//-----------------------------------------------------------------------------
-// Routines to support ISO 14443 type A.
-//
+// Merlok - June 2011, 2012
// Gerhard de Koning Gans - May 2008
+// Hagen Fritsch - June 2010
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Routines to support ISO 14443 type A.
//-----------------------------------------------------------------------------
+
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
-#include "iso14443crc.h"
+#include "string.h"
+#include "cmd.h"
-static uint8_t *trace = (uint8_t *) BigBuf;
-static int traceLen = 0;
-static int rsamples = 0;
-static int tracing = TRUE;
-
-typedef enum {
- SEC_D = 1,
- SEC_E = 2,
- SEC_F = 3,
- SEC_X = 4,
- SEC_Y = 5,
- SEC_Z = 6
-} SecType;
-
-static const uint8_t OddByteParity[256] = {
+#include "iso14443crc.h"
+#include "iso14443a.h"
+#include "crapto1.h"
+#include "mifareutil.h"
+
+static uint32_t iso14a_timeout;
+uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
+int traceLen = 0;
+int rsamples = 0;
+int tracing = TRUE;
+uint8_t trigger = 0;
+// the block number for the ISO14443-4 PCB
+static uint8_t iso14_pcb_blocknum = 0;
+
+// CARD TO READER - manchester
+// Sequence D: 11110000 modulation with subcarrier during first half
+// Sequence E: 00001111 modulation with subcarrier during second half
+// Sequence F: 00000000 no modulation with subcarrier
+// READER TO CARD - miller
+// Sequence X: 00001100 drop after half a period
+// Sequence Y: 00000000 no drop
+// Sequence Z: 11000000 drop at start
+#define SEC_D 0xf0
+#define SEC_E 0x0f
+#define SEC_F 0x00
+#define SEC_X 0x0c
+#define SEC_Y 0x00
+#define SEC_Z 0xc0
+
+const uint8_t OddByteParity[256] = {
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
};
-// BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT
-#define RECV_CMD_OFFSET 3032
-#define RECV_RES_OFFSET 3096
-#define DMA_BUFFER_OFFSET 3160
-#define DMA_BUFFER_SIZE 4096
-#define TRACE_LENGTH 3000
+
+void iso14a_set_trigger(bool enable) {
+ trigger = enable;
+}
+
+void iso14a_clear_trace() {
+ memset(trace, 0x44, TRACE_SIZE);
+ traceLen = 0;
+}
+
+void iso14a_set_tracing(bool enable) {
+ tracing = enable;
+}
+
+void iso14a_set_timeout(uint32_t timeout) {
+ iso14a_timeout = timeout;
+}
//-----------------------------------------------------------------------------
// Generate the parity value for a byte sequence
//
//-----------------------------------------------------------------------------
+byte_t oddparity (const byte_t bt)
+{
+ return OddByteParity[bt];
+}
+
uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
{
int i;
return dwPar;
}
-static void AppendCrc14443a(uint8_t* data, int len)
+void AppendCrc14443a(uint8_t* data, int len)
{
ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
}
-int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
+// The function LogTrace() is also used by the iClass implementation in iClass.c
+int RAMFUNC LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
{
// Return when trace is full
- if (traceLen >= TRACE_LENGTH) return FALSE;
+ if (traceLen >= TRACE_SIZE) return FALSE;
// Trace the random, i'm curious
rsamples += iSamples;
return TRUE;
}
-int LogTraceInfo(byte_t* data, size_t len)
-{
- return LogTrace(data,len,0,GetParity(data,len),TRUE);
-}
-
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
// variables.
//-----------------------------------------------------------------------------
-static struct {
- enum {
- STATE_UNSYNCD,
- STATE_START_OF_COMMUNICATION,
- STATE_MILLER_X,
- STATE_MILLER_Y,
- STATE_MILLER_Z,
- STATE_ERROR_WAIT
- } state;
- uint16_t shiftReg;
- int bitCnt;
- int byteCnt;
- int byteCntMax;
- int posCnt;
- int syncBit;
- int parityBits;
- int samples;
- int highCnt;
- int bitBuffer;
- enum {
- DROP_NONE,
- DROP_FIRST_HALF,
- DROP_SECOND_HALF
- } drop;
- uint8_t *output;
-} Uart;
-
-static int MillerDecoding(int bit)
+static tUart Uart;
+
+static RAMFUNC int MillerDecoding(int bit)
{
- int error = 0;
+ //int error = 0;
int bitright;
if(!Uart.bitBuffer) {
// measured a drop in first and second half
// which should not be possible
Uart.state = STATE_ERROR_WAIT;
- error = 0x01;
+ //error = 0x01;
}
Uart.posCnt = 0;
if(Uart.drop == DROP_SECOND_HALF) {
// error, should not happen in SOC
Uart.state = STATE_ERROR_WAIT;
- error = 0x02;
+ //error = 0x02;
}
else {
// correct SOC
// Would be STATE_MILLER_Z
// but Z does not follow X, so error
Uart.state = STATE_ERROR_WAIT;
- error = 0x03;
+ //error = 0x03;
}
if(Uart.drop == DROP_SECOND_HALF) {
// We see a '1' and stay in state X
if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
- if(Uart.syncBit & (Uart.bitBuffer & 8)) {
+ if(Uart.syncBit && (Uart.bitBuffer & 8)) {
Uart.syncBit = 8;
// the first half bit period is expected in next sample
Uart.bitCnt = 0;
Uart.byteCnt = 0;
Uart.parityBits = 0;
- error = 0;
+ //error = 0;
}
else {
Uart.highCnt = 0;
//=============================================================================
// ISO 14443 Type A - Manchester
//=============================================================================
+static tDemod Demod;
-static struct {
- enum {
- DEMOD_UNSYNCD,
- DEMOD_START_OF_COMMUNICATION,
- DEMOD_MANCHESTER_D,
- DEMOD_MANCHESTER_E,
- DEMOD_MANCHESTER_F,
- DEMOD_ERROR_WAIT
- } state;
- int bitCount;
- int posCount;
- int syncBit;
- int parityBits;
- uint16_t shiftReg;
- int buffer;
- int buff;
- int samples;
- int len;
- enum {
- SUB_NONE,
- SUB_FIRST_HALF,
- SUB_SECOND_HALF
- } sub;
- uint8_t *output;
-} Demod;
-
-static int ManchesterDecoding(int v)
+static RAMFUNC int ManchesterDecoding(int v)
{
int bit;
int modulation;
- int error = 0;
+ //int error = 0;
if(!Demod.buff) {
Demod.buff = 1;
Demod.syncBit = 0;
//Demod.samples = 0;
Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
- if(bit & 0x08) { Demod.syncBit = 0x08; }
- if(!Demod.syncBit) {
- if(bit & 0x04) { Demod.syncBit = 0x04; }
- }
- else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; }
- if(!Demod.syncBit) {
- if(bit & 0x02) { Demod.syncBit = 0x02; }
+
+ if(bit & 0x08) {
+ Demod.syncBit = 0x08;
}
- else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; }
- if(!Demod.syncBit) {
- if(bit & 0x01) { Demod.syncBit = 0x01; }
- if(Demod.syncBit & (Demod.buffer & 0x08)) {
- Demod.syncBit = 0x08;
+ if(bit & 0x04) {
+ if(Demod.syncBit) {
+ bit <<= 4;
+ }
+ Demod.syncBit = 0x04;
+ }
- // The first half bitperiod is expected in next sample
- Demod.posCount = 0;
- Demod.output[Demod.len] = 0xfb;
+ if(bit & 0x02) {
+ if(Demod.syncBit) {
+ bit <<= 2;
}
+ Demod.syncBit = 0x02;
}
- else if(bit & 0x01) { Demod.syncBit = 0x01; }
+ if(bit & 0x01 && Demod.syncBit) {
+ Demod.syncBit = 0x01;
+ }
+
if(Demod.syncBit) {
Demod.len = 0;
Demod.state = DEMOD_START_OF_COMMUNICATION;
Demod.parityBits = 0;
Demod.samples = 0;
if(Demod.posCount) {
+ if(trigger) LED_A_OFF();
switch(Demod.syncBit) {
case 0x08: Demod.samples = 3; break;
case 0x04: Demod.samples = 2; break;
case 0x01: Demod.samples = 0; break;
}
}
- error = 0;
+ //error = 0;
}
}
else {
if(Demod.state!=DEMOD_ERROR_WAIT) {
Demod.state = DEMOD_ERROR_WAIT;
Demod.output[Demod.len] = 0xaa;
- error = 0x01;
+ //error = 0x01;
}
}
else if(modulation) {
else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
- error = 0x02;
+ //error = 0x02;
}
break;
else {
Demod.output[Demod.len] = 0xad;
Demod.state = DEMOD_ERROR_WAIT;
- error = 0x03;
+ //error = 0x03;
}
break;
// triggering so that we start recording at the point that the tag is moved
// near the reader.
//-----------------------------------------------------------------------------
-void SnoopIso14443a(void)
-{
-// #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
-// #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
-// #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
-// #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
-// #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values
-
- // We won't start recording the frames that we acquire until we trigger;
- // a good trigger condition to get started is probably when we see a
- // response from the tag.
- int triggered = TRUE; // FALSE to wait first for card
-
- // The command (reader -> tag) that we're receiving.
+void RAMFUNC SnoopIso14443a(uint8_t param) {
+ // param:
+ // bit 0 - trigger from first card answer
+ // bit 1 - trigger from first reader 7-bit request
+
+ LEDsoff();
+ // init trace buffer
+ iso14a_clear_trace();
+
+ // We won't start recording the frames that we acquire until we trigger;
+ // a good trigger condition to get started is probably when we see a
+ // response from the tag.
+ // triggered == FALSE -- to wait first for card
+ int triggered = !(param & 0x03);
+
+ // The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
- uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
- // The response (tag -> reader) that we're receiving.
- uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
-
- // As we receive stuff, we copy it from receivedCmd or receivedResponse
- // into trace, along with its length and other annotations.
- //uint8_t *trace = (uint8_t *)BigBuf;
- //int traceLen = 0;
-
- // The DMA buffer, used to stream samples from the FPGA
- int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
- int lastRxCounter;
- int8_t *upTo;
- int smpl;
- int maxBehindBy = 0;
-
- // Count of samples received so far, so that we can include timing
- // information in the trace buffer.
- int samples = 0;
- int rsamples = 0;
-
- memset(trace, 0x44, RECV_CMD_OFFSET);
-
- // Set up the demodulator for tag -> reader responses.
