.
 //-----------------------------------------------------------------------------
-// Flasher frontend tool
+// Compression tool for FPGA config files. Compress several *.bit files at
+// compile time. Decompression is done at run time (see fpgaloader.c).
+// This uses the zlib library tuned to this specific case. The small file sizes
+// allow to use "insane" parameters for optimum compression ratio.
 //-----------------------------------------------------------------------------
 
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
-#include "sleep.h"
-#include "proxmark3.h"
-#include "flash.h"
-#include "uart.h"
-#include "usb_cmd.h"
+#include <stdint.h>
+#include <stdbool.h>
+#include "zlib.h"
 
 #define MAX(a,b) ((a)>(b)?(a):(b))
 
-struct huffman_record {
-               int16_t symbol;
-               uint16_t count;
-               uint8_t code_size;
-               uint8_t code;
-               struct huffman_record *left;
-               struct huffman_record *right;
-               struct huffman_record *next;
-       };
+// zlib configuration
+#define COMPRESS_LEVEL           9  // use best possible compression
+#define COMPRESS_WINDOW_BITS    15  // default = max = 15 for a window of 2^15 = 32KBytes
+#define COMPRESS_MEM_LEVEL       9  // determines the amount of memory allocated during compression. Default = 8.
+/* COMPRESS_STRATEGY can be 
+       Z_DEFAULT_STRATEGY (the default), 
+       Z_FILTERED (more huffmann, less string matching),
+       Z_HUFFMAN_ONLY (huffman only, no string matching)
+       Z_RLE (distances limited to one)
+       Z_FIXED (prevents the use of dynamic Huffman codes)
+*/
 
-typedef struct huffman_record huffman_record_t;
+#define        COMPRESS_STRATEGY       Z_DEFAULT_STRATEGY
+// zlib tuning parameters:
+#define COMPRESS_GOOD_LENGTH           258
+#define COMPRESS_MAX_LAZY              258
+#define COMPRESS_MAX_NICE_LENGTH       258
+#define COMPRESS_MAX_CHAIN            8192
 
-#define FPGA_CONFIG_SIZE       42175
-static uint8_t fpga_config[FPGA_CONFIG_SIZE];
-static huffman_record_t leaf_nodes[256];
-static uint8_t start_code[256];
+#define FPGA_INTERLEAVE_SIZE           288  // (the FPGA's internal config frame size is 288 bits. Interleaving with 288 bytes should give best compression)
+#define FPGA_CONFIG_SIZE            42336L  // our current fpga_[lh]f.bit files are 42175 bytes. Rounded up to next multiple of FPGA_INTERLEAVE_SIZE
+#define HARDNESTED_TABLE_SIZE          (sizeof(uint32_t) * ((1L<<19)+1))
 
-static void usage(char *argv0)
+static void usage(void)
 {
-       fprintf(stderr, "Usage:   %s [-d] <infile> <outfile>\n\n", argv0);
-       fprintf(stderr, "\t-d\tdecompress\n\n");
+       fprintf(stdout, "Usage: fpga_compress <infile1> <infile2> ... <infile_n> <outfile>\n");
+       fprintf(stdout, "          Combine n FPGA bitstream files and compress them into one.\n\n");
+       fprintf(stdout, "       fpga_compress -d <infile> <outfile>");
+       fprintf(stdout, "          Decompress <infile>. Write result to <outfile>");
+       fprintf(stdout, "       fpga_compress -t <infile> <outfile>");
+       fprintf(stdout, "          Compress hardnested table <infile>. Write result to <outfile>");
 }
 
