]> git.zerfleddert.de Git - proxmark3-svn/blobdiff - armsrc/appmain.c
add extended help feature
[proxmark3-svn] / armsrc / appmain.c
index 372bcf68fd53d54ce2fbf0227638bcb49975f0c2..77bbbbc4daec6a54b0c46ed95b1276e5db998223 100644 (file)
-//-----------------------------------------------------------------------------\r
-// The main application code. This is the first thing called after start.c\r
-// executes.\r
-// Jonathan Westhues, Mar 2006\r
-// Edits by Gerhard de Koning Gans, Sep 2007 (##)\r
-//-----------------------------------------------------------------------------\r
-#include <proxmark3.h>\r
-#include "apps.h"\r
-#include "fonts.h"\r
-#include "LCD.h"\r
-\r
-// The large multi-purpose buffer, typically used to hold A/D samples,\r
-// maybe pre-processed in some way.\r
-DWORD BigBuf[16000];\r
-\r
-//=============================================================================\r
-// A buffer where we can queue things up to be sent through the FPGA, for\r
-// any purpose (fake tag, as reader, whatever). We go MSB first, since that\r
-// is the order in which they go out on the wire.\r
-//=============================================================================\r
-\r
-BYTE ToSend[256];\r
-int ToSendMax;\r
-static int ToSendBit;\r
-\r
-void ToSendReset(void)\r
-{\r
-       ToSendMax = -1;\r
-       ToSendBit = 8;\r
-}\r
-\r
-void ToSendStuffBit(int b)\r
-{\r
-       if(ToSendBit >= 8) {\r
-               ToSendMax++;\r
-               ToSend[ToSendMax] = 0;\r
-               ToSendBit = 0;\r
-       }\r
-\r
-       if(b) {\r
-               ToSend[ToSendMax] |= (1 << (7 - ToSendBit));\r
-       }\r
-\r
-       ToSendBit++;\r
-\r
-       if(ToSendBit >= sizeof(ToSend)) {\r
-               ToSendBit = 0;\r
-               DbpString("ToSendStuffBit overflowed!");\r
-       }\r
-}\r
-\r
-//=============================================================================\r
-// Debug print functions, to go out over USB, to the usual PC-side client.\r
-//=============================================================================\r
-\r
-void DbpString(char *str)\r
-{\r
-       UsbCommand c;\r
-       c.cmd = CMD_DEBUG_PRINT_STRING;\r
-       c.ext1 = strlen(str);\r
-       memcpy(c.d.asBytes, str, c.ext1);\r
-\r
-       UsbSendPacket((BYTE *)&c, sizeof(c));\r
-       // TODO fix USB so stupid things like this aren't req'd\r
-       SpinDelay(50);\r
-}\r
-\r
-void DbpIntegers(int x1, int x2, int x3)\r
-{\r
-       UsbCommand c;\r
-       c.cmd = CMD_DEBUG_PRINT_INTEGERS;\r
-       c.ext1 = x1;\r
-       c.ext2 = x2;\r
-       c.ext3 = x3;\r
-\r
-       UsbSendPacket((BYTE *)&c, sizeof(c));\r
-       // XXX\r
-       SpinDelay(50);\r
-}\r
-\r
-void AcquireRawAdcSamples125k(BOOL at134khz)\r
-{\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int n = sizeof(BigBuf);\r
-       int i;\r
-\r
-       memset(dest,0,n);\r
-\r
-       if(at134khz) {\r
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);\r
-       } else {\r
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
-               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r
-       }\r
-\r
-       // Connect the A/D to the peak-detected low-frequency path.\r
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
-\r
-       // Give it a bit of time for the resonant antenna to settle.\r
-       SpinDelay(50);\r
-\r
-       // Now set up the SSC to get the ADC samples that are now streaming at us.\r
-       FpgaSetupSsc();\r
-\r
-       i = 0;\r
-       for(;;) {\r
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                       SSC_TRANSMIT_HOLDING = 0x43;\r
-                       LED_D_ON();\r
-               }\r
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                       dest[i] = (BYTE)SSC_RECEIVE_HOLDING;\r
-                       i++;\r
-                       LED_D_OFF();\r
-                       if(i >= n) {\r
-                               break;\r
-                       }\r
-               }\r
-       }\r
-       DbpIntegers(dest[0], dest[1], at134khz);\r
-}\r
-\r
-//-----------------------------------------------------------------------------\r
-// Read an ADC channel and block till it completes, then return the result\r
-// in ADC units (0 to 1023). Also a routine to average 32 samples and\r
-// return that.\r
-//-----------------------------------------------------------------------------\r
-static int ReadAdc(int ch)\r
-{\r
-       DWORD d;\r
-\r
-       ADC_CONTROL = ADC_CONTROL_RESET;\r
-       ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) |\r
-               ADC_MODE_SAMPLE_HOLD_TIME(8);\r
-       ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch);\r
-\r
-       ADC_CONTROL = ADC_CONTROL_START;\r
-       while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch)))\r
-               ;\r
-       d = ADC_CHANNEL_DATA(ch);\r
-\r
-       return d;\r
-}\r
-\r
-static int AvgAdc(int ch)\r
-{\r
-       int i;\r
-       int a = 0;\r
-\r
-       for(i = 0; i < 32; i++) {\r
-               a += ReadAdc(ch);\r
-       }\r
-\r
-       return (a + 15) >> 5;\r
-}\r
+//-----------------------------------------------------------------------------
+// The main application code. This is the first thing called after start.c
+// executes.
+// Jonathan Westhues, Mar 2006
+// Edits by Gerhard de Koning Gans, Sep 2007 (##)
+//-----------------------------------------------------------------------------
+
+
+#include <proxmark3.h>
+#include <stdlib.h>
+#include "apps.h"
+#ifdef WITH_LCD
+#include "fonts.h"
+#include "LCD.h"
+#endif
+
+// The large multi-purpose buffer, typically used to hold A/D samples,
+// maybe pre-processed in some way.
+DWORD BigBuf[16000];
+
+//=============================================================================
+// A buffer where we can queue things up to be sent through the FPGA, for
+// any purpose (fake tag, as reader, whatever). We go MSB first, since that
+// is the order in which they go out on the wire.
