//-----------------------------------------------------------------------------
-// Copyright (C) 2014
+// Copyright (C) 2014
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
-// Low frequency commands
+// Low frequency demod/decode commands
//-----------------------------------------------------------------------------
-#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "lfdemod.h"
+uint8_t justNoise(uint8_t *BitStream, size_t size)
+{
+ static const uint8_t THRESHOLD = 123;
+ //test samples are not just noise
+ uint8_t justNoise1 = 1;
+ for(size_t idx=0; idx < size && justNoise1 ;idx++){
+ justNoise1 = BitStream[idx] < THRESHOLD;
+ }
+ return justNoise1;
+}
+
+//by marshmellow
+//get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
+int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
+{
+ *high=0;
+ *low=255;
+ // get high and low thresholds
+ for (size_t i=0; i < size; i++){
+ if (BitStream[i] > *high) *high = BitStream[i];
+ if (BitStream[i] < *low) *low = BitStream[i];
+ }
+ if (*high < 123) return -1; // just noise
+ *high = ((*high-128)*fuzzHi + 12800)/100;
+ *low = ((*low-128)*fuzzLo + 12800)/100;
+ return 1;
+}
+
+// by marshmellow
+// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
+// returns 1 if passed
+uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
+{
+ uint8_t ans = 0;
+ for (uint8_t i = 0; i < bitLen; i++){
+ ans ^= ((bits >> i) & 1);
+ }
+ //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
+ return (ans == pType);
+}
+
+//by marshmellow
+//search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
+uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
+{
+ uint8_t foundCnt=0;
+ for (int idx=0; idx < *size - pLen; idx++){
+ if (memcmp(BitStream+idx, preamble, pLen) == 0){
+ //first index found
+ foundCnt++;
+ if (foundCnt == 1){
+ *startIdx = idx;
+ }
+ if (foundCnt == 2){
+ *size = idx - *startIdx;
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
//by marshmellow
//takes 1s and 0s and searches for EM410x format - output EM ID
-uint64_t Em410xDecode(uint8_t *BitStream, uint32_t BitLen)
+uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
{
//no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
// otherwise could be a void with no arguments
//set defaults
- int high = 0, low = 128;
- uint64_t lo = 0;
uint32_t i = 0;
- uint32_t initLoopMax = 65;
+ if (BitStream[1]>1) return 0; //allow only 1s and 0s
- if (initLoopMax > BitLen)
- initLoopMax = BitLen;
-
- for (; i < initLoopMax; ++i) //65 samples should be plenty to find high and low values
- {
- if (BitStream[i] > high)
- high = BitStream[i];
- else if (BitStream[i] < low)
- low = BitStream[i];
- }
-
- if (((high !=1)||(low !=0))){ //allow only 1s and 0s
- return 0;
- }
-
- uint8_t parityTest = 0;
// 111111111 bit pattern represent start of frame
- uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1};
+ // include 0 in front to help get start pos
+ uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
uint32_t idx = 0;
- uint32_t j = 0;
- uint8_t resetCnt = 0;
- while( (idx + 64) < BitLen) {
-
- restart:
-
- // search for a start of frame marker
- if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) {
- // frame marker found
- idx += 9;//sizeof(frame_marker_mask);
- for ( i = 0; i < 10; ++i){
- for( j = 0; j < 5; ++j){
- parityTest += BitStream[(i*5) + j + idx];
- }
- if (parityTest == ( (parityTest >> 1) << 1)){
- parityTest = 0;
- for (j = 0; j < 4; ++j){
- lo = ( lo << 1LL)|( BitStream[( i * 5 ) + j + idx]);
+ uint32_t parityBits = 0;
+ uint8_t errChk = 0;
+ uint8_t FmtLen = 10;
+ *startIdx = 0;
+ errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
+ if (errChk == 0 || *size < 64) return 0;
+ if (*size > 64) FmtLen = 22;
+ *startIdx += 1; //get rid of 0 from preamble
+ idx = *startIdx + 9;
+ for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
+ parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
+ //check even parity - quit if failed
+ if (parityTest(parityBits, 5, 0) == 0) return 0;
+ //set uint64 with ID from BitStream
+ for (uint8_t ii=0; ii<4; ii++){
+ *hi = (*hi << 1) | (*lo >> 63);
+ *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
+ }
+ }
+ if (errChk != 0) return 1;
+ //skip last 5 bit parity test for simplicity.
+ // *size = 64 | 128;
+ return 0;
+}
+
+//by marshmellow
+//demodulates strong heavily clipped samples
+int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
+{
+ size_t bitCnt=0, smplCnt=0, errCnt=0;
+ uint8_t waveHigh = 0;
+ for (size_t i=0; i < *size; i++){
+ if (BinStream[i] >= high && waveHigh){
+ smplCnt++;
+ } else if (BinStream[i] <= low && !waveHigh){
+ smplCnt++;
+ } else { //transition
+ if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
+ if (smplCnt > clk-(clk/4)-1) { //full clock
+ if (smplCnt > clk + (clk/4)+1) { //too many samples
+ errCnt++;
+ BinStream[bitCnt++]=7;
+ } else if (waveHigh) {
+ BinStream[bitCnt++] = invert;
+ BinStream[bitCnt++] = invert;
+ } else if (!waveHigh) {
+ BinStream[bitCnt++] = invert ^ 1;
+ BinStream[bitCnt++] = invert ^ 1;
+ }
+ waveHigh ^= 1;
+ smplCnt = 0;
+ } else if (smplCnt > (clk/2) - (clk/4)-1) {
+ if (waveHigh) {
+ BinStream[bitCnt++] = invert;
+ } else if (!waveHigh) {
+ BinStream[bitCnt++] = invert ^ 1;
+ }
+ waveHigh ^= 1;
+ smplCnt = 0;
+ } else if (!bitCnt) {
+ //first bit
+ waveHigh = (BinStream[i] >= high);
+ smplCnt = 1;
+ } else {
+ smplCnt++;
+ //transition bit oops
}
- } else {
- //parity failed
- parityTest = 0;
- idx -= 8;
- if (resetCnt > 5) return 0;
- resetCnt++;
- goto restart;//continue;
+ } else { //haven't hit new high or new low yet
+ smplCnt++;
}
}
- //skip last 5 bit parity test for simplicity.
- return lo;
- } else {
- idx++;
- }
- }
- return 0;
+ }
+ *size = bitCnt;
+ return errCnt;
}
//by marshmellow
-//takes 2 arguments - clock and invert both as integers
-//attempts to demodulate ask while decoding manchester
-//prints binary found and saves in graphbuffer for further commands
-int askmandemod(uint8_t *BinStream, uint32_t *BitLen, int *clk, int *invert)
+void askAmp(uint8_t *BitStream, size_t size)
{
- int i;
- int high = 0, low = 128;
- *clk = DetectASKClock(BinStream, (size_t)*BitLen, *clk); //clock default
-
- if (*clk < 8 ) *clk = 64;
- if (*clk < 32 ) *clk = 32;
+ for(size_t i = 1; i<size; i++){
+ if (BitStream[i]-BitStream[i-1]>=30) //large jump up
+ BitStream[i]=127;
+ else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down
+ BitStream[i]=-127;
+ }
+ return;
+}
+
+//by marshmellow
+//attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
+int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
+{
+ if (*size==0) return -1;
+ int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
+ if (*clk==0 || start < 0) return -3;
if (*invert != 1) *invert = 0;
-
- uint32_t initLoopMax = 200;
- if (initLoopMax > *BitLen)
- initLoopMax = *BitLen;
-
- // Detect high and lows
- // 200 samples should be enough to find high and low values
- for (i = 0; i < initLoopMax; ++i) {
- if (BinStream[i] > high)
- high = BinStream[i];
- else if (BinStream[i] < low)
- low = BinStream[i];
- }
-
- //throw away static
- if ((high < 158) )
- return -2;
+ if (amp==1) askAmp(BinStream, *size);
- //25% fuzz in case highs and lows aren't clipped [marshmellow]
- high = (int)(high * .75);
- low = (int)(low+128 * .25);
-
- int lastBit = 0; // set first clock check
- uint32_t bitnum = 0; // output counter
-
- // clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
- //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
- int tol = ( *clk == 32 ) ? 1 : 0;
-
- int j = 0;
- uint32_t gLen = *BitLen;
-
- if (gLen > 3000) gLen = 3000;
-
- uint8_t errCnt = 0;
- uint32_t bestStart = *BitLen;
- uint32_t bestErrCnt = (*BitLen/1000);
- uint32_t maxErr = bestErrCnt;
-
- //loop to find first wave that works
- for (j=0; j < gLen; ++j){
-
- if ((BinStream[j] >= high)||(BinStream[j] <= low)){
- lastBit = j - *clk;
- errCnt = 0;
-
- //loop through to see if this start location works
- for (i = j; i < *BitLen; ++i) {
- if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
- lastBit += *clk;
- } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
- //low found and we are expecting a bar
- lastBit += *clk;
- } else {
- //mid value found or no bar supposed to be here
- if ((i-lastBit) > (*clk + tol)){
- //should have hit a high or low based on clock!!