 
-void add_to_heap(huffman_record_t **heap, huffman_record_t *new_record)
+static voidpf fpga_deflate_malloc(voidpf opaque, uInt items, uInt size)
 {
-       huffman_record_t *succ = *heap;
-       huffman_record_t *pred = NULL;
-       
-//     fprintf(stderr, "Adding symbol %d, count %d\n", new_record->symbol, new_record->count);
-       
-       while (succ != NULL && new_record->count > succ->count) {
-               pred = succ;
-               succ = succ->next;
-       }
-
-       // insert new record
-       new_record->next = succ;
-       if (pred == NULL) {                     // first record in heap
-               *heap = new_record;
-       } else {
-               pred->next = new_record;
-       }
+       return malloc(items*size);
 }
-       
 
-uint16_t set_codesize(huffman_record_t *tree_ptr, uint8_t depth)
+
+static void fpga_deflate_free(voidpf opaque, voidpf address)
 {
-       uint16_t max_size = depth;
-       tree_ptr->code_size = depth;
-       if (tree_ptr->left != NULL) {
-               max_size = MAX(set_codesize(tree_ptr->left, depth+1), max_size);
-       }
-       if (tree_ptr->right != NULL) {
-               max_size = MAX(set_codesize(tree_ptr->right, depth+1), max_size);
-       }
-       return max_size;
-}      
+       return free(address);
+}
+
 
-int huffman_encode(FILE *infile, FILE *outfile)
+static bool all_feof(FILE *infile[], uint8_t num_infiles)
 {
-       int i;
-       
-       // init leaf_nodes:
-       for (i = 0; i < 256; i++) {
-               leaf_nodes[i].count = 0;
-               leaf_nodes[i].symbol = i;
-               leaf_nodes[i].left = NULL;
-               leaf_nodes[i].right = NULL;
-               leaf_nodes[i].next = NULL;
+       for (uint16_t i = 0; i < num_infiles; i++) {
+               if (!feof(infile[i])) {
+                       return false;
+               }
        }
        
-       // read the input file into fpga_config[] and count occurrences of each symbol:
+       return true;
+}
+
+
+int zlib_compress(FILE *infile[], uint8_t num_infiles, FILE *outfile, bool hardnested_mode)
+{
+       uint8_t *fpga_config;
+       uint32_t i;
+       int32_t ret;
+       uint8_t c;
+       z_stream compressed_fpga_stream;
+
+       if (hardnested_mode) {
+               fpga_config = malloc(num_infiles * HARDNESTED_TABLE_SIZE);
+       } else {
+               fpga_config = malloc(num_infiles * FPGA_CONFIG_SIZE);
+       }               
+       // read the input files. Interleave them into fpga_config[]
        i = 0;
-       while(!feof(infile)) {
-               uint8_t c;
-               c = fgetc(infile);
-               fpga_config[i++] = c;
-               leaf_nodes[c].count++;
-               if (i > FPGA_CONFIG_SIZE+1) {
-                       fprintf(stderr, "Input file too big (> %d bytes). This is probably not a PM3 FPGA config file.", FPGA_CONFIG_SIZE);
-                       fclose(infile);
-                       fclose(outfile);
-                       return -1;
+       do {
+
+               if (i >= num_infiles * (hardnested_mode?HARDNESTED_TABLE_SIZE:FPGA_CONFIG_SIZE)) {
+                       if (hardnested_mode) {
+                               fprintf(stderr, "Input file too big (> %lu bytes). This is probably not a hardnested bitflip state table.\n", HARDNESTED_TABLE_SIZE);
+                       } else {
+                               fprintf(stderr, "Input files too big (total > %lu bytes). These are probably not PM3 FPGA config files.\n", num_infiles*FPGA_CONFIG_SIZE);
+                       }
+                       for(uint16_t j = 0; j < num_infiles; j++) {
+                               fclose(infile[j]);
+                       }
+                       free(fpga_config);
+                       return(EXIT_FAILURE);
                }
-       }
-       
-       fprintf(stderr, "\nStatistics: (symbol: count)\n");
-       for (i = 0; i < 256; i++) {
-               fprintf(stderr, "%3d: %5d\n", i, leaf_nodes[i].count);
-       }
 