+//=============================================================================
+
+BYTE ToSend[256];
+int ToSendMax;
+static int ToSendBit;
+
+
+void BufferClear(void)
+{
+       memset(BigBuf,0,sizeof(BigBuf));
+       DbpString("Buffer cleared");
+}
+
+void ToSendReset(void)
+{
+       ToSendMax = -1;
+       ToSendBit = 8;
+}
+
+void ToSendStuffBit(int b)
+{
+       if(ToSendBit >= 8) {
+               ToSendMax++;
+               ToSend[ToSendMax] = 0;
+               ToSendBit = 0;
+       }
+
+       if(b) {
+               ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
+       }
+
+       ToSendBit++;
+
+       if(ToSendBit >= sizeof(ToSend)) {
+               ToSendBit = 0;
+               DbpString("ToSendStuffBit overflowed!");
+       }
+}
+
+//=============================================================================
+// Debug print functions, to go out over USB, to the usual PC-side client.
+//=============================================================================
+
+void DbpString(char *str)
+{
+       UsbCommand c;
+       c.cmd = CMD_DEBUG_PRINT_STRING;
+       c.ext1 = strlen(str);
+       memcpy(c.d.asBytes, str, c.ext1);
+
+       UsbSendPacket((BYTE *)&c, sizeof(c));
+       // TODO fix USB so stupid things like this aren't req'd
+       SpinDelay(50);
+}
+
+void DbpIntegers(int x1, int x2, int x3)
+{
+       UsbCommand c;
+       c.cmd = CMD_DEBUG_PRINT_INTEGERS;
+       c.ext1 = x1;
+       c.ext2 = x2;
+       c.ext3 = x3;
+
+       UsbSendPacket((BYTE *)&c, sizeof(c));
+       // XXX
+       SpinDelay(50);
+}
+
+void AcquireRawAdcSamples125k(BOOL at134khz)
+{
+       if(at134khz) {
+               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
+       } else {
+               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+       }
+
+       // Connect the A/D to the peak-detected low-frequency path.
+       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+
+       // Give it a bit of time for the resonant antenna to settle.
+       SpinDelay(50);
+
+       // Now set up the SSC to get the ADC samples that are now streaming at us.
+       FpgaSetupSsc();
+
+       // Now call the acquisition routine
+       DoAcquisition125k(at134khz);
+}
+
+// split into two routines so we can avoid timing issues after sending commands //
+void DoAcquisition125k(BOOL at134khz)
+{
+       BYTE *dest = (BYTE *)BigBuf;
+       int n = sizeof(BigBuf);
+       int i;
+
+       memset(dest,0,n);
+       i = 0;
+       for(;;) {
+               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
+                       SSC_TRANSMIT_HOLDING = 0x43;
+                       LED_D_ON();
+               }
+               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
+                       dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
+                       i++;
+                       LED_D_OFF();
+                       if(i >= n) {
+                               break;
+                       }
+               }
+       }
+       DbpIntegers(dest[0], dest[1], at134khz);
+}
+
+void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)
+{
+       BOOL at134khz;
+
+       // see if 'h' was specified
+       if(command[strlen((char *) command) - 1] == 'h')
+               at134khz= TRUE;
+       else
+               at134khz= FALSE;
+       
+       if(at134khz) {
+               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
+       } else {
+               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+       }
+
+       // Give it a bit of time for the resonant antenna to settle.
+       SpinDelay(50);
+
+       // Now set up the SSC to get the ADC samples that are now streaming at us.
+       FpgaSetupSsc();
+
+       // now modulate the reader field
+       while(*command != '\0' && *command != ' ')
+               {
+               FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+               LED_D_OFF();
+               SpinDelayUs(delay_off);
+               if(at134khz) {
+                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
+               } else {
+                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+               }
+               LED_D_ON();
+               if(*(command++) == '0')
+                       SpinDelayUs(period_0);
+               else
+                       SpinDelayUs(period_1);
+               }
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+       LED_D_OFF();
+       SpinDelayUs(delay_off);
+       if(at134khz) {
+               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
+       } else {
+               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+               FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+       }
+
+       // now do the read
+       DoAcquisition125k(at134khz);
+}
+
+//-----------------------------------------------------------------------------
+// Read an ADC channel and block till it completes, then return the result
+// in ADC units (0 to 1023). Also a routine to average 32 samples and
+// return that.
+//-----------------------------------------------------------------------------
+static int ReadAdc(int ch)
+{
+       DWORD d;
+
+       ADC_CONTROL = ADC_CONTROL_RESET;
+       ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) |
+               ADC_MODE_SAMPLE_HOLD_TIME(8);
+       ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch);
+
+       ADC_CONTROL = ADC_CONTROL_START;
+       while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch)))
+               ;
+       d = ADC_CHANNEL_DATA(ch);
+
+       return d;
+}
+
+static int AvgAdc(int ch)
+{
+       int i;
+       int a = 0;
+
+       for(i = 0; i < 32; i++) {
+               a += ReadAdc(ch);
+       }
+
+       return (a + 15) >> 5;
+}
 
 /*
  * Sweeps the useful LF range of the proxmark from
@@ -161,636 +237,784 @@ static int AvgAdc(int ch)
  * reads the voltage in the antenna: the result is a graph
  * which should clearly show the resonating frequency of your
  * LF antenna ( hopefully around 90 if it is tuned to 125kHz!)
