-//-----------------------------------------------------------------------------\r
-// Pretend to be an ISO 14443 tag. We will do this by alternately short-\r
-// circuiting and open-circuiting the antenna coil, with the tri-state\r
-// pins. \r
-//\r
-// We communicate over the SSP, as a bitstream (i.e., might as well be\r
-// unframed, though we still generate the word sync signal). The output\r
-// (ARM -> FPGA) tells us whether to modulate or not. The input (FPGA\r
-// -> ARM) is us using the A/D as a fancy comparator; this is with\r
-// (software-added) hysteresis, to undo the high-pass filter.\r
-//\r
-// At this point only Type A is implemented. This means that we are using a\r
-// bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make\r
-// things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s)\r
-//\r
-// Jonathan Westhues, October 2006\r
-//-----------------------------------------------------------------------------\r
-\r
-module hi_simulate(\r
- pck0, ck_1356meg, ck_1356megb,\r
- pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,\r
- adc_d, adc_clk,\r
- ssp_frame, ssp_din, ssp_dout, ssp_clk,\r
- cross_hi, cross_lo,\r
- dbg,\r
- mod_type\r
-);\r
- input pck0, ck_1356meg, ck_1356megb;\r
- output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;\r
- input [7:0] adc_d;\r
- output adc_clk;\r
- input ssp_dout;\r
- output ssp_frame, ssp_din, ssp_clk;\r
- input cross_hi, cross_lo;\r
- output dbg;\r
- input [2:0] mod_type;\r
-\r
-// Power amp goes between LOW and tri-state, so pwr_hi (and pwr_lo) can\r
-// always be low.\r
-assign pwr_hi = 1'b0;\r
-assign pwr_lo = 1'b0;\r
-\r
-// The comparator with hysteresis on the output from the peak detector.\r
-reg after_hysteresis;\r
-assign adc_clk = ck_1356meg;\r
-\r
-always @(negedge adc_clk)\r
-begin\r
- if(& adc_d[7:5]) after_hysteresis = 1'b1;\r
- else if(~(| adc_d[7:5])) after_hysteresis = 1'b0;\r
-end\r
-\r
-// Divide 13.56 MHz by 32 to produce the SSP_CLK\r
-// The register is bigger to allow higher division factors of up to /128\r
-reg [6:0] ssp_clk_divider;\r
-always @(posedge adc_clk)\r
- ssp_clk_divider <= (ssp_clk_divider + 1);\r
-assign ssp_clk = ssp_clk_divider[4];\r
-\r
-// Divide SSP_CLK by 8 to produce the byte framing signal; the phase of\r
-// this is arbitrary, because it's just a bitstream.\r
-// One nasty issue, though: I can't make it work with both rx and tx at\r
-// once. The phase wrt ssp_clk must be changed. TODO to find out why\r
-// that is and make a better fix.\r
-reg [2:0] ssp_frame_divider_to_arm;\r
-always @(posedge ssp_clk)\r
- ssp_frame_divider_to_arm <= (ssp_frame_divider_to_arm + 1);\r
-reg [2:0] ssp_frame_divider_from_arm;\r
-always @(negedge ssp_clk)\r
- ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1);\r
-\r
-reg ssp_frame;\r
-always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type)\r
- if(mod_type == 3'b000) // not modulating, so listening, to ARM\r
- ssp_frame = (ssp_frame_divider_to_arm == 3'b000);\r
- else\r
- ssp_frame = (ssp_frame_divider_from_arm == 3'b000);\r
-\r
-// Synchronize up the after-hysteresis signal, to produce DIN.\r
-reg ssp_din;\r
-always @(posedge ssp_clk)\r
- ssp_din = after_hysteresis;\r
-\r
-// Modulating carrier frequency is fc/16, reuse ssp_clk divider for that\r
-reg modulating_carrier;\r
-always @(mod_type or ssp_clk or ssp_dout)\r
- if(mod_type == 3'b000)\r
- modulating_carrier <= 1'b0; // no modulation\r
- else if(mod_type == 3'b001)\r
- modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK\r
- else if(mod_type == 3'b010)\r
- modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off\r
- else\r
- modulating_carrier <= 1'b0; // yet unused\r
-\r
-// This one is all LF, so doesn't matter\r
-assign pwr_oe2 = modulating_carrier;\r
-\r
-// Toggle only one of these, since we are already producing much deeper\r
-// modulation than a real tag would.\r
-assign pwr_oe1 = modulating_carrier;\r
-assign pwr_oe4 = modulating_carrier;\r
-\r
-// This one is always on, so that we can watch the carrier.\r
-assign pwr_oe3 = 1'b0;\r
-\r
-assign dbg = after_hysteresis;\r
-\r
-endmodule\r
+//-----------------------------------------------------------------------------
+// Pretend to be an ISO 14443 tag. We will do this by alternately short-
+// circuiting and open-circuiting the antenna coil, with the tri-state
+// pins.