-
- errCnt++;
- lastBit += *clk;//skip over until hit too many errors
- if (errCnt > maxErr) break; //allow 1 error for every 1000 samples else start over
- }
- }
- if ((i-j) >(400 * *clk)) break; //got plenty of bits
- }
- //we got more than 64 good bits and not all errors
- if ((((i-j)/ *clk) > (64 + errCnt)) && (errCnt < maxErr)) {
- //possible good read
- if (errCnt == 0){
- bestStart = j;
- bestErrCnt = errCnt;
- break; //great read - finish
- }
- if (errCnt < bestErrCnt){ //set this as new best run
- bestErrCnt = errCnt;
- bestStart = j;
- }
- }
- }
- }
- if (bestErrCnt < maxErr){
- //best run is good enough set to best run and set overwrite BinStream
- j = bestStart;
- lastBit = bestStart - *clk;
- bitnum = 0;
- for (i = j; i < *BitLen; ++i) {
- if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
- lastBit += *clk;
- BinStream[bitnum] = *invert;
- bitnum++;
- } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
- //low found and we are expecting a bar
+ uint8_t initLoopMax = 255;
+ if (initLoopMax > *size) initLoopMax = *size;
+ // Detect high and lows
+ //25% clip in case highs and lows aren't clipped [marshmellow]
+ int high, low;
+ if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1)
+ return -2; //just noise
+
+ size_t errCnt = 0;
+ // if clean clipped waves detected run alternate demod
+ if (DetectCleanAskWave(BinStream, *size, high, low)) {
+ errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
+ if (askType) //askman
+ return manrawdecode(BinStream, size, 0);
+ else //askraw
+ return errCnt;
+ }
+
+ int lastBit; //set first clock check - can go negative
+ size_t i, bitnum = 0; //output counter
+ uint8_t midBit = 0;
+ uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
+ if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
+ size_t MaxBits = 1024;
+ lastBit = start - *clk;
+
+ for (i = start; i < *size; ++i) {
+ if (i-lastBit >= *clk-tol){
+ if (BinStream[i] >= high) {
+ BinStream[bitnum++] = *invert;
+ } else if (BinStream[i] <= low) {
+ BinStream[bitnum++] = *invert ^ 1;
+ } else if (i-lastBit >= *clk+tol) {
+ if (bitnum > 0) {
+ BinStream[bitnum++]=7;
+ errCnt++;
+ }
+ } else { //in tolerance - looking for peak
+ continue;
+ }
+ midBit = 0;
lastBit += *clk;
- BinStream[bitnum] = 1 - *invert;
- bitnum++;
- } else {
- //mid value found or no bar supposed to be here
- if ((i-lastBit) > (*clk+tol)){
- //should have hit a high or low based on clock!!
- if (bitnum > 0){
- BinStream[bitnum] = 77;
- bitnum++;
- }
- lastBit += *clk;//skip over error
+ } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
+ if (BinStream[i] >= high) {
+ BinStream[bitnum++] = *invert;
+ } else if (BinStream[i] <= low) {
+ BinStream[bitnum++] = *invert ^ 1;
+ } else if (i-lastBit >= *clk/2+tol) {
+ BinStream[bitnum] = BinStream[bitnum-1];
+ bitnum++;
+ } else { //in tolerance - looking for peak
+ continue;
}
+ midBit = 1;
}
- if (bitnum >= 400) break;
- }
- *BitLen = bitnum;
- } else {
- *invert = bestStart;
- *clk = j;
- return -1;
- }
- return bestErrCnt;
+ if (bitnum >= MaxBits) break;
+ }
+ *size = bitnum;
+ return errCnt;
}
//by marshmellow
//take 10 and 01 and manchester decode
//run through 2 times and take least errCnt
-int manrawdecode(uint8_t * bits, int *bitlen)
-{
- int bitnum = 0;
- int errCnt = 0;
- int bestErr = 1000;
- int bestRun = 0;
- int i = 1;
- int j = 1;
-
- for (; j < 3; ++j){
- i = 1;
- for ( i = i + j; i < *bitlen-2; i += 2){
- if ( bits[i]==1 && (bits[i+1]==0)){
- } else if ((bits[i]==0)&& bits[i+1]==1){
- } else {
+int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert)
+{
+ uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
+ size_t i, ii;
+ uint16_t bestErr = 1000, bestRun = 0;
+ if (*size < 16) return -1;
+ //find correct start position [alignment]
+ for (ii=0;ii<2;++ii){
+ for (i=ii; i<*size-3; i+=2)
+ if (BitStream[i]==BitStream[i+1])
errCnt++;
- }
- if(bitnum > 300) break;
- }
- if (bestErr > errCnt){
- bestErr = errCnt;
- bestRun = j;
- }
- errCnt = 0;
- }
- errCnt = bestErr;
- if (errCnt < 20){
- j = bestRun;
- i = 1;
- for ( i = i+j; i < *bitlen-2; i += 2){
- if ( bits[i] == 1 && bits[i + 1] == 0 ){
- bits[bitnum++] = 0;
- } else if ( bits[i] == 0 && bits[i + 1] == 1 ){
- bits[bitnum++] = 1;
- } else {
- bits[bitnum++] = 77;
- }
- if ( bitnum > 300 ) break;
+
+ if (bestErr>errCnt){
+ bestErr=errCnt;
+ bestRun=ii;
}
- *bitlen = bitnum;
- }
- return errCnt;
+ errCnt=0;
+ }
+ //decode
+ for (i=bestRun; i < *size-3; i+=2){
+ if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
+ BitStream[bitnum++]=invert;
+ } else if((BitStream[i] == 0) && BitStream[i+1] == 1){
+ BitStream[bitnum++]=invert^1;
+ } else {
+ BitStream[bitnum++]=7;
+ }
+ if(bitnum>MaxBits) break;
+ }
+ *size=bitnum;
+ return bestErr;
}
+//by marshmellow
+//encode binary data into binary manchester
+int ManchesterEncode(uint8_t *BitStream, size_t size)
+{
+ size_t modIdx=20000, i=0;
+ if (size>modIdx) return -1;
+ for (size_t idx=0; idx < size; idx++){
+ BitStream[idx+modIdx++] = BitStream[idx];
+ BitStream[idx+modIdx++] = BitStream[idx]^1;
+ }
+ for (; i<(size*2); i++){
+ BitStream[i] = BitStream[i+20000];
+ }
+ return i;
+}
//by marshmellow
-//take 01 or 10 = 0 and 11 or 00 = 1
-int BiphaseRawDecode(uint8_t * bits, int *bitlen, int offset)
+//take 01 or 10 = 1 and 11 or 00 = 0
+//check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
+//decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
+int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
{
- uint8_t bitnum = 0;
- uint32_t errCnt = 0;
- uint32_t i = offset;
-
- for (; i < *bitlen-2; i += 2 ){
- if ( (bits[i]==1 && bits[i+1]==0)||
- (bits[i]==0 && bits[i+1]==1)){
- bits[bitnum++] = 1;
- } else if ( (bits[i]==0 && bits[i+1]==0)||
- (bits[i]==1 && bits[i+1]==1)){
- bits[bitnum++] = 0;
+ uint16_t bitnum = 0;
+ uint16_t errCnt = 0;
+ size_t i = offset;
+ uint16_t MaxBits=512;
+ //if not enough samples - error