- */\r
-void SweepLFrange()\r
-{\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int i;\r
-\r
-       // clear buffer\r
-       memset(BigBuf,0,sizeof(BigBuf));\r
-\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);\r
-       for (i=255; i>19; i--) {\r
-               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);\r
-               SpinDelay(20);\r
-               dest[i] = (137500 * AvgAdc(4)) >> 18;\r
-       }\r
-}\r
-\r
-void MeasureAntennaTuning(void)\r
-{\r
-// Impedances are Zc = 1/(j*omega*C), in ohms\r
-#define LF_TUNING_CAP_Z        1273    //  1 nF @ 125   kHz\r
-#define HF_TUNING_CAP_Z        235             // 50 pF @ 13.56 MHz\r
-\r
-       int vLf125, vLf134, vHf;        // in mV\r
-\r
-       UsbCommand c;\r
-\r
-       // Let the FPGA drive the low-frequency antenna around 125 kHz.\r
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r
-       SpinDelay(20);\r
-       vLf125 = AvgAdc(4);\r
-       // Vref = 3.3V, and a 10000:240 voltage divider on the input\r
-       // can measure voltages up to 137500 mV\r
-       vLf125 = (137500 * vLf125) >> 10;\r
-\r
-       // Let the FPGA drive the low-frequency antenna around 134 kHz.\r
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);\r
-       SpinDelay(20);\r
-       vLf134 = AvgAdc(4);\r
-       // Vref = 3.3V, and a 10000:240 voltage divider on the input\r
-       // can measure voltages up to 137500 mV\r
-       vLf134 = (137500 * vLf134) >> 10;\r
-\r
-       // Let the FPGA drive the high-frequency antenna around 13.56 MHz.\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);\r
-       SpinDelay(20);\r
-       vHf = AvgAdc(5);\r
-       // Vref = 3300mV, and an 10:1 voltage divider on the input\r
-       // can measure voltages up to 33000 mV\r
-       vHf = (33000 * vHf) >> 10;\r
-\r
-       c.cmd = CMD_MEASURED_ANTENNA_TUNING;\r
-       c.ext1 = (vLf125 << 0) | (vLf134 << 16);\r
-       c.ext2 = vHf;\r
-       c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16);\r
-       UsbSendPacket((BYTE *)&c, sizeof(c));\r
-}\r
-\r
-void SimulateTagLowFrequency(int period)\r
-{\r
-       int i;\r
-       BYTE *tab = (BYTE *)BigBuf;\r
-\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);\r
-\r
-       PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);\r
-\r
-       PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);\r
-       PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);\r
-\r
-#define SHORT_COIL()   LOW(GPIO_SSC_DOUT)\r
-#define OPEN_COIL()    HIGH(GPIO_SSC_DOUT)\r
-\r
-       i = 0;\r
-       for(;;) {\r
-               while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {\r
-                       if(BUTTON_PRESS()) {\r
-                               return;\r
-                       }\r
-                       WDT_HIT();\r
-               }\r
-\r
-               LED_D_ON();\r
-               if(tab[i]) {\r
-                       OPEN_COIL();\r
-               } else {\r
-                       SHORT_COIL();\r
-               }\r
-               LED_D_OFF();\r
-\r
-               while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {\r
-                       if(BUTTON_PRESS()) {\r
-                               return;\r
-                       }\r
-                       WDT_HIT();\r
-               }\r
-\r
-               i++;\r
-               if(i == period) i = 0;\r
-       }\r
-}\r
-\r
-// compose fc/8 fc/10 waveform\r
-static void fc(int c, int *n) {\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int idx;\r
-\r
-       // for when we want an fc8 pattern every 4 logical bits\r
-       if(c==0) {\r
-               dest[((*n)++)]=1;\r
-               dest[((*n)++)]=1;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-               dest[((*n)++)]=0;\r
-       }\r
-       //      an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples\r
-       if(c==8) {\r
-               for (idx=0; idx<6; idx++) {\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-               }\r
-       }\r
-\r
-       //      an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples\r
-       if(c==10) {\r
-               for (idx=0; idx<5; idx++) {\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=1;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-                       dest[((*n)++)]=0;\r
-               }\r
-       }\r
-}\r
-\r
-// prepare a waveform pattern in the buffer based on the ID given then\r
-// simulate a HID tag until the button is pressed\r
-static void CmdHIDsimTAG(int hi, int lo)\r
-{\r
-       int n=0, i=0;\r
-       /*\r
-        HID tag bitstream format\r
-        The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits\r
-        A 1 bit is represented as 6 fc8 and 5 fc10 patterns\r
-        A 0 bit is represented as 5 fc10 and 6 fc8 patterns\r
-        A fc8 is inserted before every 4 bits\r
-        A special start of frame pattern is used consisting a0b0 where a and b are neither 0\r
-        nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)\r
-       */\r
-\r
-       if (hi>0xFFF) {\r
-               DbpString("Tags can only have 44 bits.");\r
-               return;\r
-       }\r
-       fc(0,&n);\r
-       // special start of frame marker containing invalid bit sequences\r
-       fc(8,  &n);     fc(8,  &n);     // invalid\r
-       fc(8,  &n);     fc(10, &n); // logical 0\r
-       fc(10, &n);     fc(10, &n); // invalid\r
-       fc(8,  &n);     fc(10, &n); // logical 0\r
-\r
-       WDT_HIT();\r
-       // manchester encode bits 43 to 32\r
-       for (i=11; i>=0; i--) {\r
-               if ((i%4)==3) fc(0,&n);\r
-               if ((hi>>i)&1) {\r
-                       fc(10, &n);     fc(8,  &n);             // low-high transition\r
-               } else {\r
-                       fc(8,  &n);     fc(10, &n);             // high-low transition\r
-               }\r
-       }\r
-\r
-       WDT_HIT();\r
-       // manchester encode bits 31 to 0\r
-       for (i=31; i>=0; i--) {\r
-               if ((i%4)==3) fc(0,&n);\r
-               if ((lo>>i)&1) {\r
-                       fc(10, &n);     fc(8,  &n);             // low-high transition\r
-               } else {\r
-                       fc(8,  &n);     fc(10, &n);             // high-low transition\r
-               }\r
-       }\r
-\r
-       LED_A_ON();\r
-       SimulateTagLowFrequency(n);\r
-       LED_A_OFF();\r
-}\r
-\r
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it\r
-static void CmdHIDdemodFSK(void)\r
-{\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int m=0, n=0, i=0, idx=0, found=0, lastval=0;\r
-       DWORD hi=0, lo=0;\r
-\r
-       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);\r
-\r
-       // Connect the A/D to the peak-detected low-frequency path.\r
-       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);\r
-\r
-       // Give it a bit of time for the resonant antenna to settle.\r
-       SpinDelay(50);\r
-\r
-       // Now set up the SSC to get the ADC samples that are now streaming at us.\r
-       FpgaSetupSsc();\r
-\r
-       for(;;) {\r
-               WDT_HIT();\r
-               LED_A_ON();\r
-               if(BUTTON_PRESS()) {\r
-                       LED_A_OFF();\r
-                       return;\r
-               }\r
-\r
-               i = 0;\r
-               m = sizeof(BigBuf);\r
-               memset(dest,128,m);\r
-               for(;;) {\r
-                       if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                               SSC_TRANSMIT_HOLDING = 0x43;\r
-                               LED_D_ON();\r
-                       }\r
-                       if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                               dest[i] = (BYTE)SSC_RECEIVE_HOLDING;\r
-                               // we don't care about actual value, only if it's more or less than a\r
-                               // threshold essentially we capture zero crossings for later analysis\r
-                               if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;\r
