//-----------------------------------------------------------------------------
-// The main application code. This is the first thing called after start.c
-// executes.
// Jonathan Westhues, Mar 2006
// Edits by Gerhard de Koning Gans, Sep 2007 (##)
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// The main application code. This is the first thing called after start.c
+// executes.
//-----------------------------------------------------------------------------
+#include "usb_cdc.h"
+#include "cmd.h"
-#include <proxmark3.h>
-#include <stdlib.h>
+#include "proxmark3.h"
#include "apps.h"
+#include "util.h"
+#include "printf.h"
+#include "string.h"
+
+#include <stdarg.h>
+
+#include "legicrf.h"
+#include <hitag2.h>
+
#ifdef WITH_LCD
-#include "fonts.h"
-#include "LCD.h"
+ #include "LCD.h"
#endif
-// The large multi-purpose buffer, typically used to hold A/D samples,
-// maybe pre-processed in some way.
-DWORD BigBuf[16000];
-int usbattached = 0;
+#define abs(x) ( ((x)<0) ? -(x) : (x) )
//=============================================================================
// A buffer where we can queue things up to be sent through the FPGA, for
// is the order in which they go out on the wire.
//=============================================================================
-BYTE ToSend[256];
+uint8_t ToSend[512];
int ToSendMax;
static int ToSendBit;
-
+struct common_area common_area __attribute__((section(".commonarea")));
void BufferClear(void)
{
memset(BigBuf,0,sizeof(BigBuf));
- DbpString("Buffer cleared");
+ Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
}
void ToSendReset(void)
void DbpString(char *str)
{
- /* this holds up stuff unless we're connected to usb */
-// if (!usbattached)
+ byte_t len = strlen(str);
+ cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
+// /* this holds up stuff unless we're connected to usb */
+// if (!UsbConnected())
// return;
-
- UsbCommand c;
- c.cmd = CMD_DEBUG_PRINT_STRING;
- c.ext1 = strlen(str);
- memcpy(c.d.asBytes, str, c.ext1);
-
- UsbSendPacket((BYTE *)&c, sizeof(c));
- // TODO fix USB so stupid things like this aren't req'd
- SpinDelay(50);
+//
+// UsbCommand c;
+// c.cmd = CMD_DEBUG_PRINT_STRING;
+// c.arg[0] = strlen(str);
+// if(c.arg[0] > sizeof(c.d.asBytes)) {
+// c.arg[0] = sizeof(c.d.asBytes);
+// }
+// memcpy(c.d.asBytes, str, c.arg[0]);
+//
+// UsbSendPacket((uint8_t *)&c, sizeof(c));
+// // TODO fix USB so stupid things like this aren't req'd
+// SpinDelay(50);
}
+#if 0
void DbpIntegers(int x1, int x2, int x3)
{
- /* this holds up stuff unless we're connected to usb */
-// if (!usbattached)
+ cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
+// /* this holds up stuff unless we're connected to usb */
+// if (!UsbConnected())
// return;
-
- UsbCommand c;
- c.cmd = CMD_DEBUG_PRINT_INTEGERS;
- c.ext1 = x1;
- c.ext2 = x2;
- c.ext3 = x3;
-
- UsbSendPacket((BYTE *)&c, sizeof(c));
- // XXX
- SpinDelay(50);
+//
+// UsbCommand c;
+// c.cmd = CMD_DEBUG_PRINT_INTEGERS;
+// c.arg[0] = x1;
+// c.arg[1] = x2;
+// c.arg[2] = x3;
+//
+// UsbSendPacket((uint8_t *)&c, sizeof(c));
+// // XXX
+// SpinDelay(50);
}
+#endif
-void AcquireRawAdcSamples125k(BOOL at134khz)
-{
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- }
-
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
-
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- // Now call the acquisition routine
- DoAcquisition125k(at134khz);
-}
+void Dbprintf(const char *fmt, ...) {
+// should probably limit size here; oh well, let's just use a big buffer
+ char output_string[128];
+ va_list ap;
-// split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(BOOL at134khz)
-{
- BYTE *dest = (BYTE *)BigBuf;
- int n = sizeof(BigBuf);
- int i;
+ va_start(ap, fmt);
+ kvsprintf(fmt, output_string, 10, ap);
+ va_end(ap);
- memset(dest,0,n);
- i = 0;
- for(;;) {
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
- SSC_TRANSMIT_HOLDING = 0x43;
- LED_D_ON();
- }
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
- dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
- i++;
- LED_D_OFF();
- if(i >= n) {
- break;
- }
- }
- }
- DbpIntegers(dest[0], dest[1], at134khz);
+ DbpString(output_string);
}
-void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)
-{
- BOOL at134khz;
-
- // see if 'h' was specified
- if(command[strlen((char *) command) - 1] == 'h')
- at134khz= TRUE;
- else
- at134khz= FALSE;
-
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- }
-
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
-
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- // now modulate the reader field
- while(*command != '\0' && *command != ' ')
- {
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelayUs(delay_off);
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+// prints HEX & ASCII
+void Dbhexdump(int len, uint8_t *d, bool bAsci) {
+ int l=0,i;
+ char ascii[9];
+
+ while (len>0) {
+ if (len>8) l=8;
+ else l=len;
+
+ memcpy(ascii,d,l);
+ ascii[l]=0;
+
+ // filter safe ascii
+ for (i=0;i<l;i++)
+ if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
+
+ if (bAsci) {
+ Dbprintf("%-8s %*D",ascii,l,d," ");
} else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- }
- LED_D_ON();
- if(*(command++) == '0')
- SpinDelayUs(period_0);
- else
- SpinDelayUs(period_1);
+ Dbprintf("%*D",l,d," ");
}
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- LED_D_OFF();
- SpinDelayUs(delay_off);
- if(at134khz) {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- } else {
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
- }
-
- // now do the read
- DoAcquisition125k(at134khz);
-}
-
-void AcquireTiType(void)
-{
- int i;
- int n = 5000;
-
- // clear buffer
- memset(BigBuf,0,sizeof(BigBuf));
-
- // Set up the synchronous serial port
- PIO_DISABLE = (1<<GPIO_SSC_DIN);
- PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN);
-
- // steal this pin from the SSP and use it to control the modulation
- PIO_ENABLE = (1<<GPIO_SSC_DOUT);
- PIO_OUTPUT_ENABLE = (1<<GPIO_SSC_DOUT);
-
- SSC_CONTROL = SSC_CONTROL_RESET;
- SSC_CONTROL = SSC_CONTROL_RX_ENABLE | SSC_CONTROL_TX_ENABLE;
-
- // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
- // 48/2 = 24 MHz clock must be divided by 12
- SSC_CLOCK_DIVISOR = 12;
-
- SSC_RECEIVE_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(0);
- SSC_RECEIVE_FRAME_MODE = SSC_FRAME_MODE_BITS_IN_WORD(32) | SSC_FRAME_MODE_MSB_FIRST;
- SSC_TRANSMIT_CLOCK_MODE = 0;
- SSC_TRANSMIT_FRAME_MODE = 0;
-
- LED_D_ON();
-
- // modulate antenna
- PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
-
- // Charge TI tag for 50ms.
