uint8_t DemodBuffer[MAX_DEMOD_BUF_LEN];
uint8_t g_debugMode=0;
size_t DemodBufferLen=0;
-//size_t g_demodStartIdx=0;
-//uint8_t g_demodClock=0;
+int g_DemodStartIdx=0;
+int g_DemodClock=0;
static int CmdHelp(const char *Cmd);
if (buff == NULL)
return;
- if ( size >= MAX_DEMOD_BUF_LEN)
- size = MAX_DEMOD_BUF_LEN;
+ if ( size > MAX_DEMOD_BUF_LEN - startIdx)
+ size = MAX_DEMOD_BUF_LEN - startIdx;
size_t i = 0;
for (; i < size; i++){
return;
}
+bool getDemodBuf(uint8_t *buff, size_t *size) {
+ if (buff == NULL) return false;
+ if (size == NULL) return false;
+ if (*size == 0) return false;
+
+ *size = (*size > DemodBufferLen) ? DemodBufferLen : *size;
+
+ memcpy(buff, DemodBuffer, *size);
+ return true;
+}
+
// option '1' to save DemodBuffer any other to restore
void save_restoreDB(uint8_t saveOpt)
{
- static uint8_t SavedDB[MAX_GRAPH_TRACE_LEN];
+ static uint8_t SavedDB[MAX_DEMOD_BUF_LEN];
static size_t SavedDBlen;
static bool DB_Saved = false;
+ static int savedDemodStartIdx = 0;
+ static int savedDemodClock = 0;
+
+ if (saveOpt == GRAPH_SAVE) { //save
- if (saveOpt==1) { //save
memcpy(SavedDB, DemodBuffer, sizeof(DemodBuffer));
SavedDBlen = DemodBufferLen;
DB_Saved=true;
- } else if (DB_Saved){ //restore
+ savedDemodStartIdx = g_DemodStartIdx;
+ savedDemodClock = g_DemodClock;
+ } else if (DB_Saved) { //restore
memcpy(DemodBuffer, SavedDB, sizeof(DemodBuffer));
DemodBufferLen = SavedDBlen;
+ g_DemodClock = savedDemodClock;
+ g_DemodStartIdx = savedDemodStartIdx;
}
return;
}
}
bool st = false;
size_t ststart = 0, stend = 0;
- if (*stCheck) st = DetectST_ext(BitStream, &BitLen, &foundclk, &ststart, &stend);
+ if (*stCheck) st = DetectST(BitStream, &BitLen, &foundclk, &ststart, &stend);
+ *stCheck = st;
if (st) {
- *stCheck = st;
clk = (clk == 0) ? foundclk : clk;
CursorCPos = ststart;
CursorDPos = stend;
//}
//RepaintGraphWindow();
}
- int errCnt = askdemod(BitStream, &BitLen, &clk, &invert, maxErr, askamp, askType);
+ int startIdx = 0;
+ int errCnt = askdemod_ext(BitStream, &BitLen, &clk, &invert, maxErr, askamp, askType, &startIdx);
if (errCnt<0 || BitLen<16){ //if fatal error (or -1)
if (g_debugMode) PrintAndLog("DEBUG: no data found %d, errors:%d, bitlen:%d, clock:%d",errCnt,invert,BitLen,clk);
return 0;
return 0;
}
if (verbose || g_debugMode) PrintAndLog("\nUsing Clock:%d, Invert:%d, Bits Found:%d",clk,invert,BitLen);
-
//output
setDemodBuf(BitStream,BitLen,0);
+ setClockGrid(clk, startIdx);
+
if (verbose || g_debugMode){
if (errCnt>0) PrintAndLog("# Errors during Demoding (shown as 7 in bit stream): %d",errCnt);
if (askType) PrintAndLog("ASK/Manchester - Clock: %d - Decoded bitstream:",clk);
}
bool st = true;
if (Cmd[0]=='s')
- return ASKDemod_ext(Cmd++, true, true, 1, &st);
+ return ASKDemod_ext(Cmd++, true, false, 1, &st);
else if (Cmd[1] == 's')
- return ASKDemod_ext(Cmd+=2, true, true, 1, &st);
+ return ASKDemod_ext(Cmd+=2, true, false, 1, &st);
else
- return ASKDemod(Cmd, true, true, 1);