-                               i++;\r
-                               LED_D_OFF();\r
-                               if(i >= m) {\r
-                                       break;\r
-                               }\r
-                       }\r
-               }\r
-\r
-               // FSK demodulator\r
-\r
-               // sync to first lo-hi transition\r
-               for( idx=1; idx<m; idx++) {\r
-                       if (dest[idx-1]<dest[idx])\r
-                               lastval=idx;\r
-                               break;\r
-               }\r
-               WDT_HIT();\r
-\r
-               // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)\r
-               // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere\r
-               // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10\r
-               for( i=0; idx<m; idx++) {\r
-                       if (dest[idx-1]<dest[idx]) {\r
-                               dest[i]=idx-lastval;\r
-                               if (dest[i] <= 8) {\r
-                                               dest[i]=1;\r
-                               } else {\r
-                                               dest[i]=0;\r
-                               }\r
-\r
-                               lastval=idx;\r
-                               i++;\r
-                       }\r
-               }\r
-               m=i;\r
-               WDT_HIT();\r
-\r
-               // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns\r
-               lastval=dest[0];\r
-               idx=0;\r
-               i=0;\r
-               n=0;\r
-               for( idx=0; idx<m; idx++) {\r
-                       if (dest[idx]==lastval) {\r
-                               n++;\r
-                       } else {\r
-                               // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,\r
-                               // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets\r
-                               // swallowed up by rounding\r
-                               // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding\r
-                               // special start of frame markers use invalid manchester states (no transitions) by using sequences\r
-                               // like 111000\r
-                               if (dest[idx-1]) {\r
-                                       n=(n+1)/6;                      // fc/8 in sets of 6\r
-                               } else {\r
-                                       n=(n+1)/5;                      // fc/10 in sets of 5\r
-                               }\r
-                               switch (n) {                    // stuff appropriate bits in buffer\r
-                                       case 0:\r
-                                       case 1: // one bit\r
-                                               dest[i++]=dest[idx-1];\r
-                                               break;\r
-                                       case 2: // two bits\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               break;\r
-                                       case 3: // 3 bit start of frame markers\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               break;\r
-                                       // When a logic 0 is immediately followed by the start of the next transmisson\r
-                                       // (special pattern) a pattern of 4 bit duration lengths is created.\r
-                                       case 4:\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               dest[i++]=dest[idx-1];\r
-                                               break;\r
-                                       default:        // this shouldn't happen, don't stuff any bits\r
-                                               break;\r
-                               }\r
-                               n=0;\r
-                               lastval=dest[idx];\r
-                       }\r
-               }\r
-               m=i;\r
-               WDT_HIT();\r
-\r
-               // final loop, go over previously decoded manchester data and decode into usable tag ID\r
-               // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0\r
-               for( idx=0; idx<m-6; idx++) {\r
-                       // search for a start of frame marker\r
-                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
-                       {\r
-                               found=1;\r
-                               idx+=6;\r
-                               if (found && (hi|lo)) {\r
-                                       DbpString("TAG ID");\r
-                                       DbpIntegers(hi, lo, (lo>>1)&0xffff);\r
-                                       hi=0;\r
-                                       lo=0;\r
-                                       found=0;\r
-                               }\r
-                       }\r
-                       if (found) {\r
-                               if (dest[idx] && (!dest[idx+1]) ) {\r
-                                       hi=(hi<<1)|(lo>>31);\r
-                                       lo=(lo<<1)|0;\r
-                               } else if ( (!dest[idx]) && dest[idx+1]) {\r
-                                       hi=(hi<<1)|(lo>>31);\r
-                                       lo=(lo<<1)|1;\r
-                               } else {\r
-                                       found=0;\r
-                                       hi=0;\r
-                                       lo=0;\r
-                               }\r
-                               idx++;\r
-                       }\r
-                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )\r
-                       {\r
-                               found=1;\r
-                               idx+=6;\r
-                               if (found && (hi|lo)) {\r
-                                       DbpString("TAG ID");\r
-                                       DbpIntegers(hi, lo, (lo>>1)&0xffff);\r
-                                       hi=0;\r
-                                       lo=0;\r
-                                       found=0;\r
-                               }\r
-                       }\r
-               }\r
-               WDT_HIT();\r
-       }\r
-}\r
-\r
-void SimulateTagHfListen(void)\r
-{\r
-       BYTE *dest = (BYTE *)BigBuf;\r
-       int n = sizeof(BigBuf);\r
-       BYTE v = 0;\r
-       int i;\r
-       int p = 0;\r
-\r
-       // We're using this mode just so that I can test it out; the simulated\r
-       // tag mode would work just as well and be simpler.\r
-       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);\r
-\r
-       // We need to listen to the high-frequency, peak-detected path.\r
-       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);\r
-\r
-       FpgaSetupSsc();\r
-\r
-       i = 0;\r
-       for(;;) {\r
-               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {\r
-                       SSC_TRANSMIT_HOLDING = 0xff;\r
-               }\r
-               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {\r
-                       BYTE r = (BYTE)SSC_RECEIVE_HOLDING;\r
-\r
-                       v <<= 1;\r
-                       if(r & 1) {\r
-                               v |= 1;\r
-                       }\r
-                       p++;\r
-\r
-                       if(p >= 8) {\r
-                               dest[i] = v;\r
-                               v = 0;\r
-                               p = 0;\r
-                               i++;\r
-\r
-                               if(i >= n) {\r
-                                       break;\r
-                               }\r
-                       }\r
-               }\r
-       }\r
-       DbpString("simulate tag (now type bitsamples)");\r
-}\r
-\r
-void UsbPacketReceived(BYTE *packet, int len)\r
-{\r
-       UsbCommand *c = (UsbCommand *)packet;\r
-\r
-       switch(c->cmd) {\r