+ if (*size < 51) return -1;
+ //check for phase change faults - skip one sample if faulty
+ uint8_t offsetA = 1, offsetB = 1;
+ for (; i<48; i+=2){
+ if (BitStream[i+1]==BitStream[i+2]) offsetA=0;
+ if (BitStream[i+2]==BitStream[i+3]) offsetB=0;
+ }
+ if (!offsetA && offsetB) offset++;
+ for (i=offset; i<*size-3; i+=2){
+ //check for phase error
+ if (BitStream[i+1]==BitStream[i+2]) {
+ BitStream[bitnum++]=7;
+ errCnt++;
+ }
+ if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
+ BitStream[bitnum++]=1^invert;
+ } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
+ BitStream[bitnum++]=invert;
} else {
- bits[bitnum++] = 77;
+ BitStream[bitnum++]=7;
errCnt++;
}
- if ( bitnum > 250) break;
- }
- *bitlen = bitnum;
+ if(bitnum>MaxBits) break;
+ }
+ *size=bitnum;
return errCnt;
}
-//by marshmellow
-//takes 2 arguments - clock and invert both as integers
-//attempts to demodulate ask only
-//prints binary found and saves in graphbuffer for further commands
-int askrawdemod(uint8_t *BinStream, int *bitLen, int *clk, int *invert)
-{
- uint32_t i;
- uint32_t initLoopMax = 200;
- int high = 0, low = 128;
- uint8_t BitStream[502] = {0x00};
-
- *clk = DetectASKClock(BinStream, *bitLen, *clk); //clock default
-
- if (*clk < 8) *clk = 64;
- if (*clk < 32) *clk = 32;
- if (*invert != 1) *invert = 0;
-
- if (initLoopMax > *bitLen)
- initLoopMax = *bitLen;
-
- // Detect high and lows
- for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values
- {
- if (BinStream[i] > high)
- high = BinStream[i];
- else if (BinStream[i] < low)
- low = BinStream[i];
- }
-
- //throw away static
- if ((high < 158)){
- return -2;
- }
-
- //25% fuzz in case highs and lows aren't clipped [marshmellow]
- high = (int)(high * .75);
- low = (int)(low+128 * .25);
-
- int lastBit = 0; //set first clock check
- uint32_t bitnum = 0; //output counter
-
- uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
- if (*clk==32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
-
- uint32_t gLen = *bitLen;
- if (gLen > 500) gLen = 500;
-
- uint32_t j = 0;
- uint8_t errCnt = 0;
- uint32_t bestStart = *bitLen;
- uint32_t bestErrCnt = (*bitLen / 1000);
- uint32_t errCntLimit = bestErrCnt;
- uint8_t midBit = 0;
-
- //loop to find first wave that works
- for (j = 0; j < gLen; ++j){
-
- if ((BinStream[j] >= high)||(BinStream[j] <= low)){
- lastBit = j - *clk;
- //loop through to see if this start location works
- for (i = j; i < *bitLen; ++i) {
- if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
- lastBit += *clk;
- BitStream[bitnum] = *invert;
- bitnum++;
- midBit = 0;
- } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
- //low found and we are expecting a bar
- lastBit += *clk;
- BitStream[bitnum] = 1-*invert;
- bitnum++;
- midBit=0;
- } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
- //mid bar?
- midBit = 1;
- BitStream[bitnum] = 1 - *invert;
- bitnum++;
- } else if ((BinStream[i]>=high)&&(midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
- //mid bar?
- midBit = 1;
- BitStream[bitnum] = *invert;
- bitnum++;
- } else if ((i-lastBit)>((*clk/2)+tol)&&(midBit==0)){
- //no mid bar found
- midBit = 1;
- BitStream[bitnum] = BitStream[bitnum-1];
- bitnum++;
- } else {
- //mid value found or no bar supposed to be here
-
- if (( i - lastBit) > ( *clk + tol)){
- //should have hit a high or low based on clock!!
-
- if (bitnum > 0){
- BitStream[bitnum] = 77;
- bitnum++;
- }
-
- errCnt++;
- lastBit += *clk;//skip over until hit too many errors
- if (errCnt > errCntLimit){ //allow 1 error for every 1000 samples else start over
- errCnt = 0;
- bitnum = 0;//start over
- break;
- }
- }
- }
- if (bitnum > 500) break;
- }
- //we got more than 64 good bits and not all errors
- //possible good read
- if ((bitnum > (64 + errCnt)) && (errCnt < errCntLimit)) {
-
- //great read - finish
- if (errCnt == 0) break;
-
- //if current run == bestErrCnt run (after exhausted testing) then finish
- if (bestStart == j) break;
-
- //set this as new best run
- if (errCnt < bestErrCnt){
- bestErrCnt = errCnt;
- bestStart = j;
- }
- }
- }
- if (j >= gLen){ //exhausted test
- //if there was a ok test go back to that one and re-run the best run (then dump after that run)
- if (bestErrCnt < errCntLimit)
- j = bestStart;
- }
- }
- if (bitnum > 16){
-
- for (i = 0; i < bitnum; ++i){
- BinStream[i] = BitStream[i];
- }
- *bitLen = bitnum;
- } else {
- return -1;
+// by marshmellow
+// demod gProxIIDemod
+// error returns as -x
+// success returns start position in BitStream
+// BitStream must contain previously askrawdemod and biphasedemoded data
+int gProxII_Demod(uint8_t BitStream[], size_t *size)
+{
+ size_t startIdx=0;
+ uint8_t preamble[] = {1,1,1,1,1,0};
+
+ uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -3; //preamble not found
+ if (*size != 96) return -2; //should have found 96 bits
+ //check first 6 spacer bits to verify format
+ if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
+ //confirmed proper separator bits found
+ //return start position
+ return (int) startIdx;
}
- return errCnt;
+ return -5;
}
-//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
+
+//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
{
- uint32_t last_transition = 0;
- uint32_t idx = 1;
- uint32_t maxVal = 0;
-
- if (fchigh == 0) fchigh = 10;
- if (fclow == 0) fclow = 8;
-
- // we do care about the actual theshold value as sometimes near the center of the
- // wave we may get static that changes direction of wave for one value
- // if our value is too low it might affect the read. and if our tag or
- // antenna is weak a setting too high might not see anything. [marshmellow]
- if ( size < 100)
- return 0;
-
- // Find high from first 100 samples
- for ( idx = 1; idx < 100; idx++ ){
- if ( maxVal < dest[idx])
- maxVal = dest[idx];
- }
-
- // set close to the top of the wave threshold with 25% margin for error
- // less likely to get a false transition up there.