+ return ASKDemod(Cmd, true, false, 1);
}
//by marshmellow
return 0;
}
if (DemodBufferLen==0) return 0;
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
+ uint8_t BitStream[MAX_DEMOD_BUF_LEN]={0};
int high=0,low=0;
for (;i<DemodBufferLen;++i){
if (DemodBuffer[i]>high) high=DemodBuffer[i];
return 0;
}
sscanf(Cmd, "%i %i %i", &offset, &invert, &maxErr);
- if (DemodBufferLen==0){
+ if (DemodBufferLen==0) {
PrintAndLog("DemodBuffer Empty - run 'data rawdemod ar' first");
return 0;
}
- uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
- memcpy(BitStream, DemodBuffer, DemodBufferLen);
- size = DemodBufferLen;
- errCnt=BiphaseRawDecode(BitStream, &size, offset, invert);
+ uint8_t BitStream[MAX_DEMOD_BUF_LEN]={0};
+ size = sizeof(BitStream);
+ if ( !getDemodBuf(BitStream, &size) ) return 0;
+ errCnt=BiphaseRawDecode(BitStream, &size, &offset, invert);
if (errCnt<0){
PrintAndLog("Error during decode:%d", errCnt);
return 0;
if (errCnt>0){
PrintAndLog("# Errors found during Demod (shown as 7 in bit stream): %d",errCnt);
}
+
PrintAndLog("Biphase Decoded using offset: %d - # invert:%d - data:",offset,invert);
PrintAndLog("%s", sprint_bin_break(BitStream, size, 16));
if (offset) setDemodBuf(DemodBuffer,DemodBufferLen-offset, offset); //remove first bit from raw demod
+ setClockGrid(g_DemodClock, g_DemodStartIdx + g_DemodClock*offset/2);
return 1;
}
int offset=0, clk=0, invert=0, maxErr=0;
sscanf(Cmd, "%i %i %i %i", &offset, &clk, &invert, &maxErr);
- uint8_t BitStream[MAX_DEMOD_BUF_LEN];
- size_t size = getFromGraphBuf(BitStream);
+ uint8_t BitStream[MAX_GRAPH_TRACE_LEN];
+ size_t size = getFromGraphBuf(BitStream);
+ int startIdx = 0;
//invert here inverts the ask raw demoded bits which has no effect on the demod, but we need the pointer
- int errCnt = askdemod(BitStream, &size, &clk, &invert, maxErr, 0, 0);
+ int errCnt = askdemod_ext(BitStream, &size, &clk, &invert, maxErr, 0, 0, &startIdx);
if ( errCnt < 0 || errCnt > maxErr ) {
if (g_debugMode) PrintAndLog("DEBUG: no data or error found %d, clock: %d", errCnt, clk);
return 0;
- }
+ }
//attempt to Biphase decode BitStream
- errCnt = BiphaseRawDecode(BitStream, &size, offset, invert);
+ errCnt = BiphaseRawDecode(BitStream, &size, &offset, invert);
if (errCnt < 0){
if (g_debugMode || verbose) PrintAndLog("Error BiphaseRawDecode: %d", errCnt);
return 0;
- }
+ }
if (errCnt > maxErr) {
if (g_debugMode || verbose) PrintAndLog("Error BiphaseRawDecode too many errors: %d", errCnt);
return 0;
}
//success set DemodBuffer and return
setDemodBuf(BitStream, size, 0);
+ setClockGrid(clk, startIdx + clk*offset/2);
if (g_debugMode || verbose){
PrintAndLog("Biphase Decoded using offset: %d - clock: %d - # errors:%d - data:",offset,clk,errCnt);
printDemodBuff();
return ASKDemod(Cmd, true, false, 0);
}
-int AutoCorrelate(int window, bool SaveGrph, bool verbose)
+int AutoCorrelate(const int *in, int *out, size_t len, int window, bool SaveGrph, bool verbose)