- Demod.output = receivedResponse;
- Demod.len = 0;
- Demod.state = DEMOD_UNSYNCD;
-
- // And the reader -> tag commands
- memset(&Uart, 0, sizeof(Uart));
- Uart.output = receivedCmd;
- Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
- Uart.state = STATE_UNSYNCD;
-
- // And put the FPGA in the appropriate mode
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ // The response (tag -> reader) that we're receiving.
+ uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
+
+ // As we receive stuff, we copy it from receivedCmd or receivedResponse
+ // into trace, along with its length and other annotations.
+ //uint8_t *trace = (uint8_t *)BigBuf;
+
+ // The DMA buffer, used to stream samples from the FPGA
+ int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+ int8_t *data = dmaBuf;
+ int maxDataLen = 0;
+ int dataLen = 0;
+
+ // Set up the demodulator for tag -> reader responses.
+ Demod.output = receivedResponse;
+ Demod.len = 0;
+ Demod.state = DEMOD_UNSYNCD;
+
+ // Set up the demodulator for the reader -> tag commands
+ memset(&Uart, 0, sizeof(Uart));
+ Uart.output = receivedCmd;
+ Uart.byteCntMax = 32; // was 100 (greg)//////////////////
+ Uart.state = STATE_UNSYNCD;
// Setup for the DMA.
- FpgaSetupSsc();
- upTo = dmaBuf;
- lastRxCounter = DMA_BUFFER_SIZE;
- FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+ FpgaSetupSsc();
+ FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
- LED_A_ON();
+ // And put the FPGA in the appropriate mode
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // Count of samples received so far, so that we can include timing
+ // information in the trace buffer.
+ rsamples = 0;
+ // And now we loop, receiving samples.
+ while(true) {
+ if(BUTTON_PRESS()) {
+ DbpString("cancelled by button");
+ goto done;
+ }
- // And now we loop, receiving samples.
- for(;;) {
+ LED_A_ON();
WDT_HIT();
- int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
- (DMA_BUFFER_SIZE-1);
- if(behindBy > maxBehindBy) {
- maxBehindBy = behindBy;
- if(behindBy > 400) {
- DbpString("blew circular buffer!");
- goto done;
- }
- }
- if(behindBy < 1) continue;
-
- smpl = upTo[0];
- upTo++;
- lastRxCounter -= 1;
- if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
- upTo -= DMA_BUFFER_SIZE;
- lastRxCounter += DMA_BUFFER_SIZE;
- AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
- AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
- }
- samples += 4;
-#define HANDLE_BIT_IF_BODY \
- LED_C_ON(); \
- if(triggered) { \
- trace[traceLen++] = ((rsamples >> 0) & 0xff); \
- trace[traceLen++] = ((rsamples >> 8) & 0xff); \
- trace[traceLen++] = ((rsamples >> 16) & 0xff); \
- trace[traceLen++] = ((rsamples >> 24) & 0xff); \
- trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \
- trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \
- trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \
- trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \
- trace[traceLen++] = Uart.byteCnt; \
- memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \
- traceLen += Uart.byteCnt; \
- if(traceLen > TRACE_LENGTH) break; \
- } \
- /* And ready to receive another command. */ \
- Uart.state = STATE_UNSYNCD; \
- /* And also reset the demod code, which might have been */ \
- /* false-triggered by the commands from the reader. */ \
- Demod.state = DEMOD_UNSYNCD; \
- LED_B_OFF(); \
-
- if(MillerDecoding((smpl & 0xF0) >> 4)) {
- rsamples = samples - Uart.samples;
- HANDLE_BIT_IF_BODY
- }
- if(ManchesterDecoding(smpl & 0x0F)) {
- rsamples = samples - Demod.samples;
+ int register readBufDataP = data - dmaBuf;
+ int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
+ if (readBufDataP <= dmaBufDataP){
+ dataLen = dmaBufDataP - readBufDataP;
+ } else {
+ dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1;
+ }
+ // test for length of buffer
+ if(dataLen > maxDataLen) {
+ maxDataLen = dataLen;
+ if(dataLen > 400) {
+ Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
+ goto done;
+ }
+ }
+ if(dataLen < 1) continue;
+
+ // primary buffer was stopped( <-- we lost data!
+ if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
+ AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
+ AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
+ }
+ // secondary buffer sets as primary, secondary buffer was stopped
+ if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ }
+
+ LED_A_OFF();
+
+ rsamples += 4;
+ if(MillerDecoding((data[0] & 0xF0) >> 4)) {
+ LED_C_ON();
+
+ // check - if there is a short 7bit request from reader
+ if ((!triggered) && (param & 0x02) && (Uart.byteCnt == 1) && (Uart.bitCnt = 9)) triggered = TRUE;
+
+ if(triggered) {
+ if (!LogTrace(receivedCmd, Uart.byteCnt, 0 - Uart.samples, Uart.parityBits, TRUE)) break;
+ }
+ /* And ready to receive another command. */
+ Uart.state = STATE_UNSYNCD;
+ /* And also reset the demod code, which might have been */
+ /* false-triggered by the commands from the reader. */
+ Demod.state = DEMOD_UNSYNCD;
+ LED_B_OFF();
+ }
+
+ if(ManchesterDecoding(data[0] & 0x0F)) {
LED_B_ON();
- // timestamp, as a count of samples
- trace[traceLen++] = ((rsamples >> 0) & 0xff);
- trace[traceLen++] = ((rsamples >> 8) & 0xff);
- trace[traceLen++] = ((rsamples >> 16) & 0xff);
- trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
- trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
- trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
- trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
- trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
- // length
- trace[traceLen++] = Demod.len;
- memcpy(trace+traceLen, receivedResponse, Demod.len);
- traceLen += Demod.len;
- if(traceLen > TRACE_LENGTH) break;
-
- triggered = TRUE;
-
- // And ready to receive another response.
- memset(&Demod, 0, sizeof(Demod));
- Demod.output = receivedResponse;
- Demod.state = DEMOD_UNSYNCD;
+ if (!LogTrace(receivedResponse, Demod.len, 0 - Demod.samples, Demod.parityBits, FALSE)) break;
+
+ if ((!triggered) && (param & 0x01)) triggered = TRUE;
+
+ // And ready to receive another response.
+ memset(&Demod, 0, sizeof(Demod));
+ Demod.output = receivedResponse;
+ Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
}
- if(BUTTON_PRESS()) {
- DbpString("cancelled_a");
- goto done;
- }
- }
-
- DbpString("COMMAND FINISHED");
+ data++;
+ if(data > dmaBuf + DMA_BUFFER_SIZE) {
+ data = dmaBuf;
+ }
+ } // main cycle
- Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
- Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
+ DbpString("COMMAND FINISHED");
done:
- AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
- Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
- Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
- LED_A_OFF();
- LED_B_OFF();
- LED_C_OFF();
- LED_D_OFF();
-}
-
-// Prepare communication bits to send to FPGA
-void Sequence(SecType seq)
-{
- ToSendMax++;
- switch(seq) {
- // CARD TO READER
- case SEC_D:
- // Sequence D: 11110000
- // modulation with subcarrier during first half
- ToSend[ToSendMax] = 0xf0;
- break;
- case SEC_E:
- // Sequence E: 00001111
- // modulation with subcarrier during second half
- ToSend[ToSendMax] = 0x0f;
- break;
- case SEC_F:
- // Sequence F: 00000000
- // no modulation with subcarrier
- ToSend[ToSendMax] = 0x00;
- break;
- // READER TO CARD
- case SEC_X:
- // Sequence X: 00001100
- // drop after half a period
- ToSend[ToSendMax] = 0x0c;
- break;
- case SEC_Y:
- default:
- // Sequence Y: 00000000
- // no drop
- ToSend[ToSendMax] = 0x00;
- break;
- case SEC_Z:
- // Sequence Z: 11000000
- // drop at start
- ToSend[ToSendMax] = 0xc0;
- break;
- }
+ AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
+ Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen, Uart.state, Uart.byteCnt);
+ Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%08x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
+ LEDsoff();
}
//-----------------------------------------------------------------------------
// Prepare tag messages
//-----------------------------------------------------------------------------
-static void CodeIso14443aAsTag(const uint8_t *cmd, int len)
+static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
{
- int i;
- int oddparity;
+ int i;
- ToSendReset();
+ ToSendReset();
// Correction bit, might be removed when not needed
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
-
+
// Send startbit
- Sequence(SEC_D);
+ ToSend[++ToSendMax] = SEC_D;
- for(i = 0; i < len; i++) {
- int j;
- uint8_t b = cmd[i];
+ for(i = 0; i < len; i++) {
+ int j;
+ uint8_t b = cmd[i];
// Data bits
- oddparity = 0x01;
for(j = 0; j < 8; j++) {
- oddparity ^= (b & 1);
if(b & 1) {
- Sequence(SEC_D);
+ ToSend[++ToSendMax] = SEC_D;
} else {
- Sequence(SEC_E);
- }
- b >>= 1;
- }
+ ToSend[++ToSendMax] = SEC_E;
+ }
+ b >>= 1;
+ }
- // Parity bit
- if(oddparity) {
- Sequence(SEC_D);
+ // Get the parity bit
+ if ((dwParity >> i) & 0x01) {
+ ToSend[++ToSendMax] = SEC_D;
} else {
- Sequence(SEC_E);
+ ToSend[++ToSendMax] = SEC_E;
}
- }
-
- // Send stopbit
- Sequence(SEC_F);
-
- // Flush the buffer in FPGA!!
- for(i = 0; i < 5; i++) {
- Sequence(SEC_F);
}
- // Convert from last byte pos to length
- ToSendMax++;
+ // Send stopbit
+ ToSend[++ToSendMax] = SEC_F;
+
+ // Convert from last byte pos to length
+ ToSendMax++;
+}
- // Add a few more for slop
- ToSend[ToSendMax++] = 0x00;
- ToSend[ToSendMax++] = 0x00;
- //ToSendMax += 2;
+static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
+ CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
}
//-----------------------------------------------------------------------------
// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
//-----------------------------------------------------------------------------
-static void CodeStrangeAnswer()
+static void CodeStrangeAnswerAsTag()
{
int i;
ToSendStuffBit(0);
// Send startbit
- Sequence(SEC_D);
+ ToSend[++ToSendMax] = SEC_D;
// 0
- Sequence(SEC_E);
+ ToSend[++ToSendMax] = SEC_E;
// 0
- Sequence(SEC_E);
+ ToSend[++ToSendMax] = SEC_E;
// 1
- Sequence(SEC_D);
+ ToSend[++ToSendMax] = SEC_D;
// Send stopbit
- Sequence(SEC_F);
+ ToSend[++ToSendMax] = SEC_F;
// Flush the buffer in FPGA!!
for(i = 0; i < 5; i++) {
- Sequence(SEC_F);
+ ToSend[++ToSendMax] = SEC_F;
}
// Convert from last byte pos to length
ToSendMax++;
+}
+
+static void Code4bitAnswerAsTag(uint8_t cmd)
+{
+ int i;
+
+ ToSendReset();
- // Add a few more for slop
- ToSend[ToSendMax++] = 0x00;
- ToSend[ToSendMax++] = 0x00;
- //ToSendMax += 2;
+ // Correction bit, might be removed when not needed
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(1); // 1
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+ ToSendStuffBit(0);
+
+ // Send startbit
+ ToSend[++ToSendMax] = SEC_D;
+
+ uint8_t b = cmd;
+ for(i = 0; i < 4; i++) {
+ if(b & 1) {
+ ToSend[++ToSendMax] = SEC_D;
+ } else {
+ ToSend[++ToSendMax] = SEC_E;
+ }
+ b >>= 1;
+ }
+
+ // Send stopbit
+ ToSend[++ToSendMax] = SEC_F;
+
+ // Flush the buffer in FPGA!!