- // (but have to be careful not to go too high and miss some short waves)
- uint8_t threshold_value = (uint8_t)(maxVal * .75);
-
+ size_t last_transition = 0;
+ size_t idx = 1;
+ //uint32_t maxVal=0;
+ if (fchigh==0) fchigh=10;
+ if (fclow==0) fclow=8;
+ //set the threshold close to 0 (graph) or 128 std to avoid static
+ uint8_t threshold_value = 123;
+
// sync to first lo-hi transition, and threshold
+
// Need to threshold first sample
-
- dest[0] = (dest[0] < threshold_value) ? 0 : 1;
+
+ if(dest[0] < threshold_value) dest[0] = 0;
+ else dest[0] = 1;
size_t numBits = 0;
-
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
for(idx = 1; idx < size; idx++) {
-
// threshold current value
- dest[idx] = (dest[idx] < threshold_value) ? 0 : 1;
+
+ if (dest[idx] < threshold_value) dest[idx] = 0;
+ else dest[idx] = 1;
// Check for 0->1 transition
if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
- if ( ( idx - last_transition ) <( fclow - 2 ) ) { //0-5 = garbage noise
+ if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise
//do nothing with extra garbage
- } else if ((idx - last_transition) < ( fchigh - 1 )) { //6-8 = 8 waves
- dest[numBits]=1;
- } else { //9+ = 10 waves
- dest[numBits]=0;
+ } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves
+ dest[numBits++]=1;
+ } else if ((idx-last_transition) > (fchigh+1) && !numBits) { //12 + and first bit = garbage
+ //do nothing with beginning garbage
+ } else { //9+ = 10 waves
+ dest[numBits++]=0;
}
last_transition = idx;
- numBits++;
}
}
- //it returns the number of bytes, but each byte represents a bit: 1 or 0
- return numBits;
-}
-
-uint32_t myround2(float f)
-{
- if (f >= 2000) return 2000;//something bad happened
- return (uint32_t) (f + (float)0.5);
+ return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
}
-//translate 11111100000 to 10
-size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert, uint8_t fchigh, uint8_t fclow )
+//translate 11111100000 to 10
+size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
+ uint8_t invert, uint8_t fchigh, uint8_t fclow)
{
- uint8_t lastval = dest[0];
- uint32_t idx = 0;
- uint32_t n = 1;
- size_t numBits = 0;
-
- for( idx = 1; idx < size; idx++) {
-
- if (dest[idx] == lastval) {
- n++;
- continue;
- }
+ uint8_t lastval=dest[0];
+ size_t idx=0;
+ size_t numBits=0;
+ uint32_t n=1;
+ for( idx=1; idx < size; idx++) {
+ n++;
+ if (dest[idx]==lastval) continue;
+
//if lastval was 1, we have a 1->0 crossing
- if ( dest[idx-1] == 1 ) {
- n = myround2( (float)( n + 1 ) / ((float)(rfLen)/(float)fclow));
- } else { // 0->1 crossing
- n = myround2( (float)( n + 1 ) / ((float)(rfLen-2)/(float)fchigh)); //-2 for fudge factor
+ if (dest[idx-1]==1) {
+ if (!numBits && n < rfLen/fclow) {
+ n=0;
+ lastval = dest[idx];
+ continue;
+ }
+ n = (n * fclow + rfLen/2) / rfLen;
+ } else {// 0->1 crossing
+ //test first bitsample too small
+ if (!numBits && n < rfLen/fchigh) {
+ n=0;
+ lastval = dest[idx];
+ continue;
+ }
+ n = (n * fchigh + rfLen/2) / rfLen;
}
if (n == 0) n = 1;
- if(n < maxConsequtiveBits) //Consecutive
- {
- if(invert == 0){ //invert bits
- memset(dest+numBits, dest[idx-1] , n);
- }else{
- memset(dest+numBits, dest[idx-1]^1 , n);
- }
- numBits += n;
- }
- n = 0;
- lastval = dest[idx];
+ memset(dest+numBits, dest[idx-1]^invert , n);
+ numBits += n;
+ n=0;
+ lastval=dest[idx];
}//end for
+ // if valid extra bits at the end were all the same frequency - add them in
+ if (n > rfLen/fchigh) {
+ if (dest[idx-2]==1) {
+ n = (n * fclow + rfLen/2) / rfLen;
+ } else {
+ n = (n * fchigh + rfLen/2) / rfLen;
+ }
+ memset(dest+numBits, dest[idx-1]^invert , n);
+ numBits += n;
+ }
return numBits;
}
-
//by marshmellow (from holiman's base)
// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
{
// FSK demodulator
size = fsk_wave_demod(dest, size, fchigh, fclow);
- if ( size > 0 )
- size = aggregate_bits(dest, size, rfLen, 192, invert, fchigh, fclow);
+ size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
return size;
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
-int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
+int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
{
- size_t idx = 0;
- int numshifts = 0;
+ if (justNoise(dest, *size)) return -1;
+ size_t numStart=0, size2=*size, startIdx=0;
// FSK demodulator
- size = fskdemod(dest, size, 50, 0, 10, 8);
+ *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
+ if (*size < 96*2) return -2;
+ // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
+ uint8_t preamble[] = {0,0,0,1,1,1,0,1};
+ // find bitstring in array
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -3; //preamble not found
- // final loop, go over previously decoded manchester data and decode into usable tag ID
- // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
- uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
-
- uint8_t mask_len = sizeof frame_marker_mask / sizeof frame_marker_mask[0];
-
- //one scan
- while( idx + mask_len < size) {
- // search for a start of frame marker
- if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
- { // frame marker found
- idx += mask_len;
- while(dest[idx] != dest[idx+1] && idx < size-2)
- {
- // Keep going until next frame marker (or error)
- // Shift in a bit. Start by shifting high registers
- *hi2 = ( *hi2 << 1 ) | ( *hi >> 31 );
- *hi = ( *hi << 1 ) | ( *lo >> 31 );
- //Then, shift in a 0 or one into low
- if (dest[idx] && !dest[idx+1]) // 1 0
- *lo = ( *lo << 1 ) | 0;
- else // 0 1
- *lo = ( *lo << 1 ) | 1;
- numshifts++;
- idx += 2;
- }
- // Hopefully, we read a tag and hit upon the next frame marker
- if(idx + mask_len < size)
- {
- if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
- {
- //good return
- return idx;
- }
- }
- // reset
- *hi2 = *hi = *lo = 0;
- numshifts = 0;
- }else {
- idx++;
+ numStart = startIdx + sizeof(preamble);
+ // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
+ for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
+ if (dest[idx] == dest[idx+1]){
+ return -4; //not manchester data
}
+ *hi2 = (*hi2<<1)|(*hi>>31);
+ *hi = (*hi<<1)|(*lo>>31);
+ //Then, shift in a 0 or one into low
+ if (dest[idx] && !dest[idx+1]) // 1 0
+ *lo=(*lo<<1)|1;
+ else // 0 1
+ *lo=(*lo<<1)|0;
}
- return -1;
+ return (int)startIdx;
}
-uint32_t bytebits_to_byte(uint8_t *src, int numbits)
+// loop to get raw paradox waveform then FSK demodulate the TAG ID from it
+int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
{
- //HACK: potential overflow in numbits is larger then uint32 bits.
+ if (justNoise(dest, *size)) return -1;
+ size_t numStart=0, size2=*size, startIdx=0;
+ // FSK demodulator
+ *size = fskdemod(dest, size2,50,1,10,8); //fsk2a
+ if (*size < 96) return -2;
+
+ // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
+ uint8_t preamble[] = {0,0,0,0,1,1,1,1};
+
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -3; //preamble not found
+
+ numStart = startIdx + sizeof(preamble);
+ // final loop, go over previously decoded FSK data and manchester decode into usable tag ID
+ for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
+ if (dest[idx] == dest[idx+1])
+ return -4; //not manchester data
+ *hi2 = (*hi2<<1)|(*hi>>31);
+ *hi = (*hi<<1)|(*lo>>31);
+ //Then, shift in a 0 or one into low
+ if (dest[idx] && !dest[idx+1]) // 1 0
+ *lo=(*lo<<1)|1;
+ else // 0 1
+ *lo=(*lo<<1)|0;
+ }
+ return (int)startIdx;
+}
+
+uint32_t bytebits_to_byte(uint8_t* src, size_t numbits)
+{
uint32_t num = 0;
- for(int i = 0 ; i < numbits ; ++i) {
+ for(int i = 0 ; i < numbits ; i++)
+ {
num = (num << 1) | (*src);
src++;
}
int IOdemodFSK(uint8_t *dest, size_t size)
{
+ if (justNoise(dest, size)) return -1;
//make sure buffer has data
- if (size < 100) return -1;
-
- uint32_t idx = 0;
- uint8_t testMax = 0;
-
- //test samples are not just noise
- for (; idx < 65; ++idx ){
- if (testMax < dest[idx])
- testMax = dest[idx];
- }
-
- //if not just noise
- if (testMax < 170) return -2;
-
+ if (size < 66*64) return -2;
// FSK demodulator
- size = fskdemod(dest, size, 64, 1, 10, 8); // RF/64 and invert
-
- //did we get a good demod?