{
static int CorrelBuffer[MAX_GRAPH_TRACE_LEN];
size_t Correlation = 0;
int maxSum = 0;
int lastMax = 0;
if (verbose) PrintAndLog("performing %d correlations", GraphTraceLen - window);
- for (int i = 0; i < GraphTraceLen - window; ++i) {
+ for (int i = 0; i < len - window; ++i) {
int sum = 0;
for (int j = 0; j < window; ++j) {
- sum += (GraphBuffer[j]*GraphBuffer[i + j]) / 256;
+ sum += (in[j]*in[i + j]) / 256;
}
CorrelBuffer[i] = sum;
- if (sum >= maxSum-100 && sum <= maxSum+100){
+ if (sum >= maxSum-100 && sum <= maxSum+100) {
//another max
Correlation = i-lastMax;
lastMax = i;
if (sum > maxSum) maxSum = sum;
- } else if (sum > maxSum){
+ } else if (sum > maxSum) {
maxSum=sum;
lastMax = i;
}
}
- if (Correlation==0){
+ if (Correlation==0) {
//try again with wider margin
- for (int i = 0; i < GraphTraceLen - window; i++){
- if (CorrelBuffer[i] >= maxSum-(maxSum*0.05) && CorrelBuffer[i] <= maxSum+(maxSum*0.05)){
+ for (int i = 0; i < len - window; i++) {
+ if (CorrelBuffer[i] >= maxSum-(maxSum*0.05) && CorrelBuffer[i] <= maxSum+(maxSum*0.05)) {
//another max
Correlation = i-lastMax;
lastMax = i;
- //if (CorrelBuffer[i] > maxSum) maxSum = sum;
}
}
}
if (verbose && Correlation > 0) PrintAndLog("Possible Correlation: %d samples",Correlation);
- if (SaveGrph){
- GraphTraceLen = GraphTraceLen - window;
- memcpy(GraphBuffer, CorrelBuffer, GraphTraceLen * sizeof (int));
+ if (SaveGrph) {
+ //GraphTraceLen = GraphTraceLen - window;
+ memcpy(out, CorrelBuffer, len * sizeof(int));
RepaintGraphWindow();
}
return Correlation;
return 0;
}
if (grph == 'g') updateGrph=true;
- return AutoCorrelate(window, updateGrph, true);
+ return AutoCorrelate(GraphBuffer, GraphBuffer, GraphTraceLen, window, updateGrph, true);
}
int CmdBitsamples(const char *Cmd)
return 0;
}
+int AskEdgeDetect(const int *in, int *out, int len, int threshold) {
+ int Last = 0;
+ for(int i = 1; i<len; i++) {
+ if (in[i]-in[i-1] >= threshold) //large jump up
+ Last = 127;
+ else if(in[i]-in[i-1] <= -1 * threshold) //large jump down
+ Last = -127;
+ out[i-1] = Last;
+ }
+ return 0;
+}
+
//by marshmellow
//use large jumps in read samples to identify edges of waves and then amplify that wave to max
//similar to dirtheshold, threshold commands
int CmdAskEdgeDetect(const char *Cmd)
{
int thresLen = 25;
- int Last = 0;
+ int ans = 0;
sscanf(Cmd, "%i", &thresLen);
- for(int i = 1; i<GraphTraceLen; i++){
- if (GraphBuffer[i]-GraphBuffer[i-1]>=thresLen) //large jump up
- Last = 127;
- else if(GraphBuffer[i]-GraphBuffer[i-1]<=-1*thresLen) //large jump down
- Last = -127;
- GraphBuffer[i-1] = Last;
- }
+ ans = AskEdgeDetect(GraphBuffer, GraphBuffer, GraphTraceLen, thresLen);
RepaintGraphWindow();
- return 0;
+ return ans;
}
/* Print our clock rate */
}
//get bit clock length
if (!rfLen) {
- rfLen = detectFSKClk(BitStream, BitLen, fchigh, fclow);
+ int firstClockEdge = 0; //todo - align grid on graph with this...