- SpinDelay(50);
-
- // stop modulating antenna and listen
- PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);
-
- LED_D_OFF();
-
- i = 0;
- for(;;) {
- if(SSC_STATUS & SSC_STATUS_RX_READY) {
- BigBuf[i] = SSC_RECEIVE_HOLDING; // store 32 bit values in buffer
- i++; if(i >= n) return;
- }
- WDT_HIT();
+
+ len-=8;
+ d+=8;
}
-
- // return stolen pin ro SSP
- PIO_DISABLE = (1<<GPIO_SSC_DOUT);
- PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN) | (1<<GPIO_SSC_DOUT);
-}
-
-void AcquireRawBitsTI(void)
-{
- LED_D_ON();
- // TI tags charge at 134.2Khz
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
- // Place FPGA in passthrough mode, in this mode the CROSS_LO line
- // connects to SSP_DIN and the SSP_DOUT logic level controls
- // whether we're modulating the antenna (high)
- // or listening to the antenna (low)
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
-
- // get TI tag data into the buffer
- AcquireTiType();
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
static int ReadAdc(int ch)
{
- DWORD d;
+ uint32_t d;
- ADC_CONTROL = ADC_CONTROL_RESET;
- ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) |
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+ AT91C_BASE_ADC->ADC_MR =
+ ADC_MODE_PRESCALE(32) |
+ ADC_MODE_STARTUP_TIME(16) |
ADC_MODE_SAMPLE_HOLD_TIME(8);
- ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch);
+ AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
- ADC_CONTROL = ADC_CONTROL_START;
- while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch)))
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+ while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
;
- d = ADC_CHANNEL_DATA(ch);
+ d = AT91C_BASE_ADC->ADC_CDR[ch];
return d;
}
-static int AvgAdc(int ch)
+int AvgAdc(int ch) // was static - merlok
{
int i;
int a = 0;
void MeasureAntennaTuning(void)
{
- BYTE *dest = (BYTE *)BigBuf;
- int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;;
+ uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
+ int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
- UsbCommand c;
+// UsbCommand c;
- DbpString("Measuring antenna characteristics, please wait.");
- memset(BigBuf,0,sizeof(BigBuf));
+ LED_B_ON();
+ DbpString("Measuring antenna characteristics, please wait...");
+ memset(dest,0,sizeof(FREE_BUFFER_SIZE));
/*
* Sweeps the useful LF range of the proxmark from
* the resonating frequency of your LF antenna
* ( hopefully around 95 if it is tuned to 125kHz!)
*/
+
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
for (i=255; i>19; i--) {
+ WDT_HIT();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20);
// Vref = 3.3V, and a 10000:240 voltage divider on the input
peakv = adcval;
peak = dest[i];
peakf = i;
- ptr = i;
+ //ptr = i;
}
}
+ LED_A_ON();
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(20);
// can measure voltages up to 33000 mV
vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
- c.cmd = CMD_MEASURED_ANTENNA_TUNING;
- c.ext1 = (vLf125 << 0) | (vLf134 << 16);
- c.ext2 = vHf;
- c.ext3 = peakf | (peakv << 16);
- UsbSendPacket((BYTE *)&c, sizeof(c));
-}
-
-void SimulateTagLowFrequency(int period, int ledcontrol)
-{
- int i;
- BYTE *tab = (BYTE *)BigBuf;
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
-
- PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);
-
- PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);
- PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);
-
-#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
-
- i = 0;
- for(;;) {
- while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- return;
- }
- WDT_HIT();
- }
-
- if (ledcontrol)
- LED_D_ON();
-
- if(tab[i])
- OPEN_COIL();
- else
- SHORT_COIL();
-
- if (ledcontrol)
- LED_D_OFF();
-
- while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- return;
- }
- WDT_HIT();
- }
-
- i++;
- if(i == period) i = 0;
- }
-}
-
-// compose fc/8 fc/10 waveform
-static void fc(int c, int *n) {
- BYTE *dest = (BYTE *)BigBuf;
- int idx;
-
- // for when we want an fc8 pattern every 4 logical bits
- if(c==0) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
- if(c==8) {
- for (idx=0; idx<6; idx++) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- }
-
- // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
- if(c==10) {
- for (idx=0; idx<5; idx++) {
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=1;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- dest[((*n)++)]=0;
- }
- }
-}
-
-// prepare a waveform pattern in the buffer based on the ID given then
-// simulate a HID tag until the button is pressed
-static void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
-{
- int n=0, i=0;
- /*
- HID tag bitstream format
- The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
- A 1 bit is represented as 6 fc8 and 5 fc10 patterns
- A 0 bit is represented as 5 fc10 and 6 fc8 patterns
- A fc8 is inserted before every 4 bits
- A special start of frame pattern is used consisting a0b0 where a and b are neither 0
- nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
- */
-
- if (hi>0xFFF) {
- DbpString("Tags can only have 44 bits.");
- return;
- }
- fc(0,&n);
- // special start of frame marker containing invalid bit sequences
- fc(8, &n); fc(8, &n); // invalid
- fc(8, &n); fc(10, &n); // logical 0
- fc(10, &n); fc(10, &n); // invalid
- fc(8, &n); fc(10, &n); // logical 0
-
- WDT_HIT();
- // manchester encode bits 43 to 32
- for (i=11; i>=0; i--) {
- if ((i%4)==3) fc(0,&n);
- if ((hi>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
- } else {
- fc(8, &n); fc(10, &n); // high-low transition
- }
- }
-
- WDT_HIT();
- // manchester encode bits 31 to 0
- for (i=31; i>=0; i--) {
- if ((i%4)==3) fc(0,&n);
- if ((lo>>i)&1) {
- fc(10, &n); fc(8, &n); // low-high transition
- } else {
- fc(8, &n); fc(10, &n); // high-low transition
- }
- }
-
- if (ledcontrol)
- LED_A_ON();
- SimulateTagLowFrequency(n, ledcontrol);
+// c.cmd = CMD_MEASURED_ANTENNA_TUNING;
+// c.arg[0] = (vLf125 << 0) | (vLf134 << 16);
+// c.arg[1] = vHf;
+// c.arg[2] = peakf | (peakv << 16);
- if (ledcontrol)
- LED_A_OFF();
+ DbpString("Measuring complete, sending report back to host");
+ cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),0,0);
+// UsbSendPacket((uint8_t *)&c, sizeof(c));
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LED_A_OFF();
+ LED_B_OFF();
+ return;
}
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-static void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+void MeasureAntennaTuningHf(void)
{
- BYTE *dest = (BYTE *)BigBuf;
- int m=0, n=0, i=0, idx=0, found=0, lastval=0;
- DWORD hi=0, lo=0;
-
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
- FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-
- // Connect the A/D to the peak-detected low-frequency path.
- SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-
- // Give it a bit of time for the resonant antenna to settle.
- SpinDelay(50);
-
- // Now set up the SSC to get the ADC samples that are now streaming at us.
- FpgaSetupSsc();
-
- for(;;) {
- WDT_HIT();
- if (ledcontrol)
- LED_A_ON();
- if(BUTTON_PRESS()) {
- DbpString("Stopped");
- if (ledcontrol)
- LED_A_OFF();
- return;
- }
+ int vHf = 0; // in mV
- i = 0;
- m = sizeof(BigBuf);
- memset(dest,128,m);
- for(;;) {
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
- SSC_TRANSMIT_HOLDING = 0x43;
- if (ledcontrol)
- LED_D_ON();
- }
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
- dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
- // we don't care about actual value, only if it's more or less than a
- // threshold essentially we capture zero crossings for later analysis
- if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
- i++;
- if (ledcontrol)
- LED_D_OFF();
- if(i >= m) {
- break;
- }
- }
- }
-
- // FSK demodulator
-
- // sync to first lo-hi transition
- for( idx=1; idx<m; idx++) {
- if (dest[idx-1]<dest[idx])
- lastval=idx;
- break;
- }
- WDT_HIT();
-
- // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
- // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
- // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
- for( i=0; idx<m; idx++) {
- if (dest[idx-1]<dest[idx]) {
- dest[i]=idx-lastval;
- if (dest[i] <= 8) {
- dest[i]=1;
- } else {
- dest[i]=0;
- }
-
- lastval=idx;
- i++;
- }
- }
- m=i;
- WDT_HIT();
+ DbpString("Measuring HF antenna, press button to exit");
- // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
- lastval=dest[0];
- idx=0;
- i=0;
- n=0;
- for( idx=0; idx<m; idx++) {
- if (dest[idx]==lastval) {
- n++;
- } else {
- // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
- // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
- // swallowed up by rounding
- // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
- // special start of frame markers use invalid manchester states (no transitions) by using sequences
- // like 111000
- if (dest[idx-1]) {
- n=(n+1)/6; // fc/8 in sets of 6
- } else {
- n=(n+1)/5; // fc/10 in sets of 5
- }
- switch (n) { // stuff appropriate bits in buffer
- case 0:
- case 1: // one bit
- dest[i++]=dest[idx-1];
- break;
- case 2: // two bits
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- case 3: // 3 bit start of frame markers
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- // When a logic 0 is immediately followed by the start of the next transmisson
- // (special pattern) a pattern of 4 bit duration lengths is created.
- case 4:
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- dest[i++]=dest[idx-1];
- break;
- default: // this shouldn't happen, don't stuff any bits
- break;
- }
- n=0;
- lastval=dest[idx];
- }
- }
- m=i;
- WDT_HIT();
+ for (;;) {
+ // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+ SpinDelay(20);
+ // Vref = 3300mV, and an 10:1 voltage divider on the input
+ // can measure voltages up to 33000 mV
+ vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
- // final loop, go over previously decoded manchester data and decode into usable tag ID
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
- for( idx=0; idx<m-6; idx++) {
- // search for a start of frame marker
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
- {
- found=1;
- idx+=6;
- if (found && (hi|lo)) {
- DbpString("TAG ID");
- DbpIntegers(hi, lo, (lo>>1)&0xffff);
- /* if we're only looking for one tag */
- if (findone)
- {
- *high = hi;
- *low = lo;
- return;
- }
- hi=0;
- lo=0;
- found=0;
- }
- }
- if (found) {
- if (dest[idx] && (!dest[idx+1]) ) {
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|0;
- } else if ( (!dest[idx]) && dest[idx+1]) {
- hi=(hi<<1)|(lo>>31);
- lo=(lo<<1)|1;
- } else {
- found=0;
- hi=0;
- lo=0;
- }
- idx++;
- }
- if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
- {
- found=1;
- idx+=6;
- if (found && (hi|lo)) {
- DbpString("TAG ID");
- DbpIntegers(hi, lo, (lo>>1)&0xffff);
- /* if we're only looking for one tag */
- if (findone)
- {
- *high = hi;
- *low = lo;
- return;
- }
- hi=0;
- lo=0;
- found=0;
- }
- }
- }
- WDT_HIT();
+ Dbprintf("%d mV",vHf);
+ if (BUTTON_PRESS()) break;
}
+ DbpString("cancelled");
}
+
void SimulateTagHfListen(void)
{
- BYTE *dest = (BYTE *)BigBuf;
- int n = sizeof(BigBuf);
- BYTE v = 0;
+ uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
+ uint8_t v = 0;
int i;
int p = 0;
i = 0;
for(;;) {
- if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
- SSC_TRANSMIT_HOLDING = 0xff;
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0xff;
}
- if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
- BYTE r = (BYTE)SSC_RECEIVE_HOLDING;
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
v <<= 1;
if(r & 1) {
p = 0;
i++;
- if(i >= n) {
+ if(i >= FREE_BUFFER_SIZE) {
break;
}
}
DbpString("simulate tag (now type bitsamples)");
}
-void UsbPacketReceived(BYTE *packet, int len)
+void ReadMem(int addr)
{
- UsbCommand *c = (UsbCommand *)packet;
+ const uint8_t *data = ((uint8_t *)addr);
- switch(c->cmd) {
- case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
- AcquireRawAdcSamples125k(c->ext1);
- break;
+ Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
+ addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
+}
- case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
- ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes);
- break;
+/* osimage version information is linked in */
+extern struct version_information version_information;
+/* bootrom version information is pointed to from _bootphase1_version_pointer */
+extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
+void SendVersion(void)
+{
+ char temp[256]; /* Limited data payload in USB packets */
+ DbpString("Prox/RFID mark3 RFID instrument");
+
+ /* Try to find the bootrom version information. Expect to find a pointer at
+ * symbol _bootphase1_version_pointer, perform slight sanity checks on the
+ * pointer, then use it.