- if (size < 65) return -3;
-
+ size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64
+ if (size < 65) return -3; //did we get a good demod?
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//
//XSF(version)facility:codeone+codetwo
//Handle the data
-
- uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
-
- for( idx = 0; idx < (size - 65); ++idx) {
- if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
- //frame marker found
- if (!dest[idx+8] &&
- dest[idx+17] == 1 &&
- dest[idx+26] == 1 &&
- dest[idx+35] == 1 &&
- dest[idx+44] == 1 &&
- dest[idx+53] == 1){
- //confirmed proper separator bits found
- //return start position
- return (int) idx;
- }
- }
+ size_t startIdx = 0;
+ uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
+ if (errChk == 0) return -4; //preamble not found
+
+ if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
+ //confirmed proper separator bits found
+ //return start position
+ return (int) startIdx;
+ }
+ return -5;
+}
+
+// by marshmellow
+// takes a array of binary values, start position, length of bits per parity (includes parity bit),
+// Parity Type (1 for odd 0 for even), and binary Length (length to run)
+size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
+{
+ uint32_t parityWd = 0;
+ size_t j = 0, bitCnt = 0;
+ for (int word = 0; word < (bLen); word+=pLen){
+ for (int bit=0; bit < pLen; bit++){
+ parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
+ BitStream[j++] = (BitStream[startIdx+word+bit]);
+ }
+ j--;
+ // if parity fails then return 0
+ if (parityTest(parityWd, pLen, pType) == 0) return -1;
+ bitCnt+=(pLen-1);
+ parityWd = 0;
+ }
+ // if we got here then all the parities passed
+ //return ID start index and size
+ return bitCnt;
+}
+// Ask/Biphase Demod then try to locate an ISO 11784/85 ID
+int ISO11784demodBI(uint8_t *dest, size_t *size)
+{
+ //make sure buffer has enough data
+ if (*size < 128*50) return -1;
+
+ if (justNoise(dest, *size)) return -2;
+
+ // FSK demodulator
+ *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
+ if (*size < 96) return -3; //did we get a good demod?
+
+ uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
+ size_t startIdx = 0;
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -4; //preamble not found
+ if (*size != 128) return -5;
+ return (int)startIdx;
+}
+
+// by marshmellow
+// FSK Demod then try to locate an AWID ID
+int AWIDdemodFSK(uint8_t *dest, size_t *size)
+{
+ //make sure buffer has enough data
+ if (*size < 96*50) return -1;
+
+ if (justNoise(dest, *size)) return -2;
+
+ // FSK demodulator
+ *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
+ if (*size < 96) return -3; //did we get a good demod?
+
+ uint8_t preamble[] = {0,0,0,0,0,0,0,1};
+ size_t startIdx = 0;
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -4; //preamble not found
+ if (*size != 96) return -5;
+ return (int)startIdx;
+}
+
+// by marshmellow
+// FSK Demod then try to locate an Farpointe Data (pyramid) ID
+int PyramiddemodFSK(uint8_t *dest, size_t *size)
+{
+ //make sure buffer has data
+ if (*size < 128*50) return -5;
+
+ //test samples are not just noise
+ if (justNoise(dest, *size)) return -1;
+
+ // FSK demodulator
+ *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50
+ if (*size < 128) return -2; //did we get a good demod?
+
+ uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
+ size_t startIdx = 0;
+ uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+ if (errChk == 0) return -4; //preamble not found
+ if (*size != 128) return -3;
+ return (int)startIdx;
+}
+
+// by marshmellow
+// to detect a wave that has heavily clipped (clean) samples
+uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
+{
+ uint16_t allPeaks=1;
+ uint16_t cntPeaks=0;
+ size_t loopEnd = 512+60;
+ if (loopEnd > size) loopEnd = size;
+ for (size_t i=60; i<loopEnd; i++){
+ if (dest[i]>low && dest[i]<high)
+ allPeaks=0;
+ else
+ cntPeaks++;
+ }
+ if (allPeaks == 0){
+ if (cntPeaks > 300) return 1;
+ }
+ return allPeaks;
+}
+
+// by marshmellow
+// to help detect clocks on heavily clipped samples
+// based on count of low to low
+int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
+{
+ uint8_t fndClk[] = {8,16,32,40,50,64,128};
+ size_t startwave;
+ size_t i = 0;
+ size_t minClk = 255;
+ // get to first full low to prime loop and skip incomplete first pulse
+ while ((dest[i] < high) && (i < size))
+ ++i;
+ while ((dest[i] > low) && (i < size))
+ ++i;
+
+ // loop through all samples
+ while (i < size) {
+ // measure from low to low
+ while ((dest[i] > low) && (i < size))
+ ++i;
+ startwave= i;
+ while ((dest[i] < high) && (i < size))
+ ++i;
+ while ((dest[i] > low) && (i < size))
+ ++i;
+ //get minimum measured distance
+ if (i-startwave < minClk && i < size)
+ minClk = i - startwave;
+ }
+ // set clock
+ for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
+ if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
+ return fndClk[clkCnt];
}
return 0;
}
// by marshmellow
// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
// maybe somehow adjust peak trimming value based on samples to fix?
-int DetectASKClock(uint8_t dest[], size_t size, int clock)
+// return start index of best starting position for that clock and return clock (by reference)
+int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
{
- int i = 0;
- int clk[] = {16,32,40,50,64,100,128,256};
- uint8_t clkLen = sizeof clk / sizeof clk[0];
+ size_t i=1;
+ uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
+ uint8_t clkEnd = 9;
+ uint8_t loopCnt = 255; //don't need to loop through entire array...
+ if (size <= loopCnt) return -1; //not enough samples
+
+ //if we already have a valid clock
+ uint8_t clockFnd=0;
+ for (;i<clkEnd;++i)
+ if (clk[i] == *clock) clockFnd = i;
+ //clock found but continue to find best startpos
+
+ //get high and low peak
+ int peak, low;
+ if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1;
+ //test for large clean peaks
+ if (!clockFnd){
+ if (DetectCleanAskWave(dest, size, peak, low)==1){
+ int ans = DetectStrongAskClock(dest, size, peak, low);
+ for (i=clkEnd-1; i>0; i--){
+ if (clk[i] == ans) {
+ *clock = ans;
+ //clockFnd = i;
+ return 0; // for strong waves i don't use the 'best start position' yet...