-               case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:\r
-                       AcquireRawAdcSamples125k(c->ext1);\r
-                       break;\r
-\r
-               case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:\r
-                       AcquireRawAdcSamplesIso15693();\r
-                       break;\r
-\r
-               case CMD_READER_ISO_15693:\r
-                       ReaderIso15693(c->ext1);\r
-                       break;\r
-\r
-               case CMD_SIMTAG_ISO_15693:\r
-                       SimTagIso15693(c->ext1);\r
-                       break;\r
-\r
-               case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:\r
-                       AcquireRawAdcSamplesIso14443(c->ext1);\r
-                       break;\r
+ */
+void SweepLFrange()
+{
+       BYTE *dest = (BYTE *)BigBuf;
+       char dummy[12];
+       int i, peak= 0, ptr= 0;
+       double freq;
+
+       // clear buffer
+       memset(BigBuf,0,sizeof(BigBuf));
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
+       for (i=255; i>19; i--) {
+               FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
+               SpinDelay(20);
+               dest[i] = (137500 * AvgAdc(ADC_CHAN_LF)) >> 18;
+               if(dest[i] > peak) {
+                       peak= dest[i];
+                       ptr= i;
+                       }
+       }
+       dummy[11]= '\0';
+       dummy[10]= 'z';
+       dummy[9]= 'H';
+       dummy[8]= 'k';
+       dummy[7]= ' ';
+       freq= 12000000/(ptr + 1);
+       for(i= 6; i > 3 ; --i) {
+               dummy[i]= '0' + ((int) freq) % 10;
+               freq /= 10;
+               }
+       dummy[3]= '.';
+       for(i= 2; i >= 0 ; --i) {
+               dummy[i]= '0' + ((int) freq) % 10;
+               freq /= 10;
+               }
+       DbpString("Antenna resonates at:");
+       DbpString(dummy);
+}
+
+void MeasureAntennaTuning(void)
+{
+// Impedances are Zc = 1/(j*omega*C), in ohms
+#define LF_TUNING_CAP_Z        1273    //  1 nF @ 125   kHz
+#define HF_TUNING_CAP_Z        235             // 50 pF @ 13.56 MHz
+
+       int vLf125, vLf134, vHf;        // in mV
+
+       UsbCommand c;
+
+       // Let the FPGA drive the low-frequency antenna around 125 kHz.
+       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+       SpinDelay(20);
+       vLf125 = AvgAdc(ADC_CHAN_LF);
+       // Vref = 3.3V, and a 10000:240 voltage divider on the input
+       // can measure voltages up to 137500 mV
+       vLf125 = (137500 * vLf125) >> 10;
+
+       // Let the FPGA drive the low-frequency antenna around 134 kHz.
+       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ);
+       SpinDelay(20);
+       vLf134 = AvgAdc(ADC_CHAN_LF);
+       // Vref = 3.3V, and a 10000:240 voltage divider on the input
+       // can measure voltages up to 137500 mV
+       vLf134 = (137500 * vLf134) >> 10;
+
+       // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
+       SpinDelay(20);
+       vHf = AvgAdc(ADC_CHAN_HF);
+       // Vref = 3300mV, and an 10:1 voltage divider on the input
+       // can measure voltages up to 33000 mV
+       vHf = (33000 * vHf) >> 10;
+
+       c.cmd = CMD_MEASURED_ANTENNA_TUNING;
+       c.ext1 = (vLf125 << 0) | (vLf134 << 16);
+       c.ext2 = vHf;
+       c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16);
+       UsbSendPacket((BYTE *)&c, sizeof(c));
+}
+
+void SimulateTagLowFrequency(int period)
+{
+       int i;
+       BYTE *tab = (BYTE *)BigBuf;
+
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
+
+       PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);
+
+       PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);
+       PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);
+
+#define SHORT_COIL()   LOW(GPIO_SSC_DOUT)
+#define OPEN_COIL()    HIGH(GPIO_SSC_DOUT)
+
+       i = 0;
+       for(;;) {
+               while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {
+                       if(BUTTON_PRESS()) {
+                               DbpString("Stopped");
+                               return;
+                       }
+                       WDT_HIT();
+               }
+
+               LED_D_ON();
+               if(tab[i]) {
+                       OPEN_COIL();
+               } else {
+                       SHORT_COIL();
+               }
+               LED_D_OFF();
+
+               while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {
+                       if(BUTTON_PRESS()) {
+                               DbpString("Stopped");
+                               return;
+                       }
+                       WDT_HIT();
+               }
+
+               i++;
+               if(i == period) i = 0;
+       }
+}
+
+// compose fc/8 fc/10 waveform
+static void fc(int c, int *n) {
+       BYTE *dest = (BYTE *)BigBuf;
+       int idx;
+
+       // for when we want an fc8 pattern every 4 logical bits
+       if(c==0) {
+               dest[((*n)++)]=1;
+               dest[((*n)++)]=1;
+               dest[((*n)++)]=0;
+               dest[((*n)++)]=0;
+               dest[((*n)++)]=0;
+               dest[((*n)++)]=0;
+               dest[((*n)++)]=0;
+               dest[((*n)++)]=0;
+       }
+       //      an fc/8  encoded bit is a bit pattern of  11000000  x6 = 48 samples
+       if(c==8) {
+               for (idx=0; idx<6; idx++) {
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+               }
+       }
+
+       //      an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
+       if(c==10) {
+               for (idx=0; idx<5; idx++) {
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=1;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+                       dest[((*n)++)]=0;
+               }
+       }
+}
+
+// prepare a waveform pattern in the buffer based on the ID given then
+// simulate a HID tag until the button is pressed
+static void CmdHIDsimTAG(int hi, int lo)
+{
+       int n=0, i=0;
+       /*
+        HID tag bitstream format
+        The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
+        A 1 bit is represented as 6 fc8 and 5 fc10 patterns
+        A 0 bit is represented as 5 fc10 and 6 fc8 patterns
+        A fc8 is inserted before every 4 bits
+        A special start of frame pattern is used consisting a0b0 where a and b are neither 0
+        nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
+       */
+
+       if (hi>0xFFF) {
+               DbpString("Tags can only have 44 bits.");
+               return;
+       }
+       fc(0,&n);
+       // special start of frame marker containing invalid bit sequences
+       fc(8,  &n);     fc(8,  &n);     // invalid
+       fc(8,  &n);     fc(10, &n); // logical 0
+       fc(10, &n);     fc(10, &n); // invalid
+       fc(8,  &n);     fc(10, &n); // logical 0
+
+       WDT_HIT();
+       // manchester encode bits 43 to 32
+       for (i=11; i>=0; i--) {
+               if ((i%4)==3) fc(0,&n);
+               if ((hi>>i)&1) {
+                       fc(10, &n);     fc(8,  &n);             // low-high transition
+               } else {
+                       fc(8,  &n);     fc(10, &n);             // high-low transition
+               }
+       }
+
+       WDT_HIT();
+       // manchester encode bits 31 to 0
+       for (i=31; i>=0; i--) {
+               if ((i%4)==3) fc(0,&n);
+               if ((lo>>i)&1) {
+                       fc(10, &n);     fc(8,  &n);             // low-high transition
+               } else {
+                       fc(8,  &n);     fc(10, &n);             // high-low transition
+               }
+       }
+
+       LED_A_ON();
+       SimulateTagLowFrequency(n);
+       LED_A_OFF();
+}
+
+// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
+static void CmdHIDdemodFSK(void)
+{
+       BYTE *dest = (BYTE *)BigBuf;
+       int m=0, n=0, i=0, idx=0, found=0, lastval=0;
+       DWORD hi=0, lo=0;
+
+       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ);
+
+       // Connect the A/D to the peak-detected low-frequency path.