+ */
+ char *bootrom_version = *(char**)&_bootphase1_version_pointer;
+ if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
+ DbpString("bootrom version information appears invalid");
+ } else {
+ FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
+ DbpString(temp);
+ }
- case CMD_ACQUIRE_RAW_BITS_TI_TYPE:
- AcquireRawBitsTI();
- break;
+ FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
+ DbpString(temp);
- case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
- AcquireRawAdcSamplesIso15693();
- break;
+ FpgaGatherVersion(temp, sizeof(temp));
+ DbpString(temp);
+ // Send Chip ID
+ cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
+}
- case CMD_BUFF_CLEAR:
- BufferClear();
- break;
+#ifdef WITH_LF
+// samy's sniff and repeat routine
+void SamyRun()
+{
+ DbpString("Stand-alone mode! No PC necessary.");
- case CMD_READER_ISO_15693:
- ReaderIso15693(c->ext1);
- break;
+ // 3 possible options? no just 2 for now
+#define OPTS 2
- case CMD_SIMTAG_ISO_15693:
- SimTagIso15693(c->ext1);
- break;
+ int high[OPTS], low[OPTS];
- case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
- AcquireRawAdcSamplesIso14443(c->ext1);
- break;
+ // Oooh pretty -- notify user we're in elite samy mode now
+ LED(LED_RED, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_GREEN, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_RED, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_GREEN, 200);
+ LED(LED_ORANGE, 200);
+ LED(LED_RED, 200);
- case CMD_READ_SRI512_TAG:
- ReadSRI512Iso14443(c->ext1);
- break;
+ int selected = 0;
+ int playing = 0;
- case CMD_READER_ISO_14443a:
- ReaderIso14443a(c->ext1);
- break;
+ // Turn on selected LED
+ LED(selected + 1, 0);
- case CMD_SNOOP_ISO_14443:
- SnoopIso14443();
- break;
+ for (;;)
+ {
+// UsbPoll(FALSE);
+ usb_poll();
+ WDT_HIT();
- case CMD_SNOOP_ISO_14443a:
- SnoopIso14443a();
- break;
+ // Was our button held down or pressed?
+ int button_pressed = BUTTON_HELD(1000);
+ SpinDelay(300);
- case CMD_SIMULATE_TAG_HF_LISTEN:
- SimulateTagHfListen();
- break;
+ // Button was held for a second, begin recording
+ if (button_pressed > 0)
+ {
+ LEDsoff();
+ LED(selected + 1, 0);
+ LED(LED_RED2, 0);
- case CMD_SIMULATE_TAG_ISO_14443:
- SimulateIso14443Tag();
- break;
+ // record
+ DbpString("Starting recording");
- case CMD_SIMULATE_TAG_ISO_14443a:
- SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID
- break;
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
- case CMD_MEASURE_ANTENNA_TUNING:
- MeasureAntennaTuning();
- break;
+ /* need this delay to prevent catching some weird data */
+ SpinDelay(500);
- case CMD_LISTEN_READER_FIELD:
- ListenReaderField(c->ext1);
- break;
+ CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
+ Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
+ LEDsoff();
+ LED(selected + 1, 0);
+ // Finished recording
+
+ // If we were previously playing, set playing off
+ // so next button push begins playing what we recorded
+ playing = 0;
+ }
+
+ // Change where to record (or begin playing)
+ else if (button_pressed)
+ {
+ // Next option if we were previously playing
+ if (playing)
+ selected = (selected + 1) % OPTS;
+ playing = !playing;
+
+ LEDsoff();
+ LED(selected + 1, 0);
+
+ // Begin transmitting
+ if (playing)
+ {
+ LED(LED_GREEN, 0);
+ DbpString("Playing");
+ // wait for button to be released
+ while(BUTTON_PRESS())
+ WDT_HIT();
+ Dbprintf("%x %x %x", selected, high[selected], low[selected]);
+ CmdHIDsimTAG(high[selected], low[selected], 0);
+ DbpString("Done playing");
+ if (BUTTON_HELD(1000) > 0)
+ {
+ DbpString("Exiting");
+ LEDsoff();
+ return;
+ }
+
+ /* We pressed a button so ignore it here with a delay */
+ SpinDelay(300);
+
+ // when done, we're done playing, move to next option
+ selected = (selected + 1) % OPTS;
+ playing = !playing;
+ LEDsoff();
+ LED(selected + 1, 0);
+ }
+ else
+ while(BUTTON_PRESS())
+ WDT_HIT();
+ }
+ }
+}
+#endif
+
+/*
+OBJECTIVE
+Listen and detect an external reader. Determine the best location
+for the antenna.
+
+INSTRUCTIONS:
+Inside the ListenReaderField() function, there is two mode.
+By default, when you call the function, you will enter mode 1.
+If you press the PM3 button one time, you will enter mode 2.
+If you press the PM3 button a second time, you will exit the function.
+
+DESCRIPTION OF MODE 1:
+This mode just listens for an external reader field and lights up green
+for HF and/or red for LF. This is the original mode of the detectreader
+function.