+ //break; //clock found but continue to find best startpos [not yet]
+ }
+ }
+ }
+ }
+
+ uint8_t ii;
+ uint8_t clkCnt, tol = 0;
+ uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
+ uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
+ size_t errCnt = 0;
+ size_t arrLoc, loopEnd;
+
+ if (clockFnd>0) {
+ clkCnt = clockFnd;
+ clkEnd = clockFnd+1;
+ }
+ else clkCnt=1;
+
+ //test each valid clock from smallest to greatest to see which lines up
+ for(; clkCnt < clkEnd; clkCnt++){
+ if (clk[clkCnt] <= 32){
+ tol=1;
+ }else{
+ tol=0;
+ }
+ //if no errors allowed - keep start within the first clock
+ if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2;
+ bestErr[clkCnt]=1000;
+ //try lining up the peaks by moving starting point (try first few clocks)
+ for (ii=0; ii < loopCnt; ii++){
+ if (dest[ii] < peak && dest[ii] > low) continue;
+
+ errCnt=0;
+ // now that we have the first one lined up test rest of wave array
+ loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
+ for (i=0; i < loopEnd; ++i){
+ arrLoc = ii + (i * clk[clkCnt]);
+ if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
+ }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
+ }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
+ }else{ //error no peak detected
+ errCnt++;
+ }
+ }
+ //if we found no errors then we can stop here and a low clock (common clocks)
+ // this is correct one - return this clock
+ //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
+ if(errCnt==0 && clkCnt<7) {
+ if (!clockFnd) *clock = clk[clkCnt];
+ return ii;
+ }
+ //if we found errors see if it is lowest so far and save it as best run
+ if(errCnt<bestErr[clkCnt]){
+ bestErr[clkCnt]=errCnt;
+ bestStart[clkCnt]=ii;
+ }
+ }
+ }
+ uint8_t iii;
+ uint8_t best=0;
+ for (iii=1; iii<clkEnd; ++iii){
+ if (bestErr[iii] < bestErr[best]){
+ if (bestErr[iii] == 0) bestErr[iii]=1;
+ // current best bit to error ratio vs new bit to error ratio
+ if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){
+ best = iii;
+ }
+ }
+ }
+ //if (bestErr[best] > maxErr) return -1;
+ if (!clockFnd) *clock = clk[best];
+ return bestStart[best];
+}
+
+//by marshmellow
+//detect psk clock by reading each phase shift
+// a phase shift is determined by measuring the sample length of each wave
+int DetectPSKClock(uint8_t dest[], size_t size, int clock)
+{
+ uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
+ uint16_t loopCnt = 4096; //don't need to loop through entire array...
+ if (size == 0) return 0;
+ if (size<loopCnt) loopCnt = size;
+
//if we already have a valid clock quit
- for (; i < clkLen; ++i)
- if (clk[i] == clock)
- return clock;
-
- int peak = 0;
- int low = 128;
- int loopCnt = 256;
- if (size < loopCnt)
- loopCnt = size;
+ size_t i=1;
+ for (; i < 8; ++i)
+ if (clk[i] == clock) return clock;
+
+ size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
+ uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
+ uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
+ uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
+ uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
+ fc = countFC(dest, size, 0);
+ if (fc!=2 && fc!=4 && fc!=8) return -1;
+ //PrintAndLog("DEBUG: FC: %d",fc);
+
+ //find first full wave
+ for (i=0; i<loopCnt; i++){
+ if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
+ if (waveStart == 0) {
+ waveStart = i+1;
+ //PrintAndLog("DEBUG: waveStart: %d",waveStart);
+ } else {
+ waveEnd = i+1;
+ //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+ waveLenCnt = waveEnd-waveStart;
+ if (waveLenCnt > fc){
+ firstFullWave = waveStart;
+ fullWaveLen=waveLenCnt;
+ break;
+ }
+ waveStart=0;
+ }
+ }
+ }
+ //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
+ //test each valid clock from greatest to smallest to see which lines up
+ for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
+ lastClkBit = firstFullWave; //set end of wave as clock align
+ waveStart = 0;
+ errCnt=0;
+ peakcnt=0;
+ //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
+
+ for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
+ //top edge of wave = start of new wave
+ if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
+ if (waveStart == 0) {
+ waveStart = i+1;
+ waveLenCnt=0;
+ } else { //waveEnd
+ waveEnd = i+1;
+ waveLenCnt = waveEnd-waveStart;
+ if (waveLenCnt > fc){
+ //if this wave is a phase shift
+ //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
+ if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
+ peakcnt++;
+ lastClkBit+=clk[clkCnt];
+ } else if (i<lastClkBit+8){
+ //noise after a phase shift - ignore
+ } else { //phase shift before supposed to based on clock
+ errCnt++;
+ }
+ } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
+ lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
+ }
+ waveStart=i+1;
+ }
+ }
+ }
+ if (errCnt == 0){
+ return clk[clkCnt];
+ }
+ if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
+ if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
+ }
+ //all tested with errors
+ //return the highest clk with the most peaks found
+ uint8_t best=7;
+ for (i=7; i>=1; i--){
+ if (peaksdet[i] > peaksdet[best]) {
+ best = i;
+ }
+ //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+ }
+ return clk[best];
+}
+
+//by marshmellow
+//detect nrz clock by reading #peaks vs no peaks(or errors)
+int DetectNRZClock(uint8_t dest[], size_t size, int clock)
+{
+ size_t i=0;
+ uint8_t clk[]={8,16,32,40,50,64,100,128,255};
+ size_t loopCnt = 4096; //don't need to loop through entire array...
+ if (size == 0) return 0;
+ if (size<loopCnt) loopCnt = size;
+
+ //if we already have a valid clock quit
+ for (; i < 8; ++i)
+ if (clk[i] == clock) return clock;
+
//get high and low peak
- for ( i = 0; i < loopCnt; ++i ){
- if(dest[i] > peak)
- peak = dest[i];
- if(dest[i] < low)
- low = dest[i];
- }
-
- peak = (int)(peak * .75);
- low = (int)(low+128 * .25);
-
- int ii, cnt, bestErr, tol = 0;
- int errCnt[clkLen];
- memset(errCnt, 0x00, clkLen);
-
- int tmpIndex, tmphigh, tmplow;
-
+ int peak, low;
+ if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
+
+ //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
+ size_t ii;
+ uint8_t clkCnt;
+ uint8_t tol = 0;
+ uint16_t peakcnt=0;
+ uint16_t peaksdet[]={0,0,0,0,0,0,0,0};
+ uint16_t maxPeak=0;
+ //test for large clipped waves
+ for (i=0; i<loopCnt; i++){
+ if (dest[i] >= peak || dest[i] <= low){
+ peakcnt++;
+ } else {
+ if (peakcnt>0 && maxPeak < peakcnt){
+ maxPeak = peakcnt;
+ }
+ peakcnt=0;
+ }
+ }
+ peakcnt=0;
//test each valid clock from smallest to greatest to see which lines up
- for( cnt = 0; cnt < clkLen; ++cnt ){
+ for(clkCnt=0; clkCnt < 8; ++clkCnt){
+ //ignore clocks smaller than largest peak
+ if (clk[clkCnt]<maxPeak) continue;
- tol = (clk[cnt] == 32) ? 1 : 0;
- bestErr = 1000;
- tmpIndex = tmphigh = tmplow = 0;
