]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - fpga/hi_simulate.v
Add details to compile using brew in Mac OS X
[proxmark3-svn] / fpga / hi_simulate.v
index 05662e53aa3d830ff2e74a75dd36321e95096317..0768c29de0dcd0204d0692acc9b23486a98d26a2 100644 (file)
-//-----------------------------------------------------------------------------\r
-// Pretend to be an ISO 14443 tag. We will do this by alternately short-\r
-// circuiting and open-circuiting the antenna coil, with the tri-state\r
-// pins. \r
-//\r
-// We communicate over the SSP, as a bitstream (i.e., might as well be\r
-// unframed, though we still generate the word sync signal). The output\r
-// (ARM -> FPGA) tells us whether to modulate or not. The input (FPGA\r
-// -> ARM) is us using the A/D as a fancy comparator; this is with\r
-// (software-added) hysteresis, to undo the high-pass filter.\r
-//\r
-// At this point only Type A is implemented. This means that we are using a\r
-// bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make\r
-// things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s)\r
-//\r
-// Jonathan Westhues, October 2006\r
-//-----------------------------------------------------------------------------\r
-\r
-module hi_simulate(\r
-    pck0, ck_1356meg, ck_1356megb,\r
-    pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,\r
-    adc_d, adc_clk,\r
-    ssp_frame, ssp_din, ssp_dout, ssp_clk,\r
-    cross_hi, cross_lo,\r
-    dbg,\r
-    mod_type\r
-);\r
-    input pck0, ck_1356meg, ck_1356megb;\r
-    output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;\r
-    input [7:0] adc_d;\r
-    output adc_clk;\r
-    input ssp_dout;\r
-    output ssp_frame, ssp_din, ssp_clk;\r
-    input cross_hi, cross_lo;\r
-    output dbg;\r
-    input [2:0] mod_type;\r
-\r
-// Power amp goes between LOW and tri-state, so pwr_hi (and pwr_lo) can\r
-// always be low.\r
-assign pwr_hi = 1'b0;\r
-assign pwr_lo = 1'b0;\r
-\r
-// The comparator with hysteresis on the output from the peak detector.\r
-reg after_hysteresis;\r
-assign adc_clk = ck_1356meg;\r
-\r
-always @(negedge adc_clk)\r
-begin\r
-    if(& adc_d[7:5]) after_hysteresis = 1'b1;\r
-    else if(~(| adc_d[7:5])) after_hysteresis = 1'b0;\r
-end\r
-\r
-// Divide 13.56 MHz by 32 to produce the SSP_CLK\r
-// The register is bigger to allow higher division factors of up to /128\r
-reg [6:0] ssp_clk_divider;\r
-always @(posedge adc_clk)\r
-    ssp_clk_divider <= (ssp_clk_divider + 1);\r
-assign ssp_clk = ssp_clk_divider[4];\r
-\r
-// Divide SSP_CLK by 8 to produce the byte framing signal; the phase of\r
-// this is arbitrary, because it's just a bitstream.\r
-// One nasty issue, though: I can't make it work with both rx and tx at\r
-// once. The phase wrt ssp_clk must be changed. TODO to find out why\r
-// that is and make a better fix.\r
-reg [2:0] ssp_frame_divider_to_arm;\r
-always @(posedge ssp_clk)\r
-    ssp_frame_divider_to_arm <= (ssp_frame_divider_to_arm + 1);\r
-reg [2:0] ssp_frame_divider_from_arm;\r
-always @(negedge ssp_clk)\r
-    ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1);\r
-\r
-reg ssp_frame;\r
-always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type)\r
-    if(mod_type == 3'b000) // not modulating, so listening, to ARM\r
-        ssp_frame = (ssp_frame_divider_to_arm == 3'b000);\r
-    else\r
-        ssp_frame = (ssp_frame_divider_from_arm == 3'b000);\r
-\r
-// Synchronize up the after-hysteresis signal, to produce DIN.\r
-reg ssp_din;\r
-always @(posedge ssp_clk)\r
-    ssp_din = after_hysteresis;\r
-\r
-// Modulating carrier frequency is fc/16, reuse ssp_clk divider for that\r
-reg modulating_carrier;\r
-always @(mod_type or ssp_clk or ssp_dout)\r
-    if(mod_type == 3'b000)\r
-        modulating_carrier <= 1'b0;                          // no modulation\r
-    else if(mod_type == 3'b001)\r
-        modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK\r
-    else if(mod_type == 3'b010)\r
-        modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off\r
-    else\r
-        modulating_carrier <= 1'b0;                           // yet unused\r
-\r
-// This one is all LF, so doesn't matter\r
-assign pwr_oe2 = modulating_carrier;\r
-\r
-// Toggle only one of these, since we are already producing much deeper\r
-// modulation than a real tag would.\r
-assign pwr_oe1 = modulating_carrier;\r
-assign pwr_oe4 = modulating_carrier;\r
-\r
-// This one is always on, so that we can watch the carrier.\r
-assign pwr_oe3 = 1'b0;\r
-\r
-assign dbg = after_hysteresis;\r
-\r
-endmodule\r
+//-----------------------------------------------------------------------------
+// Pretend to be an ISO 14443 tag. We will do this by alternately short-
+// circuiting and open-circuiting the antenna coil, with the tri-state
+// pins. 