+
+DESCRIPTION OF MODE 2:
+This mode will visually represent, using the LEDs, the actual strength of the
+current compared to the maximum current detected. Basically, once you know
+what kind of external reader is present, it will help you spot the best location to place
+your antenna. You will probably not get some good results if there is a LF and a HF reader
+at the same place! :-)
+
+LIGHT SCHEME USED:
+*/
+static const char LIGHT_SCHEME[] = {
+ 0x0, /* ---- | No field detected */
+ 0x1, /* X--- | 14% of maximum current detected */
+ 0x2, /* -X-- | 29% of maximum current detected */
+ 0x4, /* --X- | 43% of maximum current detected */
+ 0x8, /* ---X | 57% of maximum current detected */
+ 0xC, /* --XX | 71% of maximum current detected */
+ 0xE, /* -XXX | 86% of maximum current detected */
+ 0xF, /* XXXX | 100% of maximum current detected */
+};
+static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
+
+void ListenReaderField(int limit)
+{
+ int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
+ int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
+ int mode=1, display_val, display_max, i;
+
+#define LF_ONLY 1
+#define HF_ONLY 2
+
+ LEDsoff();
+
+ lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
+
+ if(limit != HF_ONLY) {
+ Dbprintf("LF 125/134 Baseline: %d", lf_av);
+ lf_baseline = lf_av;
+ }
+
+ hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
+
+ if (limit != LF_ONLY) {
+ Dbprintf("HF 13.56 Baseline: %d", hf_av);
+ hf_baseline = hf_av;
+ }
+
+ for(;;) {
+ if (BUTTON_PRESS()) {
+ SpinDelay(500);
+ switch (mode) {
+ case 1:
+ mode=2;
+ DbpString("Signal Strength Mode");
+ break;
+ case 2:
+ default:
+ DbpString("Stopped");
+ LEDsoff();
+ return;
+ break;
+ }
+ }
+ WDT_HIT();
+
+ if (limit != HF_ONLY) {
+ if(mode==1) {
+ if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
+ else LED_D_OFF();
+ }
+
+ ++lf_count;
+ lf_av_new= ReadAdc(ADC_CHAN_LF);
+ // see if there's a significant change
+ if(abs(lf_av - lf_av_new) > 10) {
+ Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
+ lf_av = lf_av_new;
+ if (lf_av > lf_max)
+ lf_max = lf_av;
+ lf_count= 0;
+ }
+ }
+
+ if (limit != LF_ONLY) {
+ if (mode == 1){
+ if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
+ else LED_B_OFF();
+ }
+
+ ++hf_count;
+ hf_av_new= ReadAdc(ADC_CHAN_HF);
+ // see if there's a significant change
+ if(abs(hf_av - hf_av_new) > 10) {
+ Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
+ hf_av = hf_av_new;
+ if (hf_av > hf_max)
+ hf_max = hf_av;
+ hf_count= 0;
+ }
+ }
+
+ if(mode == 2) {
+ if (limit == LF_ONLY) {
+ display_val = lf_av;
+ display_max = lf_max;
+ } else if (limit == HF_ONLY) {
+ display_val = hf_av;
+ display_max = hf_max;
+ } else { /* Pick one at random */
+ if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
+ display_val = hf_av;
+ display_max = hf_max;
+ } else {
+ display_val = lf_av;
+ display_max = lf_max;
+ }
+ }
+ for (i=0; i<LIGHT_LEN; i++) {
+ if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
+ if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
+ if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
+ if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
+ if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
+ break;
+ }
+ }
+ }
+ }
+}
+
+void UsbPacketReceived(uint8_t *packet, int len)
+{
+ UsbCommand *c = (UsbCommand *)packet;
+
+// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
+
+ switch(c->cmd) {
+#ifdef WITH_LF
+ case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
+ AcquireRawAdcSamples125k(c->arg[0]);
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ break;
+ case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
+ ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+ break;
case CMD_HID_DEMOD_FSK:
- CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
+ CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag
break;
-
case CMD_HID_SIM_TAG:
- CmdHIDsimTAG(c->ext1, c->ext2, 1); // Simulate HID tag by ID
+ CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID
+ break;
+ case CMD_HID_CLONE_TAG: // Clone HID tag by ID to T55x7
+ CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+ break;
+ case CMD_IO_DEMOD_FSK:
+ CmdIOdemodFSK(1, 0, 0, 1); // Demodulate IO tag
+ break;
+ case CMD_IO_CLONE_TAG: // Clone IO tag by ID to T55x7
+ CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
+ break;
+ case CMD_EM410X_WRITE_TAG:
+ WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
+ break;
+ case CMD_READ_TI_TYPE:
+ ReadTItag();
+ break;
+ case CMD_WRITE_TI_TYPE:
+ WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
+ break;
+ case CMD_SIMULATE_TAG_125K:
+ LED_A_ON();
+ SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
+ LED_A_OFF();
+ break;
+ case CMD_LF_SIMULATE_BIDIR:
+ SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
+ break;
+ case CMD_INDALA_CLONE_TAG: // Clone Indala 64-bit tag by UID to T55x7
+ CopyIndala64toT55x7(c->arg[0], c->arg[1]);
+ break;
+ case CMD_INDALA_CLONE_TAG_L: // Clone Indala 224-bit tag by UID to T55x7
+ CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
+ break;
+ case CMD_T55XX_READ_BLOCK:
+ T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
+ break;
+ case CMD_T55XX_WRITE_BLOCK:
+ T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+ break;
+ case CMD_T55XX_READ_TRACE: // Clone HID tag by ID to T55x7
+ T55xxReadTrace();
+ break;
+ case CMD_PCF7931_READ: // Read PCF7931 tag
+ ReadPCF7931();
+ cmd_send(CMD_ACK,0,0,0,0,0);
+// UsbSendPacket((uint8_t*)&ack, sizeof(ack));
+ break;
+ case CMD_EM4X_READ_WORD:
+ EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
+ break;
+ case CMD_EM4X_WRITE_WORD:
+ EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
+ break;
+#endif
+
+#ifdef WITH_HITAG
+ case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
+ SnoopHitag(c->arg[0]);
+ break;
+ case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
+ SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
+ break;
+ case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
+ ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
+ break;
+#endif
+
+#ifdef WITH_ISO15693
+ case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
+ AcquireRawAdcSamplesIso15693();
+ break;
+ case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
+ RecordRawAdcSamplesIso15693();
+ break;
+
+ case CMD_ISO_15693_COMMAND:
+ DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+ break;