+ //try lining up the peaks by moving starting point (try first 256)
+ for (ii=0; ii< loopCnt; ++ii){
+ if ((dest[ii] >= peak) || (dest[ii] <= low)){
+ peakcnt=0;
+ // now that we have the first one lined up test rest of wave array
+ for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
+ if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
+ peakcnt++;
+ }
+ }
+ if(peakcnt>peaksdet[clkCnt]) {
+ peaksdet[clkCnt]=peakcnt;
+ }
+ }
+ }
+ }
+ int iii=7;
+ uint8_t best=0;
+ for (iii=7; iii > 0; iii--){
+ if (peaksdet[iii] > peaksdet[best]){
+ best = iii;
+ }
+ //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+ }
+ return clk[best];
+}
- //try lining up the peaks by moving starting point (try first 256)
- for (ii=0; ii < loopCnt; ++ii){
-
- // not a peak? continue
- if ( (dest[ii] < peak) && (dest[ii] > low))
- continue;
+// by marshmellow
+// convert psk1 demod to psk2 demod
+// only transition waves are 1s
+void psk1TOpsk2(uint8_t *BitStream, size_t size)
+{
+ size_t i=1;
+ uint8_t lastBit=BitStream[0];
+ for (; i<size; i++){
+ if (BitStream[i]==7){
+ //ignore errors
+ } else if (lastBit!=BitStream[i]){
+ lastBit=BitStream[i];
+ BitStream[i]=1;
+ } else {
+ BitStream[i]=0;
+ }
+ }
+ return;
+}
- errCnt[cnt] = 0;
-
- // now that we have the first one lined up test rest of wave array
- for ( i = 0; i < ((int)(size / clk[cnt]) - 1); ++i){
-
- tmpIndex = ii + (i * clk[cnt] );
- tmplow = dest[ tmpIndex - tol];
- tmphigh = dest[ tmpIndex + tol];
-
- if ( dest[tmpIndex] >= peak || dest[tmpIndex] <= low ) {
+// by marshmellow
+// convert psk2 demod to psk1 demod
+// from only transition waves are 1s to phase shifts change bit
+void psk2TOpsk1(uint8_t *BitStream, size_t size)
+{
+ uint8_t phase=0;
+ for (size_t i=0; i<size; i++){
+ if (BitStream[i]==1){
+ phase ^=1;
+ }
+ BitStream[i]=phase;
+ }
+ return;
+}
+
+// redesigned by marshmellow adjusted from existing decode functions
+// indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
+int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
+{
+ //26 bit 40134 format (don't know other formats)
+ int i;
+ int long_wait=29;//29 leading zeros in format
+ int start;
+ int first = 0;
+ int first2 = 0;
+ int bitCnt = 0;
+ int ii;
+ // Finding the start of a UID
+ for (start = 0; start <= *size - 250; start++) {
+ first = bitStream[start];
+ for (i = start; i < start + long_wait; i++) {
+ if (bitStream[i] != first) {
+ break;
+ }
+ }
+ if (i == (start + long_wait)) {
+ break;
+ }
+ }
+ if (start == *size - 250 + 1) {
+ // did not find start sequence
+ return -1;
+ }
+ // Inverting signal if needed
+ if (first == 1) {
+ for (i = start; i < *size; i++) {
+ bitStream[i] = !bitStream[i];
+ }
+ *invert = 1;
+ }else *invert=0;
+
+ int iii;
+ //found start once now test length by finding next one
+ for (ii=start+29; ii <= *size - 250; ii++) {
+ first2 = bitStream[ii];
+ for (iii = ii; iii < ii + long_wait; iii++) {
+ if (bitStream[iii] != first2) {
+ break;
+ }
+ }
+ if (iii == (ii + long_wait)) {
+ break;
+ }
+ }
+ if (ii== *size - 250 + 1){
+ // did not find second start sequence
+ return -2;
+ }
+ bitCnt=ii-start;
+
+ // Dumping UID
+ i = start;
+ for (ii = 0; ii < bitCnt; ii++) {
+ bitStream[ii] = bitStream[i++];
+ }
+ *size=bitCnt;
+ return 1;
+}
+
+// by marshmellow - demodulate NRZ wave (both similar enough)
+// peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
+// there probably is a much simpler way to do this....
+int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr)
+{
+ if (justNoise(dest, *size)) return -1;
+ *clk = DetectNRZClock(dest, *size, *clk);
+ if (*clk==0) return -2;
+ size_t i, gLen = 4096;
+ if (gLen>*size) gLen = *size;
+ int high, low;
+ if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
+ int lastBit = 0; //set first clock check
+ size_t iii = 0, bitnum = 0; //bitnum counter
+ uint16_t errCnt = 0, MaxBits = 1000;
+ size_t bestErrCnt = maxErr+1;
+ size_t bestPeakCnt = 0, bestPeakStart = 0;
+ uint8_t bestFirstPeakHigh=0, firstPeakHigh=0, curBit=0, bitHigh=0, errBitHigh=0;
+ uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
+ uint16_t peakCnt=0;
+ uint8_t ignoreWindow=4;
+ uint8_t ignoreCnt=ignoreWindow; //in case of noise near peak
+ //loop to find first wave that works - align to clock
+ for (iii=0; iii < gLen; ++iii){
+ if ((dest[iii]>=high) || (dest[iii]<=low)){
+ if (dest[iii]>=high) firstPeakHigh=1;
+ else firstPeakHigh=0;
+ lastBit=iii-*clk;
+ peakCnt=0;
+ errCnt=0;
+ //loop through to see if this start location works
+ for (i = iii; i < *size; ++i) {
+ // if we are at a clock bit
+ if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) {
+ //test high/low
+ if (dest[i] >= high || dest[i] <= low) {
+ bitHigh = 1;
+ peakCnt++;
+ errBitHigh = 0;
+ ignoreCnt = ignoreWindow;
+ lastBit += *clk;
+ } else if (i == lastBit + *clk + tol) {
+ lastBit += *clk;
+ }
+ //else if no bars found
+ } else if (dest[i] < high && dest[i] > low){
+ if (ignoreCnt==0){
+ bitHigh=0;
+ if (errBitHigh==1) errCnt++;
+ errBitHigh=0;
+ } else {
+ ignoreCnt--;
+ }
+ } else if ((dest[i]>=high || dest[i]<=low) && (bitHigh==0)) {
+ //error bar found no clock...
+ errBitHigh=1;
}
- else if ( tmplow >= peak || tmplow <= low){
- }
- else if ( tmphigh >= peak || tmphigh <= low){
+ if (((i-iii) / *clk)>=MaxBits) break;
+ }
+ //we got more than 64 good bits and not all errors
+ if (((i-iii) / *clk) > 64 && (errCnt <= (maxErr))) {
+ //possible good read
+ if (!errCnt || peakCnt > bestPeakCnt){
+ bestFirstPeakHigh=firstPeakHigh;
+ bestErrCnt = errCnt;
+ bestPeakCnt = peakCnt;
+ bestPeakStart = iii;
+ if (!errCnt) break; //great read - finish
+ }
+ }
+ }
+ }
+ //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
+ if (bestErrCnt > maxErr) return bestErrCnt;
+
+ //best run is good enough set to best run and set overwrite BinStream
+ lastBit = bestPeakStart - *clk;
+ memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk);
+ bitnum += (bestPeakStart / *clk);
+ for (i = bestPeakStart; i < *size; ++i) {
+ // if expecting a clock bit
+ if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) {
+ // test high/low
+ if (dest[i] >= high || dest[i] <= low) {
+ peakCnt++;
+ bitHigh = 1;
+ errBitHigh = 0;
+ ignoreCnt = ignoreWindow;
+ curBit = *invert;
+ if (dest[i] >= high) curBit ^= 1;
+ dest[bitnum++] = curBit;
+ lastBit += *clk;
+ //else no bars found in clock area
+ } else if (i == lastBit + *clk + tol) {
+ dest[bitnum++] = curBit;
+ lastBit += *clk;
+ }
+ //else if no bars found
+ } else if (dest[i] < high && dest[i] > low){
+ if (ignoreCnt == 0){
+ bitHigh = 0;
+ if (errBitHigh == 1){
+ dest[bitnum++] = 7;
+ errCnt++;
}
- else
- errCnt[cnt]++; //error no peak detected
+ errBitHigh=0;
+ } else {
+ ignoreCnt--;
}
+ } else if ((dest[i] >= high || dest[i] <= low) && (bitHigh == 0)) {
+ //error bar found no clock...