+ for(i = 0; i < 5; i++) {
+ ToSend[++ToSendMax] = SEC_F;
+ }
+
+ // Convert from last byte pos to length
+ ToSendMax++;
}
//-----------------------------------------------------------------------------
}
}
+static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded);
+int EmSend4bitEx(uint8_t resp, int correctionNeeded);
+int EmSend4bit(uint8_t resp);
+int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par);
+int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par);
+int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded);
+int EmSendCmd(uint8_t *resp, int respLen);
+int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par);
+
//-----------------------------------------------------------------------------
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
-void SimulateIso14443aTag(int tagType, int TagUid)
+void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
{
- // This function contains the tag emulation
-
- // Prepare protocol messages
- // static const uint8_t cmd1[] = { 0x26 };
-// static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
-//
- static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
-// static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
-
- // UID response
- // static const uint8_t cmd2[] = { 0x93, 0x20 };
- //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
-
-
+ // Enable and clear the trace
+ tracing = TRUE;
+ iso14a_clear_trace();
-// my desfire
- static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
-
-
-// When reader selects us during cascade1 it will send cmd3
-//uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
-uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
-ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
+ // This function contains the tag emulation
+ uint8_t sak;
+
+ // The first response contains the ATQA (note: bytes are transmitted in reverse order).
+ uint8_t response1[2];
+
+ switch (tagType) {
+ case 1: { // MIFARE Classic
+ // Says: I am Mifare 1k - original line
+ response1[0] = 0x04;
+ response1[1] = 0x00;
+ sak = 0x08;
+ } break;
+ case 2: { // MIFARE Ultralight
+ // Says: I am a stupid memory tag, no crypto
+ response1[0] = 0x04;
+ response1[1] = 0x00;
+ sak = 0x00;
+ } break;
+ case 3: { // MIFARE DESFire
+ // Says: I am a DESFire tag, ph33r me
+ response1[0] = 0x04;
+ response1[1] = 0x03;
+ sak = 0x20;
+ } break;
+ case 4: { // ISO/IEC 14443-4
+ // Says: I am a javacard (JCOP)
+ response1[0] = 0x04;
+ response1[1] = 0x00;
+ sak = 0x28;
+ } break;
+ default: {
+ Dbprintf("Error: unkown tagtype (%d)",tagType);
+ return;
+ } break;
+ }
+
+ // The second response contains the (mandatory) first 24 bits of the UID
+ uint8_t response2[5];
+
+ // Check if the uid uses the (optional) part
+ uint8_t response2a[5];
+ if (uid_2nd) {
+ response2[0] = 0x88;
+ num_to_bytes(uid_1st,3,response2+1);
+ num_to_bytes(uid_2nd,4,response2a);
+ response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
+
+ // Configure the ATQA and SAK accordingly
+ response1[0] |= 0x40;
+ sak |= 0x04;
+ } else {
+ num_to_bytes(uid_1st,4,response2);
+ // Configure the ATQA and SAK accordingly
+ response1[0] &= 0xBF;
+ sak &= 0xFB;
+ }
-// send cascade2 2nd half of UID
-static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
-// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
+ // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
+ response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
+ // Prepare the mandatory SAK (for 4 and 7 byte UID)
+ uint8_t response3[3];
+ response3[0] = sak;
+ ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
-// When reader selects us during cascade2 it will send cmd3a
-//uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
-uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
-ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
+ // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
+ uint8_t response3a[3];
+ response3a[0] = sak & 0xFB;
+ ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
- static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
+ uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
+ uint8_t response6[] = { 0x03, 0x3B, 0x00, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
+ ComputeCrc14443(CRC_14443_A, response6, 3, &response6[3], &response6[4]);
- uint8_t *resp;
- int respLen;
+ uint8_t *resp = NULL;
+ int respLen;
- // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
+ // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
// This will need
// 144 data bits (18 * 8)
// 18 parity bits
// 166 bytes, since every bit that needs to be send costs us a byte
//
+ // Respond with card type
+ uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+ int resp1Len;
- // Respond with card type
- uint8_t *resp1 = (((uint8_t *)BigBuf) + 800);
- int resp1Len;
-
- // Anticollision cascade1 - respond with uid
- uint8_t *resp2 = (((uint8_t *)BigBuf) + 970);
- int resp2Len;
+ // Anticollision cascade1 - respond with uid
+ uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 166);
+ int resp2Len;
- // Anticollision cascade2 - respond with 2nd half of uid if asked
- // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
- uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140);
- int resp2aLen;
+ // Anticollision cascade2 - respond with 2nd half of uid if asked
+ // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
+ uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140);
+ int resp2aLen;
- // Acknowledge select - cascade 1
- uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310);
- int resp3Len;
+ // Acknowledge select - cascade 1
+ uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*2));
+ int resp3Len;
- // Acknowledge select - cascade 2
- uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480);
- int resp3aLen;
+ // Acknowledge select - cascade 2
+ uint8_t *resp3a = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*3));
+ int resp3aLen;
- // Response to a read request - not implemented atm
- uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550);
- int resp4Len;
+ // Response to a read request - not implemented atm
+ uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*4));
+// int resp4Len;
- // Authenticate response - nonce
- uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720);
- int resp5Len;
+ // Authenticate response - nonce
+ uint8_t *resp5 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*5));
+ int resp5Len;
- uint8_t *receivedCmd = (uint8_t *)BigBuf;
- int len;
+ // Authenticate response - nonce
+ uint8_t *resp6 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*6));
+ int resp6Len;
- int i;
- int u;
- uint8_t b;
+ uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ int len;
// To control where we are in the protocol
int order = 0;
int happened = 0;
int happened2 = 0;
- int cmdsRecvd = 0;
-
- int fdt_indicator;
+ int cmdsRecvd = 0;
+ uint8_t* respdata = NULL;
+ int respsize = 0;
+// uint8_t nack = 0x04;
- memset(receivedCmd, 0x44, 400);
+ memset(receivedCmd, 0x44, RECV_CMD_SIZE);
// Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
// Answer to request
CodeIso14443aAsTag(response1, sizeof(response1));
- memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
+ memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
// Send our UID (cascade 1)
CodeIso14443aAsTag(response2, sizeof(response2));
- memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
+ memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
// Answer to select (cascade1)
CodeIso14443aAsTag(response3, sizeof(response3));
- memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
+ memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
// Send the cascade 2 2nd part of the uid
CodeIso14443aAsTag(response2a, sizeof(response2a));
- memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
+ memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
// Answer to select (cascade 2)
CodeIso14443aAsTag(response3a, sizeof(response3a));
- memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
+ memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
// Strange answer is an example of rare message size (3 bits)
- CodeStrangeAnswer();
- memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
+ CodeStrangeAnswerAsTag();
+ memcpy(resp4, ToSend, ToSendMax);// resp4Len = ToSendMax;
// Authentication answer (random nonce)
CodeIso14443aAsTag(response5, sizeof(response5));
- memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
+ memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
- // We need to listen to the high-frequency, peak-detected path.
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc();
+ // dummy ATS (pseudo-ATR), answer to RATS
+ CodeIso14443aAsTag(response6, sizeof(response6));
+ memcpy(resp6, ToSend, ToSendMax); resp6Len = ToSendMax;
- cmdsRecvd = 0;
+ // We need to listen to the high-frequency, peak-detected path.
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+ FpgaSetupSsc();
- LED_A_ON();
- for(;;) {
+ cmdsRecvd = 0;
- if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {
- DbpString("button press");
- break;
- }
- // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
- // Okay, look at the command now.
- lastorder = order;
- i = 1; // first byte transmitted
- if(receivedCmd[0] == 0x26) {
- // Received a REQUEST
+ LED_A_ON();
+ for(;;) {
+
+ if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
+ DbpString("button press");
+ break;
+ }
+
+ if (tracing) {
+ LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE);
+ }
+
+ // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
+ // Okay, look at the command now.