+
+ case CMD_ISO_15693_FIND_AFI:
+ BruteforceIso15693Afi(c->arg[0]);
+ break;
+
+ case CMD_ISO_15693_DEBUG:
+ SetDebugIso15693(c->arg[0]);
+ break;
+
+ case CMD_READER_ISO_15693:
+ ReaderIso15693(c->arg[0]);
+ break;
+ case CMD_SIMTAG_ISO_15693:
+ SimTagIso15693(c->arg[0]);
+ break;
+#endif
+
+#ifdef WITH_LEGICRF
+ case CMD_SIMULATE_TAG_LEGIC_RF:
+ LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
+ break;
+
+ case CMD_WRITER_LEGIC_RF:
+ LegicRfWriter(c->arg[1], c->arg[0]);
+ break;
+
+ case CMD_READER_LEGIC_RF:
+ LegicRfReader(c->arg[0], c->arg[1]);
+ break;
+#endif
+
+#ifdef WITH_ISO14443b
+ case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
+ AcquireRawAdcSamplesIso14443(c->arg[0]);
+ break;
+ case CMD_READ_SRI512_TAG:
+ ReadSTMemoryIso14443(0x0F);
+ break;
+ case CMD_READ_SRIX4K_TAG:
+ ReadSTMemoryIso14443(0x7F);
+ break;
+ case CMD_SNOOP_ISO_14443:
+ SnoopIso14443();
+ break;
+ case CMD_SIMULATE_TAG_ISO_14443:
+ SimulateIso14443Tag();
+ break;
+ case CMD_ISO_14443B_COMMAND:
+ SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
+ break;
+#endif
+
+#ifdef WITH_ISO14443a
+ case CMD_SNOOP_ISO_14443a:
+ SnoopIso14443a(c->arg[0]);
+ break;
+ case CMD_READER_ISO_14443a:
+ ReaderIso14443a(c);
+ break;
+ case CMD_SIMULATE_TAG_ISO_14443a:
+ SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
+ break;
+ case CMD_EPA_PACE_COLLECT_NONCE:
+ EPA_PACE_Collect_Nonce(c);
+ break;
+
+ case CMD_READER_MIFARE:
+ ReaderMifare(c->arg[0]);
+ break;
+ case CMD_MIFARE_READBL:
+ MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFAREU_READBL:
+ MifareUReadBlock(c->arg[0],c->d.asBytes);
+ break;
+ case CMD_MIFAREU_READCARD:
+ MifareUReadCard(c->arg[0],c->d.asBytes);
+ break;
+ case CMD_MIFARE_READSC:
+ MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_WRITEBL:
+ MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFAREU_WRITEBL_COMPAT:
+ MifareUWriteBlock(c->arg[0], c->d.asBytes);
+ break;
+ case CMD_MIFAREU_WRITEBL:
+ MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
+ break;
+ case CMD_MIFARE_NESTED:
+ MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_CHKKEYS:
+ MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_SIMULATE_MIFARE_CARD:
+ Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+
+ // emulator
+ case CMD_MIFARE_SET_DBGMODE:
+ MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_EML_MEMCLR:
+ MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_EML_MEMSET:
+ MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_EML_MEMGET:
+ MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_EML_CARDLOAD:
+ MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+
+ // Work with "magic Chinese" card
+ case CMD_MIFARE_EML_CSETBLOCK:
+ MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+ case CMD_MIFARE_EML_CGETBLOCK:
+ MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
+ break;
+
+ // mifare sniffer
+ case CMD_MIFARE_SNIFFER:
+ SniffMifare(c->arg[0]);
+ break;
+#endif
+
+#ifdef WITH_ICLASS
+ // Makes use of ISO14443a FPGA Firmware
+ case CMD_SNOOP_ICLASS:
+ SnoopIClass();
+ break;
+ case CMD_SIMULATE_TAG_ICLASS:
+ SimulateIClass(c->arg[0], c->d.asBytes);
+ break;
+ case CMD_READER_ICLASS:
+ ReaderIClass(c->arg[0]);
+ break;
+#endif
+
+ case CMD_SIMULATE_TAG_HF_LISTEN:
+ SimulateTagHfListen();
+ break;
+
+ case CMD_BUFF_CLEAR:
+ BufferClear();
+ break;
+
+ case CMD_MEASURE_ANTENNA_TUNING:
+ MeasureAntennaTuning();
+ break;
+
+ case CMD_MEASURE_ANTENNA_TUNING_HF:
+ MeasureAntennaTuningHf();
+ break;
+
+ case CMD_LISTEN_READER_FIELD:
+ ListenReaderField(c->arg[0]);
break;
case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
break;
case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
- case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: {
- UsbCommand n;
- if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
- n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
- } else {
- n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
+// UsbCommand n;
+// if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
+// n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
+// } else {
+// n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
+// }
+// n.arg[0] = c->arg[0];
+ // memcpy(n.d.asBytes, BigBuf+c->arg[0], 48); // 12*sizeof(uint32_t)
+ // LED_B_ON();
+ // usb_write((uint8_t *)&n, sizeof(n));
+ // UsbSendPacket((uint8_t *)&n, sizeof(n));
+ // LED_B_OFF();
+
+ LED_B_ON();
+ for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
+ size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
+ cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
}
- n.ext1 = c->ext1;
- memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD));
- UsbSendPacket((BYTE *)&n, sizeof(n));
+ // Trigger a finish downloading signal with an ACK frame
+ cmd_send(CMD_ACK,0,0,0,0,0);
+ LED_B_OFF();
break;
- }
+
case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
- BYTE *b = (BYTE *)BigBuf;
- memcpy(b+c->ext1, c->d.asBytes, 48);
- break;
- }
- case CMD_SIMULATE_TAG_125K:
- LED_A_ON();
- SimulateTagLowFrequency(c->ext1, 1);
- LED_A_OFF();
- break;
-#ifdef WITH_LCD
- case CMD_LCD_RESET:
- LCDReset();
+ uint8_t *b = (uint8_t *)BigBuf;
+ memcpy(b+c->arg[0], c->d.asBytes, 48);
+ //Dbprintf("copied 48 bytes to %i",b+c->arg[0]);
+// UsbSendPacket((uint8_t*)&ack, sizeof(ack));
+ cmd_send(CMD_ACK,0,0,0,0,0);
break;
-#endif
+ }
case CMD_READ_MEM:
- ReadMem(c->ext1);
+ ReadMem(c->arg[0]);
break;
+
case CMD_SET_LF_DIVISOR:
- FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);
+ FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
+ break;
+
+ case CMD_SET_ADC_MUX:
+ switch(c->arg[0]) {
+ case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
+ case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
+ case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
+ case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
+ }
break;
+
+ case CMD_VERSION:
+ SendVersion();
+ break;
+
#ifdef WITH_LCD
+ case CMD_LCD_RESET:
+ LCDReset();
+ break;
case CMD_LCD:
- LCDSend(c->ext1);
+ LCDSend(c->arg[0]);
break;
#endif
- case CMD_SETUP_WRITE:
+ case CMD_SETUP_WRITE:
case CMD_FINISH_WRITE:
case CMD_HARDWARE_RESET:
- USB_D_PLUS_PULLUP_OFF();
+ usb_disable();
SpinDelay(1000);
SpinDelay(1000);
- RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET;
+ AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
for(;;) {
// We're going to reset, and the bootrom will take control.