+       SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+
+       // Give it a bit of time for the resonant antenna to settle.
+       SpinDelay(50);
+
+       // Now set up the SSC to get the ADC samples that are now streaming at us.
+       FpgaSetupSsc();
+
+       for(;;) {
+               WDT_HIT();
+               LED_A_ON();
+               if(BUTTON_PRESS()) {
+                       DbpString("Stopped");
+                       LED_A_OFF();
+                       return;
+               }
+
+               i = 0;
+               m = sizeof(BigBuf);
+               memset(dest,128,m);
+               for(;;) {
+                       if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
+                               SSC_TRANSMIT_HOLDING = 0x43;
+                               LED_D_ON();
+                       }
+                       if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
+                               dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
+                               // we don't care about actual value, only if it's more or less than a
+                               // threshold essentially we capture zero crossings for later analysis
+                               if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
+                               i++;
+                               LED_D_OFF();
+                               if(i >= m) {
+                                       break;
+                               }
+                       }
+               }
+
+               // FSK demodulator
+
+               // sync to first lo-hi transition
+               for( idx=1; idx<m; idx++) {
+                       if (dest[idx-1]<dest[idx])
+                               lastval=idx;
+                               break;
+               }
+               WDT_HIT();
+
+               // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
+               // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
+               // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
+               for( i=0; idx<m; idx++) {
+                       if (dest[idx-1]<dest[idx]) {
+                               dest[i]=idx-lastval;
+                               if (dest[i] <= 8) {
+                                               dest[i]=1;
+                               } else {
+                                               dest[i]=0;
+                               }
+
+                               lastval=idx;
+                               i++;
+                       }
+               }
+               m=i;
+               WDT_HIT();
+
+               // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
+               lastval=dest[0];
+               idx=0;
+               i=0;
+               n=0;
+               for( idx=0; idx<m; idx++) {
+                       if (dest[idx]==lastval) {
+                               n++;
+                       } else {
+                               // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
+                               // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
+                               // swallowed up by rounding
+                               // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
+                               // special start of frame markers use invalid manchester states (no transitions) by using sequences
+                               // like 111000
+                               if (dest[idx-1]) {
+                                       n=(n+1)/6;                      // fc/8 in sets of 6
+                               } else {
+                                       n=(n+1)/5;                      // fc/10 in sets of 5
+                               }
+                               switch (n) {                    // stuff appropriate bits in buffer
+                                       case 0:
+                                       case 1: // one bit
+                                               dest[i++]=dest[idx-1];
+                                               break;
+                                       case 2: // two bits
+                                               dest[i++]=dest[idx-1];
+                                               dest[i++]=dest[idx-1];
+                                               break;
+                                       case 3: // 3 bit start of frame markers
+                                               dest[i++]=dest[idx-1];
+                                               dest[i++]=dest[idx-1];
+                                               dest[i++]=dest[idx-1];
+                                               break;
+                                       // When a logic 0 is immediately followed by the start of the next transmisson
+                                       // (special pattern) a pattern of 4 bit duration lengths is created.
+                                       case 4:
+                                               dest[i++]=dest[idx-1];
+                                               dest[i++]=dest[idx-1];
+                                               dest[i++]=dest[idx-1];
+                                               dest[i++]=dest[idx-1];
+                                               break;
+                                       default:        // this shouldn't happen, don't stuff any bits
+                                               break;
+                               }
+                               n=0;
+                               lastval=dest[idx];
+                       }
+               }
+               m=i;
+               WDT_HIT();
+
+               // final loop, go over previously decoded manchester data and decode into usable tag ID
+               // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
+               for( idx=0; idx<m-6; idx++) {
+                       // search for a start of frame marker
+                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
+                       {
+                               found=1;
+                               idx+=6;
+                               if (found && (hi|lo)) {
+                                       DbpString("TAG ID");
+                                       DbpIntegers(hi, lo, (lo>>1)&0xffff);
+                                       hi=0;
+                                       lo=0;
+                                       found=0;
+                               }
+                       }
+                       if (found) {
+                               if (dest[idx] && (!dest[idx+1]) ) {
+                                       hi=(hi<<1)|(lo>>31);
+                                       lo=(lo<<1)|0;
+                               } else if ( (!dest[idx]) && dest[idx+1]) {
+                                       hi=(hi<<1)|(lo>>31);
+                                       lo=(lo<<1)|1;
+                               } else {
+                                       found=0;
+                                       hi=0;
+                                       lo=0;
+                               }
+                               idx++;
+                       }
+                       if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
+                       {
+                               found=1;
+                               idx+=6;
+                               if (found && (hi|lo)) {
+                                       DbpString("TAG ID");
+                                       DbpIntegers(hi, lo, (lo>>1)&0xffff);
+                                       hi=0;
+                                       lo=0;
+                                       found=0;
+                               }
+                       }
+               }
+               WDT_HIT();
+       }
+}
+
+void SimulateTagHfListen(void)
+{
+       BYTE *dest = (BYTE *)BigBuf;
+       int n = sizeof(BigBuf);
+       BYTE v = 0;
+       int i;
+       int p = 0;
+
+       // We're using this mode just so that I can test it out; the simulated
+       // tag mode would work just as well and be simpler.
+       FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
+
+       // We need to listen to the high-frequency, peak-detected path.