+ errBitHigh=1;
+ }
+ if (bitnum >= MaxBits) break;
+ }
+ *size = bitnum;
+ return bestErrCnt;
+}
+
+//by marshmellow
+//detects the bit clock for FSK given the high and low Field Clocks
+uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
+{
+ uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
+ uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+ uint8_t rfLensFnd = 0;
+ uint8_t lastFCcnt = 0;
+ uint16_t fcCounter = 0;
+ uint16_t rfCounter = 0;
+ uint8_t firstBitFnd = 0;
+ size_t i;
+ if (size == 0) return 0;
+
+ uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
+ rfLensFnd=0;
+ fcCounter=0;
+ rfCounter=0;
+ firstBitFnd=0;
+ //PrintAndLog("DEBUG: fcTol: %d",fcTol);
+ // prime i to first up transition
+ for (i = 1; i < size-1; i++)
+ if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
+ break;
+
+ for (; i < size-1; i++){
+ fcCounter++;
+ rfCounter++;
- //if we found no errors this is correct one - return this clock
- if ( errCnt[cnt] == 0 )
- return clk[cnt];
+ if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1])
+ continue;
+ // else new peak
+ // if we got less than the small fc + tolerance then set it to the small fc
+ if (fcCounter < fcLow+fcTol)
+ fcCounter = fcLow;
+ else //set it to the large fc
+ fcCounter = fcHigh;
- if ( errCnt[cnt] < bestErr)
- bestErr = errCnt[cnt];
+ //look for bit clock (rf/xx)
+ if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
+ //not the same size as the last wave - start of new bit sequence
+ if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
+ for (int ii=0; ii<15; ii++){
+ if (rfLens[ii] == rfCounter){
+ rfCnts[ii]++;
+ rfCounter = 0;
+ break;
+ }
+ }
+ if (rfCounter > 0 && rfLensFnd < 15){
+ //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
+ rfCnts[rfLensFnd]++;
+ rfLens[rfLensFnd++] = rfCounter;
+ }
+ } else {
+ firstBitFnd++;
+ }
+ rfCounter=0;
+ lastFCcnt=fcCounter;
+ }
+ fcCounter=0;
+ }
+ uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
+
+ for (i=0; i<15; i++){
+ //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
+ //get highest 2 RF values (might need to get more values to compare or compare all?)
+ if (rfCnts[i]>rfCnts[rfHighest]){
+ rfHighest3=rfHighest2;
+ rfHighest2=rfHighest;
+ rfHighest=i;
+ } else if(rfCnts[i]>rfCnts[rfHighest2]){
+ rfHighest3=rfHighest2;
+ rfHighest2=i;
+ } else if(rfCnts[i]>rfCnts[rfHighest3]){
+ rfHighest3=i;
+ }
+ }
+ // set allowed clock remainder tolerance to be 1 large field clock length+1
+ // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
+ uint8_t tol1 = fcHigh+1;
+
+ //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
+
+ // loop to find the highest clock that has a remainder less than the tolerance
+ // compare samples counted divided by
+ int ii=7;
+ for (; ii>=0; ii--){
+ if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
+ if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
+ if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
+ break;
+ }
+ }
+ }
+ }
+
+ if (ii<0) return 0; // oops we went too far
+
+ return clk[ii];
+}
+
+//by marshmellow
+//countFC is to detect the field clock lengths.
+//counts and returns the 2 most common wave lengths
+//mainly used for FSK field clock detection
+uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
+{
+ uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
+ uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
+ uint8_t fcLensFnd = 0;
+ uint8_t lastFCcnt=0;
+ uint8_t fcCounter = 0;
+ size_t i;
+ if (size == 0) return 0;
+
+ // prime i to first up transition
+ for (i = 1; i < size-1; i++)
+ if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
+ break;
+
+ for (; i < size-1; i++){
+ if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
+ // new up transition
+ fcCounter++;
+ if (fskAdj){
+ //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
+ if (lastFCcnt==5 && fcCounter==9) fcCounter--;
+ //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
+ if ((fcCounter==9) || fcCounter==4) fcCounter++;
+ // save last field clock count (fc/xx)
+ lastFCcnt = fcCounter;
+ }
+ // find which fcLens to save it to:
+ for (int ii=0; ii<10; ii++){
+ if (fcLens[ii]==fcCounter){
+ fcCnts[ii]++;
+ fcCounter=0;
+ break;
+ }
+ }
+ if (fcCounter>0 && fcLensFnd<10){
+ //add new fc length
+ fcCnts[fcLensFnd]++;
+ fcLens[fcLensFnd++]=fcCounter;
+ }
+ fcCounter=0;
+ } else {
+ // count sample
+ fcCounter++;
+ }
+ }
+
+ uint8_t best1=9, best2=9, best3=9;
+ uint16_t maxCnt1=0;
+ // go through fclens and find which ones are bigest 2
+ for (i=0; i<10; i++){
+ // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);
+ // get the 3 best FC values
+ if (fcCnts[i]>maxCnt1) {
+ best3=best2;
+ best2=best1;
+ maxCnt1=fcCnts[i];
+ best1=i;
+ } else if(fcCnts[i]>fcCnts[best2]){
+ best3=best2;
+ best2=i;
+ } else if(fcCnts[i]>fcCnts[best3]){
+ best3=i;
+ }
+ }
+ uint8_t fcH=0, fcL=0;
+ if (fcLens[best1]>fcLens[best2]){
+ fcH=fcLens[best1];
+ fcL=fcLens[best2];
+ } else{
+ fcH=fcLens[best2];
+ fcL=fcLens[best1];
+ }
+
+ // TODO: take top 3 answers and compare to known Field clocks to get top 2
+
+ uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
+ // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
+ if (fskAdj) return fcs;
+ return fcLens[best1];
+}
+
+//by marshmellow - demodulate PSK1 wave
+//uses wave lengths (# Samples)
+int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
+{
+ if (size == 0) return -1;
+ uint16_t loopCnt = 4096; //don't need to loop through entire array...
+ if (*size<loopCnt) loopCnt = *size;
+
+ uint8_t curPhase = *invert;
+ size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
+ uint8_t fc=0, fullWaveLen=0, tol=1;
+ uint16_t errCnt=0, waveLenCnt=0;
+ fc = countFC(dest, *size, 0);
+ if (fc!=2 && fc!=4 && fc!=8) return -1;
+ //PrintAndLog("DEBUG: FC: %d",fc);
+ *clock = DetectPSKClock(dest, *size, *clock);
+ if (*clock == 0) return -1;
+ int avgWaveVal=0, lastAvgWaveVal=0;
+ //find first phase shift
+ for (i=0; i<loopCnt; i++){
+ if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
+ waveEnd = i+1;
+ //PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
+ waveLenCnt = waveEnd-waveStart;
+ if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave
+ lastAvgWaveVal = avgWaveVal/(waveLenCnt);
+ firstFullWave = waveStart;
+ fullWaveLen=waveLenCnt;
+ //if average wave value is > graph 0 then it is an up wave or a 1
+ if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128
+ break;
+ }
+ waveStart = i+1;
+ avgWaveVal = 0;
}
- // save the least error.
- errCnt[cnt] = bestErr;
+ avgWaveVal += dest[i+2];
}
- // find best clock which has lowest number of errors
- int j = 0, bestIndex = 0;
- for (; j < clkLen; ++j){
- if ( errCnt[j] < errCnt[bestIndex] )
- bestIndex = j;
+ //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
+ lastClkBit = firstFullWave; //set start of wave as clock align
+ //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
+ waveStart = 0;
+ size_t numBits=0;
+ //set skipped bits
+ memset(dest, curPhase^1, firstFullWave / *clock);
+ numBits += (firstFullWave / *clock);
+ dest[numBits++] = curPhase; //set first read bit
+ for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
+ //top edge of wave = start of new wave
+ if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
+ if (waveStart == 0) {
+ waveStart = i+1;
+ waveLenCnt = 0;
+ avgWaveVal = dest[i+1];
+ } else { //waveEnd
+ waveEnd = i+1;
+ waveLenCnt = waveEnd-waveStart;
+ lastAvgWaveVal = avgWaveVal/waveLenCnt;
+ if (waveLenCnt > fc){
+ //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
+ //this wave is a phase shift
+ //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
+ if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
+ curPhase ^= 1;
+ dest[numBits++] = curPhase;
+ lastClkBit += *clock;
+ } else if (i < lastClkBit+10+fc){
+ //noise after a phase shift - ignore
+ } else { //phase shift before supposed to based on clock
+ errCnt++;
+ dest[numBits++] = 7;
+ }
+ } else if (i+1 > lastClkBit + *clock + tol + fc){
+ lastClkBit += *clock; //no phase shift but clock bit
+ dest[numBits++] = curPhase;
+ }
+ avgWaveVal = 0;
+ waveStart = i+1;
+ }
+ }
+ avgWaveVal += dest[i+1];
}
- return clk[bestIndex];
+ *size = numBits;
+ return errCnt;
}