+ lastorder = order;
+ if(receivedCmd[0] == 0x26) { // Received a REQUEST
resp = resp1; respLen = resp1Len; order = 1;
- //DbpString("Hello request from reader:");
- } else if(receivedCmd[0] == 0x52) {
- // Received a WAKEUP
+ respdata = response1;
+ respsize = sizeof(response1);
+ } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
resp = resp1; respLen = resp1Len; order = 6;
-// //DbpString("Wakeup request from reader:");
-
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision
- // Received request for UID (cascade 1)
+ respdata = response1;
+ respsize = sizeof(response1);
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
resp = resp2; respLen = resp2Len; order = 2;
-// DbpString("UID (cascade 1) request from reader:");
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-
-
- } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision
- // Received request for UID (cascade 2)
+ respdata = response2;
+ respsize = sizeof(response2);
+ } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
resp = resp2a; respLen = resp2aLen; order = 20;
-// DbpString("UID (cascade 2) request from reader:");
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-
-
- } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select
- // Received a SELECT
+ respdata = response2a;
+ respsize = sizeof(response2a);
+ } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
resp = resp3; respLen = resp3Len; order = 3;
-// DbpString("Select (cascade 1) request from reader:");
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-
-
- } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select
- // Received a SELECT
+ respdata = response3;
+ respsize = sizeof(response3);
+ } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
resp = resp3a; respLen = resp3aLen; order = 30;
-// DbpString("Select (cascade 2) request from reader:");
-// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-
-
- } else if(receivedCmd[0] == 0x30) {
- // Received a READ
- resp = resp4; respLen = resp4Len; order = 4; // Do nothing
- Dbprintf("Read request from reader: %x %x %x",
- receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-
-
- } else if(receivedCmd[0] == 0x50) {
- // Received a HALT
- resp = resp1; respLen = 0; order = 5; // Do nothing
- DbpString("Reader requested we HALT!:");
-
- } else if(receivedCmd[0] == 0x60) {
- // Received an authentication request
- resp = resp5; respLen = resp5Len; order = 7;
- Dbprintf("Authenticate request from reader: %x %x %x",
- receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-
- } else if(receivedCmd[0] == 0xE0) {
- // Received a RATS request
- resp = resp1; respLen = 0;order = 70;
- Dbprintf("RATS request from reader: %x %x %x",
- receivedCmd[0], receivedCmd[1], receivedCmd[2]);
- } else {
- // Never seen this command before
- Dbprintf("Unknown command received from reader: %x %x %x %x %x %x %x %x %x",
- receivedCmd[0], receivedCmd[1], receivedCmd[2],
- receivedCmd[3], receivedCmd[3], receivedCmd[4],
- receivedCmd[5], receivedCmd[6], receivedCmd[7]);
+ respdata = response3a;
+ respsize = sizeof(response3a);
+ } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
+// resp = resp4; respLen = resp4Len; order = 4; // Do nothing
+// respdata = &nack;
+// respsize = sizeof(nack); // 4-bit answer
+ EmSendCmdEx(data+(4*receivedCmd[0]),16,false);
+ Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
+ // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
+ respLen = 0;
+ } else if(receivedCmd[0] == 0x50) { // Received a HALT
+// DbpString("Reader requested we HALT!:");
// Do not respond
resp = resp1; respLen = 0; order = 0;
- }
+ respdata = NULL;
+ respsize = 0;
+ } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
+ resp = resp5; respLen = resp5Len; order = 7;
+ respdata = response5;
+ respsize = sizeof(response5);
+ } else if(receivedCmd[0] == 0xE0) { // Received a RATS request
+ resp = resp6; respLen = resp6Len; order = 70;
+ respdata = response6;
+ respsize = sizeof(response6);
+ } else {
+ if (order == 7 && len ==8) {
+ uint32_t nr = bytes_to_num(receivedCmd,4);
+ uint32_t ar = bytes_to_num(receivedCmd+4,4);
+ Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
+ } else {
+ // Never seen this command before
+ Dbprintf("Received unknown command (len=%d):",len);
+ Dbhexdump(len,receivedCmd,false);
+ }
+ // Do not respond
+ resp = resp1; respLen = 0; order = 0;
+ respdata = NULL;
+ respsize = 0;
+ }
// Count number of wakeups received after a halt
if(order == 6 && lastorder == 5) { happened++; }
// Look at last parity bit to determine timing of answer
if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
// 1236, so correction bit needed
- i = 0;
+ //i = 0;
}
- memset(receivedCmd, 0x44, 32);
-
if(cmdsRecvd > 999) {
DbpString("1000 commands later...");
- break;
- }
- else {
+ break;
+ } else {
cmdsRecvd++;
}
- if(respLen <= 0) continue;
-
- // Modulate Manchester
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
- AT91C_BASE_SSC->SSC_THR = 0x00;
- FpgaSetupSsc();
-
- // ### Transmit the response ###
- u = 0;
- b = 0x00;
- fdt_indicator = FALSE;
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- (void)b;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- if(i > respLen) {
- b = 0x00;
- u++;
- } else {
- b = resp[i];
- i++;
- }
- AT91C_BASE_SSC->SSC_THR = b;
-
- if(u > 4) {
- break;
- }
- }
- if(BUTTON_PRESS()) {
- break;
+ if(respLen > 0) {
+ EmSendCmd14443aRaw(resp, respLen, receivedCmd[0] == 0x52);
+ }
+
+ if (tracing) {
+ if (respdata != NULL) {
+ LogTrace(respdata,respsize, 0, SwapBits(GetParity(respdata,respsize),respsize), FALSE);
}
- }
+ if(traceLen > TRACE_SIZE) {
+ DbpString("Trace full");
+ break;
+ }
+ }
- }
+ memset(receivedCmd, 0x44, RECV_CMD_SIZE);
+ }
Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
LED_A_OFF();
}
-//-----------------------------------------------------------------------------
-// Transmit the command (to the tag) that was placed in ToSend[].
-//-----------------------------------------------------------------------------
-static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
-{
- int c;
-
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
-
- if (wait)
- if(*wait < 10)
- *wait = 10;
-
- for(c = 0; c < *wait;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
- c++;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
-
- c = 0;
- for(;;) {
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = cmd[c];
- c++;
- if(c >= len) {
- break;
- }
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
- (void)r;
- }
- WDT_HIT();
- }
- if (samples) *samples = (c + *wait) << 3;
-}
-//-----------------------------------------------------------------------------
-// To generate an arbitrary stream from reader
-//
-//-----------------------------------------------------------------------------
-void ArbitraryFromReader(const uint8_t *cmd, int parity, int len)
+// prepare a delayed transfer. This simply shifts ToSend[] by a number
+// of bits specified in the delay parameter.
+void PrepareDelayedTransfer(uint16_t delay)
{
- int i;
- int j;
- int last;
- uint8_t b;
-
- ToSendReset();
-
- // Start of Communication (Seq. Z)
- Sequence(SEC_Z);
- last = 0;
-
- for(i = 0; i < len; i++) {
- // Data bits
- b = cmd[i];
- for(j = 0; j < 8; j++) {
- if(b & 1) {
- // Sequence X
- Sequence(SEC_X);
- last = 1;
- } else {
- if(last == 0) {
- // Sequence Z
- Sequence(SEC_Z);
- }
- else {
- // Sequence Y
- Sequence(SEC_Y);
- last = 0;
- }
- }
- b >>= 1;
-
+ uint8_t bitmask = 0;
+ uint8_t bits_to_shift = 0;
+ uint8_t bits_shifted = 0;
+
+ delay &= 0x07;
+ if (delay) {
+ for (uint16_t i = 0; i < delay; i++) {
+ bitmask |= (0x01 << i);
}
-
- // Predefined parity bit, the flipper flips when needed, because of flips in byte sent
- if(((parity >> (len - i - 1)) & 1)) {
- // Sequence X
- Sequence(SEC_X);
- last = 1;
- } else {
- if(last == 0) {
- // Sequence Z
- Sequence(SEC_Z);
- }
- else {
- // Sequence Y
- Sequence(SEC_Y);
- last = 0;
- }
+ ToSend[++ToSendMax] = 0x00;
+ for (uint16_t i = 0; i < ToSendMax; i++) {
+ bits_to_shift = ToSend[i] & bitmask;
+ ToSend[i] = ToSend[i] >> delay;
+ ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
+ bits_shifted = bits_to_shift;
}
}
+}
- // End of Communication
- if(last == 0) {
- // Sequence Z
- Sequence(SEC_Z);
- }
- else {
- // Sequence Y
- Sequence(SEC_Y);
- last = 0;
- }
- // Sequence Y
- Sequence(SEC_Y);
- // Just to be sure!
- Sequence(SEC_Y);
- Sequence(SEC_Y);
- Sequence(SEC_Y);
- // Convert from last character reference to length
- ToSendMax++;
-}
//-----------------------------------------------------------------------------
-// Code a 7-bit command without parity bit
-// This is especially for 0x26 and 0x52 (REQA and WUPA)
+// Transmit the command (to the tag) that was placed in ToSend[].
+// Parameter timing:
+// if NULL: ignored
+// if == 0: return time of transfer
+// if != 0: delay transfer until time specified
//-----------------------------------------------------------------------------
-void ShortFrameFromReader(const uint8_t bt)
+static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
{
- int j;
- int last;
- uint8_t b;
+ int c;
- ToSendReset();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- // Start of Communication (Seq. Z)
- Sequence(SEC_Z);
- last = 0;
- b = bt;
- for(j = 0; j < 7; j++) {
- if(b & 1) {
- // Sequence X
- Sequence(SEC_X);
- last = 1;
+ if (timing) {
+ if(*timing == 0) { // Measure time
+ *timing = (GetCountMifare() + 8) & 0xfffffff8;
} else {
- if(last == 0) {
- // Sequence Z
- Sequence(SEC_Z);
- }
- else {
- // Sequence Y
- Sequence(SEC_Y);
- last = 0;
- }
+ PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
}
- b >>= 1;
+ if(MF_DBGLEVEL >= 4 && GetCountMifare() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
+ while(GetCountMifare() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
}
- // End of Communication
- if(last == 0) {
- // Sequence Z
- Sequence(SEC_Z);
+ for(c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ c++;
+ }
}
- else {
- // Sequence Y
- Sequence(SEC_Y);
- last = 0;
+
+ c = 0;
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = cmd[c];
+ c++;
+ if(c >= len) {
+ break;
+ }
+ }
}
- // Sequence Y
- Sequence(SEC_Y);
- // Just to be sure!
- Sequence(SEC_Y);
- Sequence(SEC_Y);
- Sequence(SEC_Y);
-
- // Convert from last character reference to length
- ToSendMax++;
}
//-----------------------------------------------------------------------------
-// Prepare reader command to send to FPGA
-//
+// Prepare reader command (in bits, support short frames) to send to FPGA
//-----------------------------------------------------------------------------
-void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
+void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity)
{
int i, j;
int last;
ToSendReset();
// Start of Communication (Seq. Z)
- Sequence(SEC_Z);
+ ToSend[++ToSendMax] = SEC_Z;
last = 0;
+ size_t bytecount = nbytes(bits);
// Generate send structure for the data bits
- for (i = 0; i < len; i++) {
+ for (i = 0; i < bytecount; i++) {
// Get the current byte to send
b = cmd[i];
+ size_t bitsleft = MIN((bits-(i*8)),8);
- for (j = 0; j < 8; j++) {
+ for (j = 0; j < bitsleft; j++) {
if (b & 1) {
// Sequence X
- Sequence(SEC_X);
+ ToSend[++ToSendMax] = SEC_X;
last = 1;
} else {
if (last == 0) {
// Sequence Z
- Sequence(SEC_Z);
+ ToSend[++ToSendMax] = SEC_Z;
} else {
// Sequence Y
- Sequence(SEC_Y);
+ ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
}
b >>= 1;
}
- // Get the parity bit
- if ((dwParity >> i) & 0x01) {
- // Sequence X
- Sequence(SEC_X);
- last = 1;
- } else {
- if (last == 0) {
- // Sequence Z
- Sequence(SEC_Z);
+ // Only transmit (last) parity bit if we transmitted a complete byte
+ if (j == 8) {
+ // Get the parity bit
+ if ((dwParity >> i) & 0x01) {
+ // Sequence X
+ ToSend[++ToSendMax] = SEC_X;
+ last = 1;
} else {
- // Sequence Y
- Sequence(SEC_Y);
- last = 0;
+ if (last == 0) {
+ // Sequence Z
+ ToSend[++ToSendMax] = SEC_Z;
+ } else {
+ // Sequence Y
+ ToSend[++ToSendMax] = SEC_Y;
+ last = 0;
+ }
}
}
}
// End of Communication
if (last == 0) {
// Sequence Z
- Sequence(SEC_Z);
+ ToSend[++ToSendMax] = SEC_Z;
} else {
// Sequence Y
- Sequence(SEC_Y);
+ ToSend[++ToSendMax] = SEC_Y;
last = 0;
}
// Sequence Y
- Sequence(SEC_Y);
+ ToSend[++ToSendMax] = SEC_Y;
// Just to be sure!