}
break;
+ case CMD_START_FLASH:
+ if(common_area.flags.bootrom_present) {
+ common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
+ }
+ usb_disable();
+ AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
+ for(;;);
+ break;
+ case CMD_DEVICE_INFO: {
+ uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
+ if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
+// UsbSendPacket((uint8_t*)&c, sizeof(c));
+ cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
+ break;
+ }
default:
- DbpString("unknown command");
+ Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
break;
}
}
-void ReadMem(int addr)
+void __attribute__((noreturn)) AppMain(void)
{
- const DWORD *data = ((DWORD *)addr);
- int i;
-
- DbpString("Reading memory at address");
- DbpIntegers(0, 0, addr);
- for (i = 0; i < 8; i+= 2)
- DbpIntegers(0, data[i], data[i+1]);
-}
-
-void AppMain(void)
-{
- memset(BigBuf,0,sizeof(BigBuf));
SpinDelay(100);
+ if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
+ /* Initialize common area */
+ memset(&common_area, 0, sizeof(common_area));
+ common_area.magic = COMMON_AREA_MAGIC;
+ common_area.version = 1;
+ }
+ common_area.flags.osimage_present = 1;
+
LED_D_OFF();
LED_C_OFF();
LED_B_OFF();
LED_A_OFF();
- UsbStart();
+ // Init USB device`
+ usb_enable();
+// UsbStart();
// The FPGA gets its clock from us from PCK0 output, so set that up.
- PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0);
- PIO_DISABLE = (1 << GPIO_PCK0);
- PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0;
+ AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
+ AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
+ AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
// PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
- PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK |
- PMC_CLK_PRESCALE_DIV_4;
- PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0);
+ AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
+ AT91C_PMC_PRES_CLK_4;
+ AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
// Reset SPI
- SPI_CONTROL = SPI_CONTROL_RESET;
+ AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
// Reset SSC
- SSC_CONTROL = SSC_CONTROL_RESET;
+ AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
// Load the FPGA image, which we have stored in our flash.
FpgaDownloadAndGo();
+ StartTickCount();
+
#ifdef WITH_LCD
-
LCDInit();
-
- // test text on different colored backgrounds
- LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK );
- LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE );
- LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED );
- LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN );
- LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE );
- LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW);
- LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN );
- LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA);
-
- // color bands
- LCDFill(0, 1+8* 8, 132, 8, BLACK);
- LCDFill(0, 1+8* 9, 132, 8, WHITE);
- LCDFill(0, 1+8*10, 132, 8, RED);
- LCDFill(0, 1+8*11, 132, 8, GREEN);
- LCDFill(0, 1+8*12, 132, 8, BLUE);
- LCDFill(0, 1+8*13, 132, 8, YELLOW);
- LCDFill(0, 1+8*14, 132, 8, CYAN);
- LCDFill(0, 1+8*15, 132, 8, MAGENTA);
-
#endif
+ byte_t rx[sizeof(UsbCommand)];
+ size_t rx_len;
+
for(;;) {
- usbattached = UsbPoll(FALSE);
+ if (usb_poll()) {
+ rx_len = usb_read(rx,sizeof(UsbCommand));
+ if (rx_len) {
+ UsbPacketReceived(rx,rx_len);
+ }
+ }
+// UsbPoll(FALSE);
+
WDT_HIT();
+#ifdef WITH_LF
if (BUTTON_HELD(1000) > 0)
SamyRun();
+#endif
}
}
-
-
-// samy's sniff and repeat routine
-void SamyRun()
-{
- DbpString("Stand-alone mode! No PC necessary.");
-
- // 3 possible options? no just 2 for now
-#define OPTS 2
-
- int high[OPTS], low[OPTS];
-
- // Oooh pretty -- notify user we're in elite samy mode now
- LED(LED_RED, 200);
- LED(LED_ORANGE, 200);
- LED(LED_GREEN, 200);
- LED(LED_ORANGE, 200);
- LED(LED_RED, 200);
- LED(LED_ORANGE, 200);
- LED(LED_GREEN, 200);
- LED(LED_ORANGE, 200);
- LED(LED_RED, 200);
-
- int selected = 0;
- int playing = 0;
-
- // Turn on selected LED
- LED(selected + 1, 0);
-
- for (;;)
- {
- usbattached = UsbPoll(FALSE);
- WDT_HIT();
-
- // Was our button held down or pressed?