+ rfLen = detectFSKClk(BitStream, BitLen, fchigh, fclow, &firstClockEdge);
if (!rfLen) rfLen = 50;
}
- int size = fskdemod(BitStream, BitLen, rfLen, invert, fchigh, fclow);
+ int startIdx = 0;
+ int size = fskdemod(BitStream, BitLen, rfLen, invert, fchigh, fclow, &startIdx);
if (size > 0) {
setDemodBuf(BitStream,size,0);
+ setClockGrid(rfLen, startIdx);
- // Now output the bitstream to the scrollback by line of 16 bits
+ // Now output the bitstream to the scrollback by line of 16 bits
if (verbose || g_debugMode) {
PrintAndLog("\nUsing Clock:%u, invert:%u, fchigh:%u, fclow:%u", (unsigned int)rfLen, (unsigned int)invert, (unsigned int)fchigh, (unsigned int)fclow);
PrintAndLog("%s decoded bitstream:",GetFSKType(fchigh,fclow,invert));
size_t BitLen = getFromGraphBuf(BitStream);
if (BitLen==0) return 0;
int errCnt=0;
- errCnt = pskRawDemod(BitStream, &BitLen, &clk, &invert);
+ int startIdx = 0;
+ errCnt = pskRawDemod_ext(BitStream, &BitLen, &clk, &invert, &startIdx);
if (errCnt > maxErr){
if (g_debugMode || verbose) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return 0;
}
//prime demod buffer for output
setDemodBuf(BitStream,BitLen,0);
+ setClockGrid(clk, startIdx);
+
return 1;
}
if (verbose || g_debugMode) PrintAndLog("Tried NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
//prime demod buffer for output
setDemodBuf(BitStream,BitLen,0);
+ setClockGrid(clk, clkStartIdx);
+
if (errCnt>0 && (verbose || g_debugMode)) PrintAndLog("# Errors during Demoding (shown as 7 in bit stream): %d",errCnt);
if (verbose || g_debugMode) {
return ans;
}
+void setClockGrid(int clk, int offset) {
+ g_DemodStartIdx = offset;
+ g_DemodClock = clk;
+ if (g_debugMode) PrintAndLog("demodoffset %d, clk %d",offset,clk);
+
+ if (offset > clk) offset %= clk;
+ if (offset < 0) offset += clk;
+
+ if (offset > GraphTraceLen || offset < 0) return;
+ if (clk < 8 || clk > GraphTraceLen) {
+ GridLocked = false;
+ GridOffset = 0;
+ PlotGridX = 0;
+ PlotGridXdefault = 0;
+ RepaintGraphWindow();
+ } else {
+ GridLocked = true;
+ GridOffset = offset;
+ PlotGridX = clk;
+ PlotGridXdefault = clk;
+ RepaintGraphWindow();
+ }
+}
+
int CmdGrid(const char *Cmd)
{
sscanf(Cmd, "%i %i", &PlotGridX, &PlotGridY);
return val;
}
-int getSamples(const char *Cmd, bool silent)
+int getSamples(int n, bool silent)
{
//If we get all but the last byte in bigbuf,
// we don't have to worry about remaining trash
uint8_t got[BIGBUF_SIZE-1] = { 0 };
- int n = strtol(Cmd, NULL, 0);
-
if (n == 0 || n > sizeof(got))
n = sizeof(got);
- PrintAndLog("Reading %d bytes from device memory\n", n);
+ if (!silent) PrintAndLog("Reading %d bytes from device memory\n", n);
GetFromBigBuf(got,n,0);
- PrintAndLog("Data fetched");
+ if (!silent) PrintAndLog("Data fetched");
UsbCommand response;
WaitForResponse(CMD_ACK, &response);
uint8_t bits_per_sample = 8;
if(response.arg[0] > 0)
{
sample_config *sc = (sample_config *) response.d.asBytes;
- PrintAndLog("Samples @ %d bits/smpl, decimation 1:%d ", sc->bits_per_sample
+ if (!silent) PrintAndLog("Samples @ %d bits/smpl, decimation 1:%d ", sc->bits_per_sample
, sc->decimation);