-       // build the Huffman tree:
-       huffman_record_t *heap_ptr = NULL;
+               for(uint16_t j = 0; j < num_infiles; j++) {
+                       for(uint16_t k = 0; k < FPGA_INTERLEAVE_SIZE; k++) {
+                               c = fgetc(infile[j]);
+                               if (!feof(infile[j])) {
+                                       fpga_config[i++] = c;
+                               } else if (num_infiles > 1) {
+                                       fpga_config[i++] = '\0';
+                               }
+                       }
+               }
 
-       for (i = 0; i < 256; i++) {
-               add_to_heap(&heap_ptr, &leaf_nodes[i]); 
-       }
+       } while (!all_feof(infile, num_infiles));
 
-       fprintf(stderr, "\nSorted statistics: (symbol: count)\n");
-       for (huffman_record_t *p = heap_ptr; p != NULL; p = p->next) {
-               fprintf(stderr, "%3d: %5d\n", p->symbol, p->count);
-       }
+       // initialize zlib structures
+       compressed_fpga_stream.next_in = fpga_config;
+       compressed_fpga_stream.avail_in = i;
+       compressed_fpga_stream.zalloc = fpga_deflate_malloc;
+       compressed_fpga_stream.zfree = fpga_deflate_free;
+       compressed_fpga_stream.opaque = Z_NULL;
+       ret = deflateInit2(&compressed_fpga_stream, 
+                                               COMPRESS_LEVEL,
+                                               Z_DEFLATED,
+                                               COMPRESS_WINDOW_BITS,
+                                               COMPRESS_MEM_LEVEL,
+                                               COMPRESS_STRATEGY);
 
-       for (i = 0; i < 255; i++) {
-               // remove and combine the first two nodes
-               huffman_record_t *p1, *p2;
-               p1 = heap_ptr;
-               p2 = heap_ptr->next;
-               heap_ptr = p2->next;
-               huffman_record_t *new_node = malloc(sizeof(huffman_record_t));
-               new_node->left = p1;
-               new_node->right = p2;
-               new_node->count = p1->count + p2->count;
-               add_to_heap(&heap_ptr, new_node); 
+       // estimate the size of the compressed output
+       uint32_t outsize_max = deflateBound(&compressed_fpga_stream, compressed_fpga_stream.avail_in);
+       uint8_t *outbuf = malloc(outsize_max);
+       compressed_fpga_stream.next_out = outbuf;
+       compressed_fpga_stream.avail_out = outsize_max;
+        
+       if (ret == Z_OK) {
+               ret = deflateTune(&compressed_fpga_stream,
+                                                       COMPRESS_GOOD_LENGTH,
+                                                       COMPRESS_MAX_LAZY,
+                                                       COMPRESS_MAX_NICE_LENGTH,
+                                                       COMPRESS_MAX_CHAIN);
        }
        
-       uint16_t max_codesize = set_codesize(heap_ptr, 0);
-
-       fprintf(stderr, "\nStatistics: (symbol: count, codesize)\n");
-       uint32_t compressed_size = 0;
-       for (i = 0; i < 256; i++) {
-               fprintf(stderr, "%3d: %5d, %d\n", leaf_nodes[i].symbol, leaf_nodes[i].count, leaf_nodes[i].code_size);
-               compressed_size += leaf_nodes[i].count * leaf_nodes[i].code_size;
+       if (ret == Z_OK) {
+               ret = deflate(&compressed_fpga_stream, Z_FINISH);
        }
-       fprintf(stderr, "Compressed size = %ld (%f% of original size)", (compressed_size+7)/8, (float)(compressed_size)/(FPGA_CONFIG_SIZE * 8) * 100);
-       fprintf(stderr, "Max Codesize = %d bits", max_codesize);
        