- Sequence(SEC_Y);
- Sequence(SEC_Y);
- Sequence(SEC_Y);
+ ToSend[++ToSendMax] = SEC_Y;
+ ToSend[++ToSendMax] = SEC_Y;
+ ToSend[++ToSendMax] = SEC_Y;
// Convert from last character reference to length
ToSendMax++;
}
//-----------------------------------------------------------------------------
-// Wait a certain time for tag response
-// If a response is captured return TRUE
-// If it takes to long return FALSE
+// Prepare reader command to send to FPGA
//-----------------------------------------------------------------------------
-static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
+void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
{
- // buffer needs to be 512 bytes
- int c;
+ CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity);
+}
- // Set FPGA mode to "reader listen mode", no modulation (listen
- // only, since we are receiving, not transmitting).
- // Signal field is on with the appropriate LED
- LED_D_ON();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
+//-----------------------------------------------------------------------------
+// Wait for commands from reader
+// Stop when button is pressed (return 1) or field was gone (return 2)
+// Or return 0 when command is captured
+//-----------------------------------------------------------------------------
+static int EmGetCmd(uint8_t *received, int *len, int maxLen)
+{
+ *len = 0;
+
+ uint32_t timer = 0, vtime = 0;
+ int analogCnt = 0;
+ int analogAVG = 0;
+
+ // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+ // only, since we are receiving, not transmitting).
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+ // Set ADC to read field strength
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+ AT91C_BASE_ADC->ADC_MR =
+ ADC_MODE_PRESCALE(32) |
+ ADC_MODE_STARTUP_TIME(16) |
+ ADC_MODE_SAMPLE_HOLD_TIME(8);
+ AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
+ // start ADC
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+
+ // Now run a 'software UART' on the stream of incoming samples.
+ Uart.output = received;
+ Uart.byteCntMax = maxLen;
+ Uart.state = STATE_UNSYNCD;
+
+ for(;;) {
+ WDT_HIT();
+
+ if (BUTTON_PRESS()) return 1;
+
+ // test if the field exists
+ if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
+ analogCnt++;
+ analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
+ AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+ if (analogCnt >= 32) {
+ if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+ vtime = GetTickCount();
+ if (!timer) timer = vtime;
+ // 50ms no field --> card to idle state
+ if (vtime - timer > 50) return 2;
+ } else
+ if (timer) timer = 0;
+ analogCnt = 0;
+ analogAVG = 0;
+ }
+ }
+ // transmit none
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ }
+ // receive and test the miller decoding
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ if(MillerDecoding((b & 0xf0) >> 4)) {
+ *len = Uart.byteCnt;
+ if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
+ return 0;
+ }
+ if(MillerDecoding(b & 0x0f)) {
+ *len = Uart.byteCnt;
+ if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
+ return 0;
+ }
+ }
+ }
+}
+
+static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded)
+{
+ int i, u = 0;
+ uint8_t b = 0;
+
+ // Modulate Manchester
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
+ AT91C_BASE_SSC->SSC_THR = 0x00;
+ FpgaSetupSsc();
+
+ // include correction bit
+ i = 1;
+ if((Uart.parityBits & 0x01) || correctionNeeded) {
+ // 1236, so correction bit needed
+ i = 0;
+ }
+
+ // send cycle
+ for(;;) {
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ (void)b;
+ }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ if(i > respLen) {
+ b = 0xff; // was 0x00
+ u++;
+ } else {
+ b = resp[i];
+ i++;
+ }
+ AT91C_BASE_SSC->SSC_THR = b;
+
+ if(u > 4) break;
+ }
+ if(BUTTON_PRESS()) {
+ break;
+ }
+ }
+
+ return 0;
+}
- // Now get the answer from the card
- Demod.output = receivedResponse;
- Demod.len = 0;
- Demod.state = DEMOD_UNSYNCD;
+int EmSend4bitEx(uint8_t resp, int correctionNeeded){
+ Code4bitAnswerAsTag(resp);
+ int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+ if (tracing) LogTrace(&resp, 1, GetDeltaCountUS(), GetParity(&resp, 1), FALSE);
+ return res;
+}
+
+int EmSend4bit(uint8_t resp){
+ return EmSend4bitEx(resp, 0);
+}
+
+int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par){
+ CodeIso14443aAsTagPar(resp, respLen, par);
+ int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+ if (tracing) LogTrace(resp, respLen, GetDeltaCountUS(), par, FALSE);
+ return res;
+}
+
+int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){
+ return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
+}
+
+int EmSendCmd(uint8_t *resp, int respLen){
+ return EmSendCmdExPar(resp, respLen, 0, GetParity(resp, respLen));
+}
+
+int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
+ return EmSendCmdExPar(resp, respLen, 0, par);
+}
+
+//-----------------------------------------------------------------------------
+// Wait a certain time for tag response
+// If a response is captured return TRUE
+// If it takes to long return FALSE
+//-----------------------------------------------------------------------------
+static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
+{
+ // buffer needs to be 512 bytes
+ int c;
+
+ // Set FPGA mode to "reader listen mode", no modulation (listen
+ // only, since we are receiving, not transmitting).
+ // Signal field is on with the appropriate LED
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
+
+ // Now get the answer from the card
+ Demod.output = receivedResponse;
+ Demod.len = 0;
+ Demod.state = DEMOD_UNSYNCD;
uint8_t b;
if (elapsed) *elapsed = 0;
c = 0;
for(;;) {
- WDT_HIT();
+ WDT_HIT();
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
- AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
- if (elapsed) (*elapsed)++;
- }
- if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
- if(c < 512) { c++; } else { return FALSE; }
- b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
- if(ManchesterDecoding((b & 0xf0) >> 4)) {
+ // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+ // AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
+ // if (elapsed) (*elapsed)++;
+ // }
+ if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+ if(c < iso14a_timeout) { c++; } else { return FALSE; }
+ b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+ if(ManchesterDecoding((b>>4) & 0xf)) {
*samples = ((c - 1) << 3) + 4;
return TRUE;
}
*samples = c << 3;
return TRUE;
}
- }
- }
+ }
+ }
}
-void ReaderTransmitShort(const uint8_t* bt)
+void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
{
- int wait = 0;
- int samples = 0;
-
- ShortFrameFromReader(*bt);
-
+
+ CodeIso14443aBitsAsReaderPar(frame,bits,par);
+
// Select the card
- TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
-
+ TransmitFor14443a(ToSend, ToSendMax, timing);
+ if(trigger)
+ LED_A_ON();
+
// Store reader command in buffer
- if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE);
+ if (tracing) LogTrace(frame,nbytes(bits),0,par,TRUE);
}
-void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
+void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
{
- int wait = 0;
- int samples = 0;
-
- // This is tied to other size changes
- // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
- CodeIso14443aAsReaderPar(frame,len,par);
-
- // Select the card
- TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
-
- // Store reader command in buffer
- if (tracing) LogTrace(frame,len,0,par,TRUE);
+ ReaderTransmitBitsPar(frame,len*8,par, timing);
}
-
-void ReaderTransmit(uint8_t* frame, int len)
+void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
{
// Generate parity and redirect
- ReaderTransmitPar(frame,len,GetParity(frame,len));
+ ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
}
int ReaderReceive(uint8_t* receivedAnswer)
{
int samples = 0;
- if (!GetIso14443aAnswerFromTag(receivedAnswer,100,&samples,0)) return FALSE;
+ if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
- return TRUE;
+ if(samples == 0) return FALSE;
+ return Demod.len;
+}
+
+int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr)
+{
+ int samples = 0;
+ if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
+ if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
+ *parptr = Demod.parityBits;
+ if(samples == 0) return FALSE;
+ return Demod.len;
+}
+
+/* performs iso14443a anticolision procedure
+ * fills the uid pointer unless NULL
+ * fills resp_data unless NULL */
+int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
+ uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP
+ uint8_t sel_all[] = { 0x93,0x20 };
+ uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
+ uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes
+ byte_t uid_resp[4];
+ size_t uid_resp_len;
+
+ uint8_t sak = 0x04; // cascade uid
+ int cascade_level = 0;
+ int len;
+
+ // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
+ ReaderTransmitBitsPar(wupa,7,0, NULL);
+ // Receive the ATQA
+ if(!ReaderReceive(resp)) return 0;
+// Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
+
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->atqa, resp, 2);
+ p_hi14a_card->uidlen = 0;
+ memset(p_hi14a_card->uid,0,10);
+ }
+
+ // clear uid
+ if (uid_ptr) {
+ memset(uid_ptr,0,10);
+ }
+
+ // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
+ // which case we need to make a cascade 2 request and select - this is a long UID
+ // While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
+ for(; sak & 0x04; cascade_level++) {
+ // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
+ sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
+
+ // SELECT_ALL
+ ReaderTransmit(sel_all,sizeof(sel_all), NULL);
+ if (!ReaderReceive(resp)) return 0;
+
+ // First backup the current uid
+ memcpy(uid_resp,resp,4);
+ uid_resp_len = 4;
+ // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
+
+ // calculate crypto UID. Always use last 4 Bytes.