bits_per_sample = sc->bits_per_sample;
}
if(bits_per_sample < 8)
{
- PrintAndLog("Unpacking...");
+ if (!silent) PrintAndLog("Unpacking...");
BitstreamIn bout = { got, bits_per_sample * n, 0};
int j =0;
for (j = 0; j * bits_per_sample < n * 8 && j < n; j++) {
GraphTraceLen = n;
}
+ setClockGrid(0,0);
+ DemodBufferLen = 0;
RepaintGraphWindow();
return 0;
}
int CmdSamples(const char *Cmd)
{
- return getSamples(Cmd, false);
+ int n = strtol(Cmd, NULL, 0);
+ return getSamples(n, false);
}
int CmdTuneSamples(const char *Cmd)
peakf = resp.arg[2] & 0xffff;
peakv = resp.arg[2] >> 16;
PrintAndLog("");
- PrintAndLog("# LF antenna: %5.2f V @ 125.00 kHz", vLf125/1000.0);
- PrintAndLog("# LF antenna: %5.2f V @ 134.00 kHz", vLf134/1000.0);
- PrintAndLog("# LF optimal: %5.2f V @%9.2f kHz", peakv/1000.0, 12000.0/(peakf+1));
+ PrintAndLog("# LF antenna: %5.2f V @ 125.00 kHz", vLf125/500.0);
+ PrintAndLog("# LF antenna: %5.2f V @ 134.00 kHz", vLf134/500.0);
+ PrintAndLog("# LF optimal: %5.2f V @%9.2f kHz", peakv/500.0, 12000.0/(peakf+1));
PrintAndLog("# HF antenna: %5.2f V @ 13.56 MHz", vHf/1000.0);
- #define LF_UNUSABLE_V 2948 // was 2000. Changed due to bugfix in voltage measurements. LF results are now 47% higher.
- #define LF_MARGINAL_V 14739 // was 10000. Changed due to bugfix bug in voltage measurements. LF results are now 47% higher.
- #define HF_UNUSABLE_V 3167 // was 2000. Changed due to bugfix in voltage measurements. HF results are now 58% higher.
- #define HF_MARGINAL_V 7917 // was 5000. Changed due to bugfix in voltage measurements. HF results are now 58% higher.
+ #define LF_UNUSABLE_V 3000
+ #define LF_MARGINAL_V 15000
+ #define HF_UNUSABLE_V 3200
+ #define HF_MARGINAL_V 8000
- if (peakv < LF_UNUSABLE_V)
+ if (peakv<<1 < LF_UNUSABLE_V)
PrintAndLog("# Your LF antenna is unusable.");
- else if (peakv < LF_MARGINAL_V)
+ else if (peakv<<1 < LF_MARGINAL_V)
PrintAndLog("# Your LF antenna is marginal.");
if (vHf < HF_UNUSABLE_V)
PrintAndLog("# Your HF antenna is unusable.");
else if (vHf < HF_MARGINAL_V)
PrintAndLog("# Your HF antenna is marginal.");
- if (peakv >= LF_UNUSABLE_V) {
+ if (peakv<<1 >= LF_UNUSABLE_V) {
for (int i = 0; i < 256; i++) {
GraphBuffer[i] = resp.d.asBytes[i] - 128;
}
}
fclose(f);
PrintAndLog("loaded %d samples", GraphTraceLen);
+ setClockGrid(0,0);
+ DemodBufferLen = 0;
RepaintGraphWindow();
return 0;
}
if (max != min) {
for (i = 0; i < GraphTraceLen; ++i) {
- GraphBuffer[i] = (GraphBuffer[i] - ((max + min) / 2)) * 256 /
- (max - min);
+ GraphBuffer[i] = ((long)(GraphBuffer[i] - ((max + min) / 2)) * 256) / (max - min);
//marshmelow: adjusted *1000 to *256 to make +/- 128 so demod commands still work
}
}
return 0;
}
-int CmdDirectionalThreshold(const char *Cmd)
+int directionalThreshold(const int* in, int *out, size_t len, int8_t up, int8_t down)
{
- int8_t upThres = param_get8(Cmd, 0);
- int8_t downThres = param_get8(Cmd, 1);
-
- printf("Applying Up Threshold: %d, Down Threshold: %d\n", upThres, downThres);
-
- int lastValue = GraphBuffer[0];
- GraphBuffer[0] = 0; // Will be changed at the end, but init 0 as we adjust to last samples value if no threshold kicks in.