-       uint8_t code = 0;
-       for (i = max_codesize; i > 0; i--) {
-               code = (code + 1) >> 1;
-               start_code[i] = code;
-               for (uint16_t j = 0; j < 256; j++) {
-                       if (leaf_nodes[j].code_size == i) {
-                               leaf_nodes[j].code = code;
-                               code++;
-                       }
+       fprintf(stdout, "compressed %u input bytes to %lu output bytes\n", i, compressed_fpga_stream.total_out);
+
+       if (ret != Z_STREAM_END) {
+               fprintf(stderr, "Error in deflate(): %i %s\n", ret, compressed_fpga_stream.msg);
+               free(outbuf);
+               deflateEnd(&compressed_fpga_stream);
+               for(uint16_t j = 0; j < num_infiles; j++) {
+                       fclose(infile[j]);
                }
-       }
+               fclose(outfile);
+               free(infile);
+               free(fpga_config);
+               return(EXIT_FAILURE);
+               }
+               
+       for (i = 0; i < compressed_fpga_stream.total_out; i++) {
+               fputc(outbuf[i], outfile);
+       }       
 
-       
-       fprintf(stderr, "\nStatistics: (symbol: count, codesize, code)\n");
-       for (i = 0; i < 256; i++) {
-               fprintf(stderr, "%3d: %5d, %d, %02x\n", leaf_nodes[i].symbol, leaf_nodes[i].count, leaf_nodes[i].code_size, leaf_nodes[i].code);
+       free(outbuf);
+       deflateEnd(&compressed_fpga_stream);
+       for(uint16_t j = 0; j < num_infiles; j++) {
+               fclose(infile[j]);
        }
-               
-       fclose(infile);
        fclose(outfile);
+       free(infile);
+       free(fpga_config);
+       
+       return(EXIT_SUCCESS);
        
-       return 0;
 }
 
-int huffman_decode(FILE *infile, FILE *outfile)
+
+int zlib_decompress(FILE *infile, FILE *outfile)
 {
-       return 0;
+       #define DECOMPRESS_BUF_SIZE 1024
+       uint8_t outbuf[DECOMPRESS_BUF_SIZE];
+       uint8_t inbuf[DECOMPRESS_BUF_SIZE];
+       int32_t ret;
+       
+       z_stream compressed_fpga_stream;
+
+       // initialize zlib structures
+       compressed_fpga_stream.next_in = inbuf;
+       compressed_fpga_stream.avail_in = 0;
+       compressed_fpga_stream.next_out = outbuf;
+       compressed_fpga_stream.avail_out = DECOMPRESS_BUF_SIZE;
+       compressed_fpga_stream.zalloc = fpga_deflate_malloc;
+       compressed_fpga_stream.zfree = fpga_deflate_free;
+       compressed_fpga_stream.opaque = Z_NULL;
+       
+       ret = inflateInit2(&compressed_fpga_stream, 0);
+       
+       do {
+               if (compressed_fpga_stream.avail_in == 0) {
+                       compressed_fpga_stream.next_in = inbuf;
+                       uint16_t i = 0;
+                       do {
+                               int32_t c = fgetc(infile);
+                               if (!feof(infile)) {
+                                       inbuf[i++] = c & 0xFF;
+                                       compressed_fpga_stream.avail_in++;
+                               } else {
+                                       break;
+                               }
+                       } while (i < DECOMPRESS_BUF_SIZE);
+               }
+
+               ret = inflate(&compressed_fpga_stream, Z_SYNC_FLUSH);
+
+               if (ret != Z_OK && ret != Z_STREAM_END) {
+                       break;
+               }
+
+               if (compressed_fpga_stream.avail_out == 0) {
+                       for (uint16_t i = 0; i < DECOMPRESS_BUF_SIZE; i++) {
+                               fputc(outbuf[i], outfile);
+                       }
+                       compressed_fpga_stream.avail_out = DECOMPRESS_BUF_SIZE;
+                       compressed_fpga_stream.next_out = outbuf;
+               }
+       } while (ret == Z_OK);
+
+       if (ret == Z_STREAM_END) {  // reached end of input
+               uint16_t i = 0;
+               while (compressed_fpga_stream.avail_out < DECOMPRESS_BUF_SIZE) {
+                       fputc(outbuf[i++], outfile);
+                       compressed_fpga_stream.avail_out++;
+               }
+               fclose(outfile);
+               fclose(infile);
+               return(EXIT_SUCCESS);
+       } else {
+               fprintf(stderr, "Error. Inflate() returned error %i, %s", ret, compressed_fpga_stream.msg);
+               fclose(outfile);
+               fclose(infile);
+               return(EXIT_FAILURE);
+       }
+       
 }
 