+       SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+       FpgaSetupSsc();
+
+       i = 0;
+       for(;;) {
+               if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
+                       SSC_TRANSMIT_HOLDING = 0xff;
+               }
+               if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
+                       BYTE r = (BYTE)SSC_RECEIVE_HOLDING;
+
+                       v <<= 1;
+                       if(r & 1) {
+                               v |= 1;
+                       }
+                       p++;
+
+                       if(p >= 8) {
+                               dest[i] = v;
+                               v = 0;
+                               p = 0;
+                               i++;
+
+                               if(i >= n) {
+                                       break;
+                               }
+                       }
+               }
+       }
+       DbpString("simulate tag (now type bitsamples)");
+}
+
+void UsbPacketReceived(BYTE *packet, int len)
+{
+       UsbCommand *c = (UsbCommand *)packet;
+
+       switch(c->cmd) {
+               case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
+                       AcquireRawAdcSamples125k(c->ext1);
+                       break;
+
+               case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
+                       ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes);
+                       break;
+
+               case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
+                       AcquireRawAdcSamplesIso15693();
+                       break;
+
+               case CMD_BUFF_CLEAR:
+                       BufferClear();
+                       break;
+
+               case CMD_READER_ISO_15693:
+                       ReaderIso15693(c->ext1);
+                       break;
+
+               case CMD_SIMTAG_ISO_15693:
+                       SimTagIso15693(c->ext1);
+                       break;
+
+               case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
+                       AcquireRawAdcSamplesIso14443(c->ext1);
+                       break;
 
                case CMD_READ_SRI512_TAG:
                        ReadSRI512Iso14443(c->ext1);
                        break;
-\r
-               case CMD_READER_ISO_14443a:\r
-                       ReaderIso14443a(c->ext1);\r
-                       break;\r
-\r
-               case CMD_SNOOP_ISO_14443:\r
-                       SnoopIso14443();\r
-                       break;\r
-\r
-               case CMD_SNOOP_ISO_14443a:\r
-                       SnoopIso14443a();\r
-                       break;\r
-\r
-               case CMD_SIMULATE_TAG_HF_LISTEN:\r
-                       SimulateTagHfListen();\r
-                       break;\r
-\r
-               case CMD_SIMULATE_TAG_ISO_14443:\r
-                       SimulateIso14443Tag();\r
-                       break;\r
-\r
-               case CMD_SIMULATE_TAG_ISO_14443a:\r
-                       SimulateIso14443aTag(c->ext1, c->ext2);  // ## Simulate iso14443a tag - pass tag type & UID\r
-                       break;\r
-\r
-               case CMD_MEASURE_ANTENNA_TUNING:\r
-                       MeasureAntennaTuning();\r
-                       break;\r
-\r
-               case CMD_HID_DEMOD_FSK:\r
-                       CmdHIDdemodFSK();                               // Demodulate HID tag\r
-                       break;\r
-\r
-               case CMD_HID_SIM_TAG:\r
-                       CmdHIDsimTAG(c->ext1, c->ext2);                                 // Simulate HID tag by ID\r
-                       break;\r
-\r
-               case CMD_FPGA_MAJOR_MODE_OFF:           // ## FPGA Control\r
-                       LED_C_ON();\r
-                       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);\r
-                       SpinDelay(200);\r
-                       LED_C_OFF();\r
-                       break;\r
-\r
-               case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:\r
-               case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: {\r
-                       UsbCommand n;\r
-                       if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {\r
-                               n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;\r
-                       } else {\r
-                               n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;\r
-                       }\r
-                       n.ext1 = c->ext1;\r
-                       memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD));\r
-                       UsbSendPacket((BYTE *)&n, sizeof(n));\r
-                       break;\r
-               }\r
-               case CMD_DOWNLOADED_SIM_SAMPLES_125K: {\r
-                       BYTE *b = (BYTE *)BigBuf;\r
-                       memcpy(b+c->ext1, c->d.asBytes, 48);\r
-                       break;\r
-               }\r
-               case CMD_SIMULATE_TAG_125K:\r
-                       LED_A_ON();\r
-                       SimulateTagLowFrequency(c->ext1);\r
-                       LED_A_OFF();\r
-                       break;\r
-\r
-               case CMD_LCD_RESET:\r
-                       LCDReset();\r
-                       break;\r
-\r
-               case CMD_SWEEP_LF:\r
-                       SweepLFrange();\r
-                       break;\r
-\r
-               case CMD_SET_LF_DIVISOR:\r
-                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);\r
-                       break;\r
-\r
-               case CMD_LCD:\r
-                       LCDSend(c->ext1);\r
-                       break;\r
-\r
-        case CMD_SETUP_WRITE:\r
-               case CMD_FINISH_WRITE:\r
-                       USB_D_PLUS_PULLUP_OFF();\r
-                       SpinDelay(1000);\r
-                       SpinDelay(1000);\r
-                       RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET;\r
-                       for(;;) {\r
-                               // We're going to reset, and the bootrom will take control.\r
-                       }\r
-                       break;\r
-\r
-               default:\r
-                       DbpString("unknown command");\r
-                       break;\r
-       }\r
-}\r
-\r
-void AppMain(void)\r
-{\r
-       memset(BigBuf,0,sizeof(BigBuf));\r
-       SpinDelay(100);\r
-\r
-    LED_D_OFF();\r
-    LED_C_OFF();\r
-    LED_B_OFF();\r
-    LED_A_OFF();\r
-\r
-       UsbStart();\r
-\r
-       // The FPGA gets its clock from us from PCK0 output, so set that up.\r
-       PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0);\r
-       PIO_DISABLE = (1 << GPIO_PCK0);\r
-       PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0;\r
-       // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz\r
-       PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK |\r
-               PMC_CLK_PRESCALE_DIV_4;\r