+ int lastValue = in[0];
+ out[0] = 0; // Will be changed at the end, but init 0 as we adjust to last samples value if no threshold kicks in.
- for (int i = 1; i < GraphTraceLen; ++i) {
+ for (int i = 1; i < len; ++i) {
// Apply first threshold to samples heading up
- if (GraphBuffer[i] >= upThres && GraphBuffer[i] > lastValue)
+ if (in[i] >= up && in[i] > lastValue)
{
- lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
- GraphBuffer[i] = 127;
+ lastValue = out[i]; // Buffer last value as we overwrite it.
+ out[i] = 1;
}
// Apply second threshold to samples heading down
- else if (GraphBuffer[i] <= downThres && GraphBuffer[i] < lastValue)
+ else if (in[i] <= down && in[i] < lastValue)
{
- lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
- GraphBuffer[i] = -127;
+ lastValue = out[i]; // Buffer last value as we overwrite it.
+ out[i] = -1;
}
else
{
- lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it.
- GraphBuffer[i] = GraphBuffer[i-1];
-
+ lastValue = out[i]; // Buffer last value as we overwrite it.
+ out[i] = out[i-1];
}
}
- GraphBuffer[0] = GraphBuffer[1]; // Aline with first edited sample.
+ out[0] = out[1]; // Align with first edited sample.
+ return 0;
+}
+
+int CmdDirectionalThreshold(const char *Cmd)
+{
+ int8_t upThres = param_get8(Cmd, 0);
+ int8_t downThres = param_get8(Cmd, 1);
+
+ printf("Applying Up Threshold: %d, Down Threshold: %d\n", upThres, downThres);
+
+ directionalThreshold(GraphBuffer, GraphBuffer,GraphTraceLen, upThres, downThres);
RepaintGraphWindow();
return 0;
}
return 0;
}
+ /* // example of FSK2 RF/50 Tones
+ static const int LowTone[] = {
+ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
+ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
+ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
+ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
+ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1
+ };
+ static const int HighTone[] = {
+ 1, 1, 1, 1, 1, -1, -1, -1, -1, // note one extra 1 to padd due to 50/8 remainder (1/2 the remainder)
+ 1, 1, 1, 1, -1, -1, -1, -1,
+ 1, 1, 1, 1, -1, -1, -1, -1,
+ 1, 1, 1, 1, -1, -1, -1, -1,
+ 1, 1, 1, 1, -1, -1, -1, -1,
+ 1, 1, 1, 1, -1, -1, -1, -1, -1, // note one extra -1 to padd due to 50/8 remainder
+ };
+ */
+void GetHiLoTone(int *LowTone, int *HighTone, int clk, int LowToneFC, int HighToneFC) {
+ int i,j=0;
+ int Left_Modifier = ((clk % LowToneFC) % 2) + ((clk % LowToneFC)/2);
+ int Right_Modifier = (clk % LowToneFC) / 2;
+ //int HighToneMod = clk mod HighToneFC;
+ int LeftHalfFCCnt = (LowToneFC % 2) + (LowToneFC/2); //truncate
+ int FCs_per_clk = clk/LowToneFC;
+
+ // need to correctly split up the clock to field clocks.