+ if(cuid_ptr) {
+ *cuid_ptr = bytes_to_num(uid_resp, 4);
+ }
+
+ // Construct SELECT UID command
+ memcpy(sel_uid+2,resp,5);
+ AppendCrc14443a(sel_uid,7);
+ ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
+
+ // Receive the SAK
+ if (!ReaderReceive(resp)) return 0;
+ sak = resp[0];
+
+ // Test if more parts of the uid are comming
+ if ((sak & 0x04) && uid_resp[0] == 0x88) {
+ // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
+ // http://www.nxp.com/documents/application_note/AN10927.pdf
+ memcpy(uid_resp, uid_resp + 1, 3);
+ uid_resp_len = 3;
+ }
+
+ if(uid_ptr) {
+ memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
+ }
+
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
+ p_hi14a_card->uidlen += uid_resp_len;
+ }
+ }
+
+ if(p_hi14a_card) {
+ p_hi14a_card->sak = sak;
+ p_hi14a_card->ats_len = 0;
+ }
+
+ if( (sak & 0x20) == 0) {
+ return 2; // non iso14443a compliant tag
+ }
+
+ // Request for answer to select
+ AppendCrc14443a(rats, 2);
+ ReaderTransmit(rats, sizeof(rats), NULL);
+
+ if (!(len = ReaderReceive(resp))) return 0;
+
+ if(p_hi14a_card) {
+ memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
+ p_hi14a_card->ats_len = len;
+ }
+
+ // reset the PCB block number
+ iso14_pcb_blocknum = 0;
+ return 1;
+}
+
+void iso14443a_setup() {
+ // Set up the synchronous serial port
+ FpgaSetupSsc();
+ // Start from off (no field generated)
+ // Signal field is off with the appropriate LED
+// LED_D_OFF();
+// FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ // SpinDelay(50);
+
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // Now give it time to spin up.
+ // Signal field is on with the appropriate LED
+ LED_D_ON();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+ SpinDelay(7); // iso14443-3 specifies 5ms max.
+
+ iso14a_timeout = 2048; //default
+}
+
+int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
+ uint8_t real_cmd[cmd_len+4];
+ real_cmd[0] = 0x0a; //I-Block
+ // put block number into the PCB
+ real_cmd[0] |= iso14_pcb_blocknum;
+ real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
+ memcpy(real_cmd+2, cmd, cmd_len);
+ AppendCrc14443a(real_cmd,cmd_len+2);
+
+ ReaderTransmit(real_cmd, cmd_len+4, NULL);
+ size_t len = ReaderReceive(data);
+ uint8_t * data_bytes = (uint8_t *) data;
+ if (!len)
+ return 0; //DATA LINK ERROR
+ // if we received an I- or R(ACK)-Block with a block number equal to the
+ // current block number, toggle the current block number
+ else if (len >= 4 // PCB+CID+CRC = 4 bytes
+ && ((data_bytes[0] & 0xC0) == 0 // I-Block
+ || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
+ && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
+ {
+ iso14_pcb_blocknum ^= 1;
+ }
+
+ return len;
}
//-----------------------------------------------------------------------------
// Read an ISO 14443a tag. Send out commands and store answers.
//
//-----------------------------------------------------------------------------
-void ReaderIso14443a(uint32_t parameter)
+void ReaderIso14443a(UsbCommand * c)
{
- // Anticollision
- uint8_t wupa[] = { 0x52 };
- uint8_t sel_all[] = { 0x93,0x20 };
- uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
- uint8_t sel_all_c2[] = { 0x95,0x20 };
- uint8_t sel_uid_c2[] = { 0x95,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ iso14a_command_t param = c->arg[0];
+ uint8_t * cmd = c->d.asBytes;
+ size_t len = c->arg[1];
+ uint32_t arg0 = 0;
+ byte_t buf[USB_CMD_DATA_SIZE];
+
+ iso14a_clear_trace();
+ iso14a_set_tracing(true);
+
+ if(param & ISO14A_REQUEST_TRIGGER) {
+ iso14a_set_trigger(1);
+ }
- // Mifare AUTH
- uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
-// uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00 };
+ if(param & ISO14A_CONNECT) {
+ iso14443a_setup();
+ arg0 = iso14443a_select_card(NULL, (iso14a_card_select_t*)buf, NULL);
+ cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(iso14a_card_select_t));
+ }
- uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
- traceLen = 0;
+ if(param & ISO14A_SET_TIMEOUT) {
+ iso14a_timeout = c->arg[2];
+ }
- // Setup SSC
- FpgaSetupSsc();
+ if(param & ISO14A_SET_TIMEOUT) {
+ iso14a_timeout = c->arg[2];
+ }
- // Start from off (no field generated)
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
+ if(param & ISO14A_APDU) {
+ arg0 = iso14_apdu(cmd, len, buf);
+ cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+ }
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc();
+ if(param & ISO14A_RAW) {
+ if(param & ISO14A_APPEND_CRC) {
+ AppendCrc14443a(cmd,len);
+ len += 2;
+ }
+ ReaderTransmit(cmd,len, NULL);
+ arg0 = ReaderReceive(buf);
+ cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+ }
- // Now give it time to spin up.
- // Signal field is on with the appropriate LED
- LED_D_ON();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- SpinDelay(200);
+ if(param & ISO14A_REQUEST_TRIGGER) {
+ iso14a_set_trigger(0);
+ }
+
+ if(param & ISO14A_NO_DISCONNECT) {
+ return;
+ }
+
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
+}
+
+
+// Determine the distance between two nonces.
+// Assume that the difference is small, but we don't know which is first.
+// Therefore try in alternating directions.
+int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
+
+ uint16_t i;
+ uint32_t nttmp1, nttmp2;
+
+ if (nt1 == nt2) return 0;
+
+ nttmp1 = nt1;
+ nttmp2 = nt2;
+
+ for (i = 1; i < 32768; i++) {
+ nttmp1 = prng_successor(nttmp1, 1);
+ if (nttmp1 == nt2) return i;
+ nttmp2 = prng_successor(nttmp2, 1);
+ if (nttmp2 == nt1) return -i;
+ }
+
+ return(-99999); // either nt1 or nt2 are invalid nonces
+}
+
+
+//-----------------------------------------------------------------------------
+// Recover several bits of the cypher stream. This implements (first stages of)
+// the algorithm described in "The Dark Side of Security by Obscurity and
+// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
+// (article by Nicolas T. Courtois, 2009)
+//-----------------------------------------------------------------------------
+void ReaderMifare(bool first_try)
+{
+ // Mifare AUTH
+ uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+ uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+ static uint8_t mf_nr_ar3;
+
+ uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+ traceLen = 0;
+ tracing = false;
+
+ byte_t nt_diff = 0;
+ byte_t par = 0;
+ //byte_t par_mask = 0xff;
+ static byte_t par_low = 0;
+ bool led_on = TRUE;
+ uint8_t uid[10];
+ uint32_t cuid;
+
+ uint32_t nt, previous_nt;
+ static uint32_t nt_attacked = 0;
+ byte_t par_list[8] = {0,0,0,0,0,0,0,0};
+ byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
+
+ static uint32_t sync_time;
+ static uint32_t sync_cycles;
+ int catch_up_cycles = 0;
+ int last_catch_up = 0;
+ uint16_t consecutive_resyncs = 0;
+ int isOK = 0;
+
+
+
+ if (first_try) {
+ StartCountMifare();
+ mf_nr_ar3 = 0;
+ iso14443a_setup();
+ while((GetCountMifare() & 0xffff0000) != 0x10000); // wait for counter to reset and "warm up"
+ sync_time = GetCountMifare() & 0xfffffff8;
+ sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
+ nt_attacked = 0;
+ nt = 0;
+ par = 0;
+ }
+ else {
+ // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same)
+ // nt_attacked = prng_successor(nt_attacked, 1);
+ mf_nr_ar3++;
+ mf_nr_ar[3] = mf_nr_ar3;
+ par = par_low;
+ }
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
+
+
+ for(uint16_t i = 0; TRUE; i++) {
+
+ WDT_HIT();
- while(traceLen < TRACE_LENGTH)
- {
- // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
- ReaderTransmitShort(wupa);
-
- // Test if the action was cancelled
- if(BUTTON_PRESS()) {
- break;
- }
+ // Test if the action was cancelled
+ if(BUTTON_PRESS()) {
+ break;
+ }
+
+ LED_C_ON();
- // Receive the ATQA
- if (!ReaderReceive(receivedAnswer)) continue;
+ if(!iso14443a_select_card(uid, NULL, &cuid)) {
+ if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
+ continue;
+ }
- // Transmit SELECT_ALL
- ReaderTransmit(sel_all,sizeof(sel_all));
+ //keep the card active
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- // Receive the UID
- if (!ReaderReceive(receivedAnswer)) continue;
+ // CodeIso14443aBitsAsReaderPar(mf_auth, sizeof(mf_auth)*8, GetParity(mf_auth, sizeof(mf_auth)*8));
- // Construct SELECT UID command
- // First copy the 5 bytes (Mifare Classic) after the 93 70
- memcpy(sel_uid+2,receivedAnswer,5);
- // Secondly compute the two CRC bytes at the end
- AppendCrc14443a(sel_uid,7);
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
+ catch_up_cycles = 0;
- // Transmit SELECT_UID
- ReaderTransmit(sel_uid,sizeof(sel_uid));
+ // if we missed the sync time already, advance to the next nonce repeat
+ while(GetCountMifare() > sync_time) {
+ sync_time = (sync_time & 0xfffffff8) + sync_cycles;
+ }
- // Receive the SAK
- if (!ReaderReceive(receivedAnswer)) continue;
+ // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
+ ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
- // OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in
- // which case we need to make a cascade 2 request and select - this is a long UID
- // When the UID is not complete, the 3nd bit (from the right) is set in the SAK.
- if (receivedAnswer[0] &= 0x04)
- {
- // Transmit SELECT_ALL
- ReaderTransmit(sel_all_c2,sizeof(sel_all_c2));
+ // Receive the (4 Byte) "random" nonce
+ if (!ReaderReceive(receivedAnswer)) {
+ if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
+ continue;
+ }
- // Receive the UID
- if (!ReaderReceive(receivedAnswer)) continue;
+ previous_nt = nt;
+ nt = bytes_to_num(receivedAnswer, 4);
- // Construct SELECT UID command
- memcpy(sel_uid_c2+2,receivedAnswer,5);
- // Secondly compute the two CRC bytes at the end
- AppendCrc14443a(sel_uid_c2,7);
+ // Transmit reader nonce with fake par
+ ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
- // Transmit SELECT_UID
- ReaderTransmit(sel_uid_c2,sizeof(sel_uid_c2));
+ if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
+ int nt_distance = dist_nt(previous_nt, nt);
+ if (nt_distance == 0) {
+ nt_attacked = nt;
+ }
+ else {
+ if (nt_distance == -99999) { // invalid nonce received, try again
+ continue;
+ }
+ sync_cycles = (sync_cycles - nt_distance);
+ if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
+ continue;
+ }
+ }
- // Receive the SAK
- if (!ReaderReceive(receivedAnswer)) continue;
+ if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
+ catch_up_cycles = -dist_nt(nt_attacked, nt);
+ if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
+ catch_up_cycles = 0;
+ continue;
+ }
+ if (catch_up_cycles == last_catch_up) {
+ consecutive_resyncs++;
+ }
+ else {
+ last_catch_up = catch_up_cycles;
+ consecutive_resyncs = 0;
+ }
+ if (consecutive_resyncs < 3) {
+ if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
+ }
+ else {
+ sync_cycles = sync_cycles + catch_up_cycles;
+ if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
+ }
+ continue;
}
+
+ consecutive_resyncs = 0;
+
+ // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
+ if (ReaderReceive(receivedAnswer))
+ {
+ catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
+
+ if (nt_diff == 0)
+ {
+ par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change
+ }
- // Transmit MIFARE_CLASSIC_AUTH
- ReaderTransmit(mf_auth,sizeof(mf_auth));
+ led_on = !led_on;
+ if(led_on) LED_B_ON(); else LED_B_OFF();
- // Receive the (16 bit) "random" nonce
- if (!ReaderReceive(receivedAnswer)) continue;
+ par_list[nt_diff] = par;
+ ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
+
+ // Test if the information is complete
+ if (nt_diff == 0x07) {
+ isOK = 1;
+ break;
+ }
+
+ nt_diff = (nt_diff + 1) & 0x07;
+ mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5);
+ par = par_low;
+ } else {
+ if (nt_diff == 0 && first_try)
+ {
+ par++;
+ } else {
+ par = (((par >> 3) + 1) << 3) | par_low;
+ }
+ }
}
- // Thats it...