+//
+// We communicate over the SSP, as a bitstream (i.e., might as well be
+// unframed, though we still generate the word sync signal). The output
+// (ARM -> FPGA) tells us whether to modulate or not. The input (FPGA
+// -> ARM) is us using the A/D as a fancy comparator; this is with
+// (software-added) hysteresis, to undo the high-pass filter.
+//
+// At this point only Type A is implemented. This means that we are using a
+// bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make
+// things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s)
+//
+// Jonathan Westhues, October 2006
+//-----------------------------------------------------------------------------
+
+module hi_simulate(
+    pck0, ck_1356meg, ck_1356megb,
+    pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
+    adc_d, adc_clk,
+    ssp_frame, ssp_din, ssp_dout, ssp_clk,
+    cross_hi, cross_lo,
+    dbg,
+    mod_type
+);
+    input pck0, ck_1356meg, ck_1356megb;
+    output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
+    input [7:0] adc_d;
+    output adc_clk;
+    input ssp_dout;
+    output ssp_frame, ssp_din, ssp_clk;
+    input cross_hi, cross_lo;
+    output dbg;
+    input [2:0] mod_type;
+
+// Power amp goes between LOW and tri-state, so pwr_hi (and pwr_lo) can
+// always be low.
+assign pwr_hi = 1'b0;
+assign pwr_lo = 1'b0;
+
+// The comparator with hysteresis on the output from the peak detector.
+reg after_hysteresis;
+assign adc_clk = ck_1356meg;
+
+always @(negedge adc_clk)
+begin
+    if(& adc_d[7:5]) after_hysteresis = 1'b1;
+    else if(~(| adc_d[7:5])) after_hysteresis = 1'b0;
+end
+
+
+// Divide 13.56 MHz by 32 to produce the SSP_CLK
+// The register is bigger to allow higher division factors of up to /128
+reg [10:0] ssp_clk_divider;
+
+always @(posedge adc_clk)
+    ssp_clk_divider <= (ssp_clk_divider + 1);
+
+reg ssp_clk;
+reg ssp_frame;
+always @(negedge adc_clk)
+begin
+    //If we're in 101, we only need a new bit every 8th carrier bit (53Hz). Otherwise, get next bit at 424Khz
+    if(mod_type == 3'b101)
+    begin
+       if(ssp_clk_divider[7:0] == 8'b00000000)
+           ssp_clk <= 1'b0;
+       if(ssp_clk_divider[7:0] == 8'b10000000)
+           ssp_clk <= 1'b1;
+
+    end
+    else
+    begin
+       if(ssp_clk_divider[4:0] == 5'd0)//[4:0] == 5'b00000)
+           ssp_clk <= 1'b1;
+       if(ssp_clk_divider[4:0] == 5'd16) //[4:0] == 5'b10000)
+           ssp_clk <= 1'b0;
+    end
+end
+
+
+//assign ssp_clk = ssp_clk_divider[4];
+
+// Divide SSP_CLK by 8 to produce the byte framing signal; the phase of
+// this is arbitrary, because it's just a bitstream.
+// One nasty issue, though: I can't make it work with both rx and tx at
+// once. The phase wrt ssp_clk must be changed. TODO to find out why
+// that is and make a better fix.
+reg [2:0] ssp_frame_divider_to_arm;
+always @(posedge ssp_clk)
+    ssp_frame_divider_to_arm <= (ssp_frame_divider_to_arm + 1);
+reg [2:0] ssp_frame_divider_from_arm;
+always @(negedge ssp_clk)
+    ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1);
+
+
+
+always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type)
+    if(mod_type == 3'b000) // not modulating, so listening, to ARM
+        ssp_frame = (ssp_frame_divider_to_arm == 3'b000);
+    else
+       ssp_frame = (ssp_frame_divider_from_arm == 3'b000);
+
+// Synchronize up the after-hysteresis signal, to produce DIN.
+reg ssp_din;
+always @(posedge ssp_clk)
+    ssp_din = after_hysteresis;
+
+// Modulating carrier frequency is fc/16, reuse ssp_clk divider for that
+reg modulating_carrier;
+always @(mod_type or ssp_clk or ssp_dout)
+    if(mod_type == 3'b000)
+        modulating_carrier <= 1'b0;                          // no modulation
+    else if(mod_type == 3'b001)
+        modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK
+    else if(mod_type == 3'b010)
+       modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off
+    else if(mod_type == 3'b100 || mod_type == 3'b101)
+       modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off
+    else
+        modulating_carrier <= 1'b0;                           // yet unused
+
+// This one is all LF, so doesn't matter
+assign pwr_oe2 = modulating_carrier;
+
+// Toggle only one of these, since we are already producing much deeper
+// modulation than a real tag would.
+assign pwr_oe1 = modulating_carrier;
+assign pwr_oe4 = modulating_carrier;
+
+// This one is always on, so that we can watch the carrier.
+assign pwr_oe3 = 1'b0;
+
+assign dbg = modulating_carrier;
+//reg dbg;
+//always @(ssp_dout)
+//    dbg <= ssp_dout;
+
+endmodule
Impressum, Datenschutz