+ // First attempt uses modifiers on each end to make up for when FCs don't evenly divide into Clk
+
+ // start with LowTone
+ // set extra 1 modifiers to make up for when FC doesn't divide evenly into Clk
+ for (i = 0; i < Left_Modifier; i++) {
+ LowTone[i] = 1;
+ }
+
+ // loop # of field clocks inside the main clock
+ for (i = 0; i < (FCs_per_clk); i++) {
+ // loop # of samples per field clock
+ for (j = 0; j < LowToneFC; j++) {
+ LowTone[(i*LowToneFC)+Left_Modifier+j] = ( j < LeftHalfFCCnt ) ? 1 : -1;
+ }
+ }
+
+ int k;
+ // add last -1 modifiers
+ for (k = 0; k < Right_Modifier; k++) {
+ LowTone[((i-1)*LowToneFC)+Left_Modifier+j+k] = -1;
+ }
+
+ // now do hightone
+ Left_Modifier = ((clk % HighToneFC) % 2) + ((clk % HighToneFC)/2);
+ Right_Modifier = (clk % HighToneFC) / 2;
+ LeftHalfFCCnt = (HighToneFC % 2) + (HighToneFC/2); //truncate
+ FCs_per_clk = clk/HighToneFC;
+
+ for (i = 0; i < Left_Modifier; i++) {
+ HighTone[i] = 1;
+ }
+
+ // loop # of field clocks inside the main clock
+ for (i = 0; i < (FCs_per_clk); i++) {
+ // loop # of samples per field clock
+ for (j = 0; j < HighToneFC; j++) {
+ HighTone[(i*HighToneFC)+Left_Modifier+j] = ( j < LeftHalfFCCnt ) ? 1 : -1;
+ }
+ }
+
+ // add last -1 modifiers
+ for (k = 0; k < Right_Modifier; k++) {
+ PrintAndLog("(i-1)*HighToneFC+lm+j+k %i",((i-1)*HighToneFC)+Left_Modifier+j+k);
+ HighTone[((i-1)*HighToneFC)+Left_Modifier+j+k] = -1;
+ }
+ if (g_debugMode == 2) {
+ for ( i = 0; i < clk; i++) {
+ PrintAndLog("Low: %i, High: %i",LowTone[i],HighTone[i]);
+ }
+ }
+}
+
+//old CmdFSKdemod adapted by marshmellow
+//converts FSK to clear NRZ style wave. (or demodulates)
+int FSKToNRZ(int *data, int *dataLen, int clk, int LowToneFC, int HighToneFC) {
+ uint8_t ans=0;
+ if (clk == 0 || LowToneFC == 0 || HighToneFC == 0) {
+ int firstClockEdge=0;
+ ans = fskClocks((uint8_t *) &LowToneFC, (uint8_t *) &HighToneFC, (uint8_t *) &clk, false, &firstClockEdge);
+ if (g_debugMode > 1) {
+ PrintAndLog ("DEBUG FSKtoNRZ: detected clocks: fc_low %i, fc_high %i, clk %i, firstClockEdge %i, ans %u", LowToneFC, HighToneFC, clk, firstClockEdge, ans);
+ }
+ }
+ // currently only know fsk modulations with field clocks < 10 samples and > 4 samples. filter out to remove false positives (and possibly destroying ask/psk modulated waves...)