+ LogTrace((const uint8_t *)&nt, 4, 0, GetParity((const uint8_t *)&nt, 4), TRUE);
+ LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE);
+ LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE);
+
+ mf_nr_ar[3] &= 0x1F;
+
+ byte_t buf[28];
+ memcpy(buf + 0, uid, 4);
+ num_to_bytes(nt, 4, buf + 4);
+ memcpy(buf + 8, par_list, 8);
+ memcpy(buf + 16, ks_list, 8);
+ memcpy(buf + 24, mf_nr_ar, 4);
+
+ cmd_send(CMD_ACK,isOK,0,0,buf,28);
+
+ // Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
- Dbprintf("%x %x %x", rsamples, 0xCC, 0xCC);
- DbpString("ready..");
+ tracing = TRUE;
}
//-----------------------------------------------------------------------------
-// Read an ISO 14443a tag. Send out commands and store answers.
-//
+// MIFARE 1K simulate.
+//
//-----------------------------------------------------------------------------
-void ReaderMifare(uint32_t parameter)
+void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
{
+ int cardSTATE = MFEMUL_NOFIELD;
+ int _7BUID = 0;
+ int vHf = 0; // in mV
+ //int nextCycleTimeout = 0;
+ int res;
+// uint32_t timer = 0;
+ uint32_t selTimer = 0;
+ uint32_t authTimer = 0;
+ uint32_t par = 0;
+ int len = 0;
+ uint8_t cardWRBL = 0;
+ uint8_t cardAUTHSC = 0;
+ uint8_t cardAUTHKEY = 0xff; // no authentication
+ //uint32_t cardRn = 0;
+ uint32_t cardRr = 0;
+ uint32_t cuid = 0;
+ //uint32_t rn_enc = 0;
+ uint32_t ans = 0;
+ uint32_t cardINTREG = 0;
+ uint8_t cardINTBLOCK = 0;
+ struct Crypto1State mpcs = {0, 0};
+ struct Crypto1State *pcs;
+ pcs = &mpcs;
+
+ uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
+ uint8_t *response = eml_get_bigbufptr_sendbuf();
+
+ static uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
+
+ static uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
+ static uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
+
+ static uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
+ static uint8_t rSAK1[] = {0x04, 0xda, 0x17};
+
+ static uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
+// static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f};
+ static uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
+
+ // clear trace
+ traceLen = 0;
+ tracing = true;
+
+ // Authenticate response - nonce
+ uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
+
+ // get UID from emul memory
+ emlGetMemBt(receivedCmd, 7, 1);
+ _7BUID = !(receivedCmd[0] == 0x00);
+ if (!_7BUID) { // ---------- 4BUID
+ rATQA[0] = 0x04;
+
+ emlGetMemBt(rUIDBCC1, 0, 4);
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+ } else { // ---------- 7BUID
+ rATQA[0] = 0x44;
+
+ rUIDBCC1[0] = 0x88;
+ emlGetMemBt(&rUIDBCC1[1], 0, 3);
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+ emlGetMemBt(rUIDBCC2, 3, 4);
+ rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+ }
- // Anticollision
- uint8_t wupa[] = { 0x52 };
- uint8_t sel_all[] = { 0x93,0x20 };
- uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
-
- // Mifare AUTH
- uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
- uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+// -------------------------------------- test area
- uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes
- traceLen = 0;
- tracing = false;
+// -------------------------------------- END test area
+ // start mkseconds counter
+ StartCountUS();
- // Setup SSC
+ // We need to listen to the high-frequency, peak-detected path.
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
- // Start from off (no field generated)
- // Signal field is off with the appropriate LED
- LED_D_OFF();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+ SpinDelay(200);
- SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
- FpgaSetupSsc();
+ if (MF_DBGLEVEL >= 1) Dbprintf("Started. 7buid=%d", _7BUID);
+ // calibrate mkseconds counter
+ GetDeltaCountUS();
+ while (true) {
+ WDT_HIT();
- // Now give it time to spin up.
- // Signal field is on with the appropriate LED
- LED_D_ON();
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
- SpinDelay(200);
+ if(BUTTON_PRESS()) {
+ break;
+ }
- LED_A_ON();
- LED_B_OFF();
- LED_C_OFF();
+ // find reader field
+ // Vref = 3300mV, and an 10:1 voltage divider on the input
+ // can measure voltages up to 33000 mV
+ if (cardSTATE == MFEMUL_NOFIELD) {
+ vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+ if (vHf > MF_MINFIELDV) {
+ cardSTATE_TO_IDLE();
+ LED_A_ON();
+ }
+ }
+
+ if (cardSTATE != MFEMUL_NOFIELD) {
+ res = EmGetCmd(receivedCmd, &len, RECV_CMD_SIZE); // (+ nextCycleTimeout)
+ if (res == 2) {
+ cardSTATE = MFEMUL_NOFIELD;
+ LEDsoff();
+ continue;
+ }
+ if(res) break;
+ }
+
+ //nextCycleTimeout = 0;
+
+// if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
+
+ if (len != 4 && cardSTATE != MFEMUL_NOFIELD) { // len != 4 <---- speed up the code 4 authentication
+ // REQ or WUP request in ANY state and WUP in HALTED state
+ if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
+ selTimer = GetTickCount();
+ EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
+ cardSTATE = MFEMUL_SELECT1;
+
+ // init crypto block
+ LED_B_OFF();
+ LED_C_OFF();
+ crypto1_destroy(pcs);
+ cardAUTHKEY = 0xff;
+ }
+ }
+
+ switch (cardSTATE) {
+ case MFEMUL_NOFIELD:{
+ break;
+ }
+ case MFEMUL_HALTED:{
+ break;
+ }
+ case MFEMUL_IDLE:{
+ break;
+ }
+ case MFEMUL_SELECT1:{
+ // select all
+ if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
+ EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
+ break;
+ }
- // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
- ReaderTransmitShort(wupa);
- // Receive the ATQA
- ReaderReceive(receivedAnswer);
- // Transmit SELECT_ALL
- ReaderTransmit(sel_all,sizeof(sel_all));
- // Receive the UID
- ReaderReceive(receivedAnswer);
- // Construct SELECT UID command
- // First copy the 5 bytes (Mifare Classic) after the 93 70
- memcpy(sel_uid+2,receivedAnswer,5);
- // Secondly compute the two CRC bytes at the end
- AppendCrc14443a(sel_uid,7);
-
- byte_t nt_diff = 0;
- LED_A_OFF();
- byte_t par = 0;
- byte_t par_mask = 0xff;
- byte_t par_low = 0;
- int led_on = TRUE;
-
- tracing = FALSE;
- byte_t nt[4];
- byte_t nt_attacked[4];
- byte_t par_list[8];
- byte_t ks_list[8];
- num_to_bytes(parameter,4,nt_attacked);
-
- while(TRUE)
- {
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
- SpinDelay(200);
- FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
-
- // Broadcast for a card, WUPA (0x52) will force response from all cards in the field
- ReaderTransmitShort(wupa);
-
- // Test if the action was cancelled
- if(BUTTON_PRESS()) {
- break;
- }
+ // select card
+ if (len == 9 &&
+ (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
+ if (!_7BUID)
+ EmSendCmd(rSAK, sizeof(rSAK));
+ else
+ EmSendCmd(rSAK1, sizeof(rSAK1));
+
+ cuid = bytes_to_num(rUIDBCC1, 4);
+ if (!_7BUID) {
+ cardSTATE = MFEMUL_WORK;
+ LED_B_ON();
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
+ break;
+ } else {
+ cardSTATE = MFEMUL_SELECT2;
+ break;
+ }
+ }
+
+ break;
+ }
+ case MFEMUL_SELECT2:{
+ if (!len) break;
+
+ if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
+ EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
+ break;
+ }
- // Receive the ATQA
- if (!ReaderReceive(receivedAnswer)) continue;
+ // select 2 card
+ if (len == 9 &&
+ (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
+ EmSendCmd(rSAK, sizeof(rSAK));
- // Transmit SELECT_ALL
- ReaderTransmit(sel_all,sizeof(sel_all));
+ cuid = bytes_to_num(rUIDBCC2, 4);
+ cardSTATE = MFEMUL_WORK;
+ LED_B_ON();
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
+ break;
+ }
+
+ // i guess there is a command). go into the work state.