+//
+// We communicate over the SSP, as a bitstream (i.e., might as well be
+// unframed, though we still generate the word sync signal). The output
+// (ARM -> FPGA) tells us whether to modulate or not. The input (FPGA
+// -> ARM) is us using the A/D as a fancy comparator; this is with
+// (software-added) hysteresis, to undo the high-pass filter.
+//
+// At this point only Type A is implemented. This means that we are using a
+// bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make
+// things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s)
+//
+// Jonathan Westhues, October 2006
+//-----------------------------------------------------------------------------
+
+module hi_simulate(
+ ck_1356meg,
+ pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
+ adc_d, adc_clk,
+ ssp_frame, ssp_din, ssp_dout, ssp_clk,
+ dbg,
+ mod_type
+);
+ input ck_1356meg;
+ output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
+ input [7:0] adc_d;
+ output adc_clk;
+ input ssp_dout;
+ output ssp_frame, ssp_din, ssp_clk;
+ output dbg;
+ input [3:0] mod_type;
+
+assign adc_clk = ck_1356meg;
+
+// The comparator with hysteresis on the output from the peak detector.
+reg after_hysteresis;
+reg [11:0] has_been_low_for;
+
+always @(negedge adc_clk)
+begin
+ if (& adc_d[7:5]) after_hysteresis <= 1'b1; // if (adc_d >= 224)
+ else if (~(| adc_d[7:5])) after_hysteresis <= 1'b0; // if (adc_d <= 31)
+
+ if (adc_d >= 224)
+ begin
+ has_been_low_for <= 12'd0;
+ end
+ else
+ begin
+ if (has_been_low_for == 12'd4095)
+ begin
+ has_been_low_for <= 12'd0;
+ after_hysteresis <= 1'b1;
+ end
+ else
+ begin
+ has_been_low_for <= has_been_low_for + 1;
+ end
+ end
+end
+
+
+// Divide 13.56 MHz to produce various frequencies for SSP_CLK
+// and modulation.
+reg [8:0] ssp_clk_divider;
+
+always @(negedge adc_clk)
+ ssp_clk_divider <= (ssp_clk_divider + 1);
+
+reg ssp_clk;
+
+always @(negedge adc_clk)
+begin
+ if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_424K_8BIT)
+ // Get bit every at 53KHz (every 8th carrier bit of 424kHz)
+ ssp_clk <= ~ssp_clk_divider[7];
+ else if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_212K)
+ // Get next bit at 212kHz
+ ssp_clk <= ~ssp_clk_divider[5];
+ else
+ // Get next bit at 424Khz
+ ssp_clk <= ~ssp_clk_divider[4];
+end
+
+
+// Produce the byte framing signal; the phase of this signal
+// is arbitrary, because it's just a bit stream in this module.
+reg ssp_frame;
+always @(negedge adc_clk)
+begin
+ if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_212K)
+ begin
+ if (ssp_clk_divider[8:5] == 4'd1)
+ ssp_frame <= 1'b1;
+ if (ssp_clk_divider[8:5] == 4'd5)
+ ssp_frame <= 1'b0;
+ end
+ else
+ begin
+ if (ssp_clk_divider[7:4] == 4'd1)
+ ssp_frame <= 1'b1;
+ if (ssp_clk_divider[7:4] == 4'd5)
+ ssp_frame <= 1'b0;
+ end
+end
+
+
+// Synchronize up the after-hysteresis signal, to produce DIN.
+reg ssp_din;
+always @(posedge ssp_clk)
+ ssp_din = after_hysteresis;
+
+// Modulating carrier frequency is fc/64 (212kHz) to fc/16 (848kHz). Reuse ssp_clk divider for that.
+reg modulating_carrier;
+always @(*)
+ if (mod_type == `FPGA_HF_SIMULATOR_NO_MODULATION)
+ modulating_carrier <= 1'b0; // no modulation
+ else if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_BPSK)
+ modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK
+ else if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_212K)
+ modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off
+ else if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_424K || mod_type == `FPGA_HF_SIMULATOR_MODULATE_424K_8BIT)
+ modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off
+ else
+ modulating_carrier <= 1'b0; // yet unused
+
+
+// Load modulation. Toggle only one of these, since we are already producing much deeper
+// modulation than a real tag would.
+assign pwr_hi = 1'b0; // HF antenna connected to GND
+assign pwr_oe3 = 1'b0; // 10k Load
+assign pwr_oe1 = 1'b0; // 33 Ohms Load
+assign pwr_oe4 = modulating_carrier; // 33 Ohms Load
+
+// This is all LF and doesn't matter
+assign pwr_lo = 1'b0;
+assign pwr_oe2 = 1'b0;
+
+
+assign dbg = ssp_frame;
+
+endmodule