+ if (ans == 0 || clk == 0 || LowToneFC == 0 || HighToneFC == 0 || LowToneFC > 10 || HighToneFC < 4) {
+ if (g_debugMode > 1) {
+ PrintAndLog ("DEBUG FSKtoNRZ: no fsk clocks found");
+ }
+ return 0;
+ }
+ int LowTone[clk];
+ int HighTone[clk];
+ GetHiLoTone(LowTone, HighTone, clk, LowToneFC, HighToneFC);
+
+ int i, j;
+
+ // loop through ([all samples] - clk)
+ for (i = 0; i < *dataLen - clk; ++i) {
+ int lowSum = 0, highSum = 0;
+
+ // sum all samples together starting from this sample for [clk] samples for each tone (multiply tone value with sample data)
+ for (j = 0; j < clk; ++j) {
+ lowSum += LowTone[j] * data[i+j];
+ highSum += HighTone[j] * data[i + j];
+ }
+ // get abs( [average sample value per clk] * 100 ) (or a rolling average of sorts)
+ lowSum = abs(100 * lowSum / clk);
+ highSum = abs(100 * highSum / clk);
+ // save these back to buffer for later use
+ data[i] = (highSum << 16) | lowSum;
+ }
+
+ // now we have the abs( [average sample value per clk] * 100 ) for each tone
+ // loop through again [all samples] - clk - 16
+ // note why 16??? is 16 the largest FC? changed to LowToneFC as that should be the > fc
+ for(i = 0; i < *dataLen - clk - LowToneFC; ++i) {
+ int lowTot = 0, highTot = 0;
+
+ // sum a field clock width of abs( [average sample values per clk] * 100) for each tone
+ for (j = 0; j < LowToneFC; ++j) { //10 for fsk2
+ lowTot += (data[i + j] & 0xffff);
+ }
+ for (j = 0; j < HighToneFC; j++) { //8 for fsk2
+ highTot += (data[i + j] >> 16);
+ }
+
+ // subtract the sum of lowTone averages by the sum of highTone averages as it
+ // and write back the new graph value
+ data[i] = lowTot - highTot;
+ }
+ // update dataLen to what we put back to the data sample buffer
+ *dataLen -= (clk + LowToneFC);
+ return 0;
+}
+
+int usage_data_fsktonrz() {
+ PrintAndLog("Usage: data fsktonrz c <clock> l <fc_low> f <fc_high>");
+ PrintAndLog("Options: ");
+ PrintAndLog(" h This help");
+ PrintAndLog(" c <clock> enter the a clock (omit to autodetect)");
+ PrintAndLog(" l <fc_low> enter a field clock (omit to autodetect)");
+ PrintAndLog(" f <fc_high> enter a field clock (omit to autodetect)");
+ return 0;
+}
+
+int CmdFSKToNRZ(const char *Cmd) {
+ // take clk, fc_low, fc_high
+ // blank = auto;
+ bool errors = false;
+ int clk = 0;
+ char cmdp = 0;
+ int fc_low = 10, fc_high = 8;
+ while(param_getchar(Cmd, cmdp) != 0x00)
+ {
+ switch(param_getchar(Cmd, cmdp))
+ {
+ case 'h':
+ case 'H':
+ return usage_data_fsktonrz();
+ case 'C':
+ case 'c':
+ clk = param_get32ex(Cmd, cmdp+1, 0, 10);
+ cmdp += 2;
+ break;
+ case 'F':
+ case 'f':
+ fc_high = param_get32ex(Cmd, cmdp+1, 0, 10);
+ cmdp += 2;
+ break;
+ case 'L':
+ case 'l':
+ fc_low = param_get32ex(Cmd, cmdp+1, 0, 10);
+ cmdp += 2;
+ break;
+ default:
+ PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
+ errors = true;
+ break;
+ }
+ if(errors) break;
+ }
+ //Validations
+ if(errors) return usage_data_fsktonrz();
+
+ setClockGrid(0,0);
+ DemodBufferLen = 0;
+ int ans = FSKToNRZ(GraphBuffer, &GraphTraceLen, clk, fc_low, fc_high);
+ CmdNorm("");
+ RepaintGraphWindow();
+ return ans;
+}
+
+
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
{"dec", CmdDec, 1, "Decimate samples"},
{"detectclock", CmdDetectClockRate, 1, "[modulation] Detect clock rate of wave in GraphBuffer (options: 'a','f','n','p' for ask, fsk, nrz, psk respectively)"},
- //{"fskfcdetect", CmdFSKfcDetect, 1, "Try to detect the Field Clock of an FSK wave"},
+ {"fsktonrz", CmdFSKToNRZ, 1, "Convert fsk2 to nrz wave for alternate fsk demodulating (for weak fsk)"},
{"getbitstream", CmdGetBitStream, 1, "Convert GraphBuffer's >=1 values to 1 and <1 to 0"},
{"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
{"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},