+ if (len != 4) break;
+ cardSTATE = MFEMUL_WORK;
+ goto lbWORK;
+ }
+ case MFEMUL_AUTH1:{
+ if (len == 8) {
+ // --- crypto
+ //rn_enc = bytes_to_num(receivedCmd, 4);
+ //cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1);
+ cardRr = bytes_to_num(&receivedCmd[4], 4) ^ crypto1_word(pcs, 0, 0);
+ // test if auth OK
+ if (cardRr != prng_successor(nonce, 64)){
+ if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr, prng_successor(nonce, 64));
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
+ num_to_bytes(ans, 4, rAUTH_AT);
+ // --- crypto
+ EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+ cardSTATE = MFEMUL_AUTH2;
+ } else {
+ cardSTATE_TO_IDLE();
+ }
+ if (cardSTATE != MFEMUL_AUTH2) break;
+ }
+ case MFEMUL_AUTH2:{
+ LED_C_ON();
+ cardSTATE = MFEMUL_WORK;
+ if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer);
+ break;
+ }
+ case MFEMUL_WORK:{
+lbWORK: if (len == 0) break;
+
+ if (cardAUTHKEY == 0xff) {
+ // first authentication
+ if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
+ authTimer = GetTickCount();
+
+ cardAUTHSC = receivedCmd[1] / 4; // received block num
+ cardAUTHKEY = receivedCmd[0] - 0x60;
+
+ // --- crypto
+ crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
+ ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
+ num_to_bytes(nonce, 4, rAUTH_AT);
+ EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+ // --- crypto
+
+// last working revision
+// EmSendCmd14443aRaw(resp1, resp1Len, 0);
+// LogTrace(NULL, 0, GetDeltaCountUS(), 0, true);
+
+ cardSTATE = MFEMUL_AUTH1;
+ //nextCycleTimeout = 10;
+ break;
+ }
+ } else {
+ // decrypt seqence
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+
+ // nested authentication
+ if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
+ authTimer = GetTickCount();
+
+ cardAUTHSC = receivedCmd[1] / 4; // received block num
+ cardAUTHKEY = receivedCmd[0] - 0x60;
+
+ // --- crypto
+ crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
+ ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0);
+ num_to_bytes(ans, 4, rAUTH_AT);
+ EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+ // --- crypto
+
+ cardSTATE = MFEMUL_AUTH1;
+ //nextCycleTimeout = 10;
+ break;
+ }
+ }
+
+ // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
+ // BUT... ACK --> NACK
+ if (len == 1 && receivedCmd[0] == CARD_ACK) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+
+ // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
+ if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ break;
+ }
+
+ // read block
+ if (len == 4 && receivedCmd[0] == 0x30) {
+ if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+ emlGetMem(response, receivedCmd[1], 1);
+ AppendCrc14443a(response, 16);
+ mf_crypto1_encrypt(pcs, response, 18, &par);
+ EmSendCmdPar(response, 18, par);
+ break;
+ }
+
+ // write block
+ if (len == 4 && receivedCmd[0] == 0xA0) {
+ if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ //nextCycleTimeout = 50;
+ cardSTATE = MFEMUL_WRITEBL2;
+ cardWRBL = receivedCmd[1];
+ break;
+ }
+
+ // works with cardINTREG
+
+ // increment, decrement, restore
+ if (len == 4 && (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2)) {
+ if (receivedCmd[1] >= 16 * 4 ||
+ receivedCmd[1] / 4 != cardAUTHSC ||
+ emlCheckValBl(receivedCmd[1])) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ if (receivedCmd[0] == 0xC1)
+ cardSTATE = MFEMUL_INTREG_INC;
+ if (receivedCmd[0] == 0xC0)
+ cardSTATE = MFEMUL_INTREG_DEC;
+ if (receivedCmd[0] == 0xC2)
+ cardSTATE = MFEMUL_INTREG_REST;
+ cardWRBL = receivedCmd[1];
+
+ break;
+ }
+
- // Receive the UID
- if (!ReaderReceive(receivedAnswer)) continue;
+ // transfer
+ if (len == 4 && receivedCmd[0] == 0xB0) {
+ if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
+
+ if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ else
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+
+ break;
+ }
- // Transmit SELECT_UID
- ReaderTransmit(sel_uid,sizeof(sel_uid));
+ // halt
+ if (len == 4 && (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00)) {
+ LED_B_OFF();
+ LED_C_OFF();
+ cardSTATE = MFEMUL_HALTED;
+ if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer);
+ break;
+ }
+
+ // command not allowed
+ if (len == 4) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ break;
+ }
- // Receive the SAK
- if (!ReaderReceive(receivedAnswer)) continue;
-
- // Transmit MIFARE_CLASSIC_AUTH
- ReaderTransmit(mf_auth,sizeof(mf_auth));
-
- // Receive the (16 bit) "random" nonce
- if (!ReaderReceive(receivedAnswer)) continue;
- memcpy(nt,receivedAnswer,4);
-
- // Transmit reader nonce and reader answer
- ReaderTransmitPar(mf_nr_ar,sizeof(mf_nr_ar),par);
-
- // Receive 4 bit answer
- if (ReaderReceive(receivedAnswer))
- {
- if (nt_diff == 0)
- {
- LED_A_ON();
- memcpy(nt_attacked,nt,4);
- par_mask = 0xf8;
- par_low = par & 0x07;
- }
+ // case break
+ break;
+ }
+ case MFEMUL_WRITEBL2:{
+ if (len == 18){
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+ emlSetMem(receivedCmd, cardWRBL, 1);
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+ cardSTATE = MFEMUL_WORK;
+ break;
+ } else {
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ break;
+ }
+
+ case MFEMUL_INTREG_INC:{
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+ memcpy(&ans, receivedCmd, 4);
+ if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ cardINTREG = cardINTREG + ans;
+ cardSTATE = MFEMUL_WORK;
+ break;
+ }
+ case MFEMUL_INTREG_DEC:{
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+ memcpy(&ans, receivedCmd, 4);
+ if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ cardINTREG = cardINTREG - ans;
+ cardSTATE = MFEMUL_WORK;
+ break;
+ }
+ case MFEMUL_INTREG_REST:{
+ mf_crypto1_decrypt(pcs, receivedCmd, len);
+ memcpy(&ans, receivedCmd, 4);
+ if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+ EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+ cardSTATE_TO_IDLE();
+ break;
+ }
+ cardSTATE = MFEMUL_WORK;
+ break;
+ }
+ }
+ }
- if (memcmp(nt,nt_attacked,4) != 0) continue;
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ LEDsoff();
- led_on = !led_on;
- if(led_on) LED_B_ON(); else LED_B_OFF();
- par_list[nt_diff] = par;
- ks_list[nt_diff] = receivedAnswer[0]^0x05;
+ // add trace trailer
+ memset(rAUTH_NT, 0x44, 4);
+ LogTrace(rAUTH_NT, 4, 0, 0, TRUE);
- // Test if the information is complete
- if (nt_diff == 0x07) break;
+ if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen);
+}
- nt_diff = (nt_diff+1) & 0x07;
- mf_nr_ar[3] = nt_diff << 5;
- par = par_low;
- } else {
- if (nt_diff == 0)
- {
- par++;
- } else {
- par = (((par>>3)+1) << 3) | par_low;
- }
- }
- }
+//-----------------------------------------------------------------------------
+// MIFARE sniffer.
+//
+//-----------------------------------------------------------------------------
+void RAMFUNC SniffMifare(uint8_t param) {
+ // param:
+ // bit 0 - trigger from first card answer
+ // bit 1 - trigger from first reader 7-bit request
- LogTraceInfo(sel_uid+2,4);
- LogTraceInfo(nt,4);
- LogTraceInfo(par_list,8);
- LogTraceInfo(ks_list,8);
+ // C(red) A(yellow) B(green)
+ LEDsoff();
+ // init trace buffer
+ iso14a_clear_trace();
- // Thats it...
- FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+ // The command (reader -> tag) that we're receiving.
+ // The length of a received command will in most cases be no more than 18 bytes.
+ // So 32 should be enough!
+ uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+ // The response (tag -> reader) that we're receiving.
+ uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
+
+ // As we receive stuff, we copy it from receivedCmd or receivedResponse
+ // into trace, along with its length and other annotations.
+ //uint8_t *trace = (uint8_t *)BigBuf;
+
+ // The DMA buffer, used to stream samples from the FPGA
+ int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+ int8_t *data = dmaBuf;
+ int maxDataLen = 0;
+ int dataLen = 0;
+
+ // Set up the demodulator for tag -> reader responses.
+ Demod.output = receivedResponse;
+ Demod.len = 0;
+ Demod.state = DEMOD_UNSYNCD;
+
+ // Set up the demodulator for the reader -> tag commands
+ memset(&Uart, 0, sizeof(Uart));
+ Uart.output = receivedCmd;
+ Uart.byteCntMax = 32; // was 100 (greg)//////////////////
+ Uart.state = STATE_UNSYNCD;
+
+ // Setup for the DMA.
+ FpgaSetupSsc();
+ FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+
+ // And put the FPGA in the appropriate mode
+ // Signal field is off with the appropriate LED
+ LED_D_OFF();
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
+ SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+ // init sniffer
+ MfSniffInit();
+ int sniffCounter = 0;
+
+ // And now we loop, receiving samples.
+ while(true) {
+ if(BUTTON_PRESS()) {
+ DbpString("cancelled by button");
+ goto done;
+ }
+
+ LED_A_ON();
+ WDT_HIT();
+
+ if (++sniffCounter > 65) {
+ if (MfSniffSend(2000)) {
+ FpgaEnableSscDma();
+ }
+ sniffCounter = 0;
+ }
+
+ int register readBufDataP = data - dmaBuf;
+ int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
+ if (readBufDataP <= dmaBufDataP){
+ dataLen = dmaBufDataP - readBufDataP;
+ } else {
+ dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1;
+ }
+ // test for length of buffer
+ if(dataLen > maxDataLen) {
+ maxDataLen = dataLen;
+ if(dataLen > 400) {
+ Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
+ goto done;
+ }
+ }
+ if(dataLen < 1) continue;
+
+ // primary buffer was stopped( <-- we lost data!
+ if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
+ AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
+ AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
+ Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
+ }
+ // secondary buffer sets as primary, secondary buffer was stopped
+ if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
+ AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
+ AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+ }
+
+ LED_A_OFF();
+
+ if(MillerDecoding((data[0] & 0xF0) >> 4)) {
+ LED_C_INV();
+ // check - if there is a short 7bit request from reader
+ if (MfSniffLogic(receivedCmd, Uart.byteCnt, Uart.parityBits, Uart.bitCnt, TRUE)) break;
+
+ /* And ready to receive another command. */
+ Uart.state = STATE_UNSYNCD;
+
+ /* And also reset the demod code */
+ Demod.state = DEMOD_UNSYNCD;
+ }
+
+ if(ManchesterDecoding(data[0] & 0x0F)) {
+ LED_C_INV();
+
+ if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
+
+ // And ready to receive another response.
+ memset(&Demod, 0, sizeof(Demod));
+ Demod.output = receivedResponse;
+ Demod.state = DEMOD_UNSYNCD;
+
+ /* And also reset the uart code */
+ Uart.state = STATE_UNSYNCD;
+ }
+
+ data++;
+ if(data > dmaBuf + DMA_BUFFER_SIZE) {
+ data = dmaBuf;
+ }
+ } // main cycle
+
+ DbpString("COMMAND FINISHED");
+
+done:
+ FpgaDisableSscDma();
+ MfSniffEnd();
+
+ Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x Uart.byteCntMax=%x", maxDataLen, Uart.state, Uart.byteCnt, Uart.byteCntMax);
LEDsoff();
- tracing = TRUE;
}