 
 int main(int argc, char **argv)
 {
-       bool decode = false;
-       char *infilename;
-       char *outfilename;
+       FILE **infiles;
+       FILE *outfile;
        
-       if (argc < 3) {
-               usage(argv[0]);
-               return -1;
+       if (argc == 1 || argc == 2) {
+               usage();
+               return(EXIT_FAILURE);
        }
+       
+       if (!strcmp(argv[1], "-d")) { // Decompress
 
-       if (argc > 3) {
-               if (!strcmp(argv[1], "-d")) {
-                       decode = true;
-                       infilename = argv[2];
-                       outfilename = argv[3];
-               } else {
-                       usage(argv[0]);
-                       return -1;
+               infiles = calloc(1, sizeof(FILE*));
+               if (argc != 4) {
+                       usage();
+                       return(EXIT_FAILURE);
+               } 
+               infiles[0] = fopen(argv[2], "rb");
+               if (infiles[0] == NULL) {
+                       fprintf(stderr, "Error. Cannot open input file %s", argv[2]);
+                       return(EXIT_FAILURE);
                }
-       } else {
-               infilename = argv[1];
-               outfilename = argv[2];
-       }       
+               outfile = fopen(argv[3], "wb");
+               if (outfile == NULL) {
+                       fprintf(stderr, "Error. Cannot open output file %s", argv[3]);
+                       return(EXIT_FAILURE);
+               }
+               return zlib_decompress(infiles[0], outfile);
 
-       FILE *infile = fopen(infilename, "rb");
-       if (infile == NULL) {
-               fprintf(stderr, "Error. Cannot open input file %s", infilename);
-               return -1;
+       } else { // Compress
+
+               bool hardnested_mode = false;
+               int num_input_files = 0;
+               if (!strcmp(argv[1], "-t")) { // hardnested table
+                       if (argc != 4) {
+                               usage();
+                               return(EXIT_FAILURE);
+                       }
+                       hardnested_mode = true;
+                       num_input_files = 1;
+               } else {
+                       num_input_files = argc-2;
                }
-               
-       FILE *outfile = fopen(outfilename, "wb");
-       if (outfile == NULL) {
-               fprintf(stderr, "Error. Cannot open output file %s", outfilename);
-               fclose(infile);
-               return -1;
+               infiles = calloc(num_input_files, sizeof(FILE*));
+               for (uint16_t i = 0; i < num_input_files; i++) { 
+                       infiles[i] = fopen(argv[i+hardnested_mode?2:1], "rb");
+                       if (infiles[i] == NULL) {
+                               fprintf(stderr, "Error. Cannot open input file %s", argv[i+hardnested_mode?2:1]);
+                               return(EXIT_FAILURE);
+                       }
                }
-               
-       if (decode) {
-               return huffman_decode(infile, outfile);
-       } else {
-               return huffman_encode(infile, outfile);
+               outfile = fopen(argv[argc-1], "wb");
+               if (outfile == NULL) {
+                       fprintf(stderr, "Error. Cannot open output file %s", argv[argc-1]);
+                       return(EXIT_FAILURE);
+               }
+               return zlib_compress(infiles, num_input_files, outfile, hardnested_mode);
        }
 }
Impressum, Datenschutz