- int button_pressed = BUTTON_HELD(1000);
- SpinDelay(300);
-
- // Button was held for a second, begin recording
- if (button_pressed > 0)
- {
- LEDsoff();
- LED(selected + 1, 0);
- LED(LED_RED2, 0);
-
- // record
- DbpString("Starting recording");
-
- // wait for button to be released
- while(BUTTON_PRESS())
- WDT_HIT();
-
- /* need this delay to prevent catching some weird data */
- SpinDelay(500);
-
- CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
- DbpString("Recorded");
- DbpIntegers(selected, high[selected], low[selected]);
-
- LEDsoff();
- LED(selected + 1, 0);
- // Finished recording
-
- // If we were previously playing, set playing off
- // so next button push begins playing what we recorded
- playing = 0;
- }
-
- // Change where to record (or begin playing)
- else if (button_pressed)
- {
- // Next option if we were previously playing
- if (playing)
- selected = (selected + 1) % OPTS;
- playing = !playing;
-
- LEDsoff();
- LED(selected + 1, 0);
-
- // Begin transmitting
- if (playing)
- {
- LED(LED_GREEN, 0);
- DbpString("Playing");
- // wait for button to be released
- while(BUTTON_PRESS())
- WDT_HIT();
- DbpIntegers(selected, high[selected], low[selected]);
- CmdHIDsimTAG(high[selected], low[selected], 0);
- DbpString("Done playing");
- if (BUTTON_HELD(1000) > 0)
- {
- DbpString("Exiting");
- LEDsoff();
- return;
- }
-
- /* We pressed a button so ignore it here with a delay */
- SpinDelay(300);
-
- // when done, we're done playing, move to next option
- selected = (selected + 1) % OPTS;
- playing = !playing;
- LEDsoff();
- LED(selected + 1, 0);
- }
- else
- while(BUTTON_PRESS())
- WDT_HIT();
- }
- }
-}
-
-
-/* \r
-OBJECTIVE\r
-Listen and detect an external reader. Determine the best location\r
-for the antenna.\r
-\r
-INSTRUCTIONS:\r
-Inside the ListenReaderField() function, there is two mode. \r
-By default, when you call the function, you will enter mode 1.\r
-If you press the PM3 button one time, you will enter mode 2.\r
-If you press the PM3 button a second time, you will exit the function.\r
-\r
-DESCRIPTION OF MODE 1:\r
-This mode just listens for an external reader field and lights up green \r
-for HF and/or red for LF. This is the original mode of the detectreader\r
-function.\r
-\r
-DESCRIPTION OF MODE 2:\r
-This mode will visually represent, using the LEDs, the actual strength of the\r
-current compared to the maximum current detected. Basically, once you know \r
-what kind of external reader is present, it will help you spot the best location to place\r
-your antenna. You will probably not get some good results if there is a LF and a HF reader\r
-at the same place! :-)\r
-\r
-LIGHT SCHEME USED:\r
-\r
-Light scheme | Descriptiong\r
-----------------------------------------------------\r
- ---- | No field detected\r
- X--- | 14% of maximum current detected\r
- -X-- | 29% of maximum current detected\r
- --X- | 43% of maximum current detected\r
- ---X | 57% of maximum current detected\r
- --XX | 71% of maximum current detected\r
- -XXX | 86% of maximum current detected\r
- XXXX | 100% of maximum current detected\r
-\r
-TODO:\r
-Add the LF part for MODE 2\r
-\r
-*/\r
-void ListenReaderField(int limit)\r
-{\r
- int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0;\r
- int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;\r
- int mode=1;\r
-\r
-#define LF_ONLY 1\r
-#define HF_ONLY 2\r
-\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
-\r
- lf_av= ReadAdc(ADC_CHAN_LF);\r
-\r
- if(limit != HF_ONLY) \r
- {\r
- DbpString("LF 125/134 Baseline:");\r
- DbpIntegers(lf_av,0,0);\r
- lf_baseline= lf_av;\r
- }\r
-\r
- hf_av=hf_max=ReadAdc(ADC_CHAN_HF);\r
-\r
- if (limit != LF_ONLY) \r
- {\r
- DbpString("HF 13.56 Baseline:");\r
- DbpIntegers(hf_av,0,0);\r
- hf_baseline= hf_av;\r
- }\r
-\r
- for(;;) \r
- {\r
- if (BUTTON_PRESS()) {\r
- SpinDelay(500);\r
- switch (mode) {\r
- case 1:\r
- mode=2;\r
- DbpString("Signal Strength Mode");
- break;\r
- case 2:\r
- default:\r
- DbpString("Stopped");\r
- LED_A_OFF();\r
- LED_B_OFF();\r
- LED_C_OFF();\r
- LED_D_OFF();\r
- return;\r
- break;\r
- }\r
- }\r
- WDT_HIT();\r
-\r
- if (limit != HF_ONLY) \r
- {\r
- if (abs(lf_av - lf_baseline) > 10)\r
- LED_D_ON();\r
- else\r
- LED_D_OFF();\r
- ++lf_count;\r
- lf_av_new= ReadAdc(ADC_CHAN_LF);\r
- // see if there's a significant change\r
- if(abs(lf_av - lf_av_new) > 10) \r
- {\r
- DbpString("LF 125/134 Field Change:");\r
- DbpIntegers(lf_av,lf_av_new,lf_count);\r
- lf_av= lf_av_new;\r
- lf_count= 0;\r
- }\r
- }\r
-\r
- if (limit != LF_ONLY) \r
- {\r
- if (abs(hf_av - hf_baseline) > 10) {\r
- if (mode == 1)\r
- LED_B_ON();\r
- if (mode == 2) {\r
- if ( hf_av>(hf_max/7)*6) {\r
- LED_A_ON(); LED_B_ON(); LED_C_ON(); LED_D_ON();\r
- }\r
- if ( (hf_av>(hf_max/7)*5) && (hf_av<=(hf_max/7)*6) ) {\r
- LED_A_ON(); LED_B_ON(); LED_C_OFF(); LED_D_ON();\r
- }\r
- if ( (hf_av>(hf_max/7)*4) && (hf_av<=(hf_max/7)*5) ) {\r
- LED_A_OFF(); LED_B_ON(); LED_C_OFF(); LED_D_ON();\r
- }\r
- if ( (hf_av>(hf_max/7)*3) && (hf_av<=(hf_max/7)*4) ) {\r
- LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_ON();\r
- }\r
- if ( (hf_av>(hf_max/7)*2) && (hf_av<=(hf_max/7)*3) ) {\r
- LED_A_OFF(); LED_B_ON(); LED_C_OFF(); LED_D_OFF();\r
- }\r
- if ( (hf_av>(hf_max/7)*1) && (hf_av<=(hf_max/7)*2) ) {\r
- LED_A_ON(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF();\r
- }\r
- if ( (hf_av>(hf_max/7)*0) && (hf_av<=(hf_max/7)*1) ) {\r
- LED_A_OFF(); LED_B_OFF(); LED_C_ON(); LED_D_OFF();\r
- }\r
- } \r
- } else {\r
- if (mode == 1) {\r
- LED_B_OFF();\r
- }\r
- if (mode == 2) {\r
- LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF();\r
- }\r
- }\r
-\r
- ++hf_count;\r
- hf_av_new= ReadAdc(ADC_CHAN_HF);\r
- // see if there's a significant change\r
- if(abs(hf_av - hf_av_new) > 10) \r
- {\r
- DbpString("HF 13.56 Field Change:");\r
- DbpIntegers(hf_av,hf_av_new,hf_count);\r
- hf_av= hf_av_new;\r
- if (hf_av > hf_max)\r
- hf_max = hf_av;\r
- hf_count= 0;\r
- }\r
- }\r
- }\r
-}\r
-\r