-       PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0);\r
-\r
-       // Reset SPI\r
-       SPI_CONTROL = SPI_CONTROL_RESET;\r
-       // Reset SSC\r
-       SSC_CONTROL = SSC_CONTROL_RESET;\r
-\r
-       // Load the FPGA image, which we have stored in our flash.\r
-       FpgaDownloadAndGo();\r
-\r
-       LCDInit();\r
-\r
-       // test text on different colored backgrounds\r
-    LCDString(" The quick brown fox  ",        &FONT6x8,1,1+8*0,WHITE  ,BLACK );\r
-    LCDString("  jumped over the     ",        &FONT6x8,1,1+8*1,BLACK  ,WHITE );\r
-    LCDString("     lazy dog.        ",        &FONT6x8,1,1+8*2,YELLOW ,RED   );\r
-    LCDString(" AaBbCcDdEeFfGgHhIiJj ",        &FONT6x8,1,1+8*3,RED    ,GREEN );\r
-    LCDString(" KkLlMmNnOoPpQqRrSsTt ",        &FONT6x8,1,1+8*4,MAGENTA,BLUE  );\r
-    LCDString("UuVvWwXxYyZz0123456789",        &FONT6x8,1,1+8*5,BLUE   ,YELLOW);\r
-    LCDString("`-=[]_;',./~!@#$%^&*()",        &FONT6x8,1,1+8*6,BLACK  ,CYAN  );\r
-    LCDString("     _+{}|:\\\"<>?     ",&FONT6x8,1,1+8*7,BLUE  ,MAGENTA);\r
-\r
-       // color bands\r
-       LCDFill(0, 1+8* 8, 132, 8, BLACK);\r
-       LCDFill(0, 1+8* 9, 132, 8, WHITE);\r
-       LCDFill(0, 1+8*10, 132, 8, RED);\r
-       LCDFill(0, 1+8*11, 132, 8, GREEN);\r
-       LCDFill(0, 1+8*12, 132, 8, BLUE);\r
-       LCDFill(0, 1+8*13, 132, 8, YELLOW);\r
-       LCDFill(0, 1+8*14, 132, 8, CYAN);\r
-       LCDFill(0, 1+8*15, 132, 8, MAGENTA);\r
-\r
-       for(;;) {\r
-               UsbPoll(FALSE);\r
-               WDT_HIT();\r
-       }\r
-}\r
-\r
-void SpinDelay(int ms)\r
-{\r
-       int ticks = (48000*ms) >> 10;\r
-\r
-       // Borrow a PWM unit for my real-time clock\r
-       PWM_ENABLE = PWM_CHANNEL(0);\r
-       // 48 MHz / 1024 gives 46.875 kHz\r
-       PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);\r
-       PWM_CH_DUTY_CYCLE(0) = 0;\r
-       PWM_CH_PERIOD(0) = 0xffff;\r
-\r
-       WORD start = (WORD)PWM_CH_COUNTER(0);\r
-\r
-       for(;;) {\r
-               WORD now = (WORD)PWM_CH_COUNTER(0);\r
-               if(now == (WORD)(start + ticks)) {\r
-                       return;\r
-               }\r
-               WDT_HIT();\r
-       }\r
-}\r
+
+               case CMD_READER_ISO_14443a:
+                       ReaderIso14443a(c->ext1);
+                       break;
+
+               case CMD_SNOOP_ISO_14443:
+                       SnoopIso14443();
+                       break;
+
+               case CMD_SNOOP_ISO_14443a:
+                       SnoopIso14443a();
+                       break;
+
+               case CMD_SIMULATE_TAG_HF_LISTEN:
+                       SimulateTagHfListen();
+                       break;
+
+               case CMD_SIMULATE_TAG_ISO_14443:
+                       SimulateIso14443Tag();
+                       break;
+
+               case CMD_SIMULATE_TAG_ISO_14443a:
+                       SimulateIso14443aTag(c->ext1, c->ext2);  // ## Simulate iso14443a tag - pass tag type & UID
+                       break;
+
+               case CMD_MEASURE_ANTENNA_TUNING:
+                       MeasureAntennaTuning();
+                       break;
+
+               case CMD_LISTEN_READER_FIELD:
+                       ListenReaderField(c->ext1);
+                       break;
+
+               case CMD_HID_DEMOD_FSK:
+                       CmdHIDdemodFSK();                               // Demodulate HID tag
+                       break;
+
+               case CMD_HID_SIM_TAG:
+                       CmdHIDsimTAG(c->ext1, c->ext2);                                 // Simulate HID tag by ID
+                       break;
+
+               case CMD_FPGA_MAJOR_MODE_OFF:           // ## FPGA Control
+                       FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+                       SpinDelay(200);
+                       LED_D_OFF(); // LED D indicates field ON or OFF
+                       break;
+
+               case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
+               case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: {
+                       UsbCommand n;
+                       if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) {
+                               n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K;
+                       } else {
+                               n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE;
+                       }
+                       n.ext1 = c->ext1;
+                       memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD));
+                       UsbSendPacket((BYTE *)&n, sizeof(n));
+                       break;
+               }
+               case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
+                       BYTE *b = (BYTE *)BigBuf;
+                       memcpy(b+c->ext1, c->d.asBytes, 48);
+                       break;
+               }
+               case CMD_SIMULATE_TAG_125K:
+                       LED_A_ON();
+                       SimulateTagLowFrequency(c->ext1);
+                       LED_A_OFF();
+                       break;
+#ifdef WITH_LCD
+               case CMD_LCD_RESET:
+                       LCDReset();
+                       break;
+#endif
+               case CMD_SWEEP_LF:
+                       SweepLFrange();
+                       break;
+
+               case CMD_SET_LF_DIVISOR:
+                       FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1);
+                       break;
+#ifdef WITH_LCD
+               case CMD_LCD:
+                       LCDSend(c->ext1);
+                       break;
+#endif
+        case CMD_SETUP_WRITE:
+               case CMD_FINISH_WRITE:
+               case CMD_HARDWARE_RESET:
+                       USB_D_PLUS_PULLUP_OFF();
+                       SpinDelay(1000);
+                       SpinDelay(1000);
+                       RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET;
+                       for(;;) {
+                               // We're going to reset, and the bootrom will take control.
+                       }
+                       break;
+
+
+               default:
+                       DbpString("unknown command");
+                       break;
+       }
+}
+
+void AppMain(void)
+{
+       memset(BigBuf,0,sizeof(BigBuf));
+       SpinDelay(100);
+
+    LED_D_OFF();
+    LED_C_OFF();
+    LED_B_OFF();
+    LED_A_OFF();
+
+       UsbStart();
+
+       // The FPGA gets its clock from us from PCK0 output, so set that up.
+       PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0);
+       PIO_DISABLE = (1 << GPIO_PCK0);
+       PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0;
+       // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
+       PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK |
+               PMC_CLK_PRESCALE_DIV_4;
+       PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0);
+
+       // Reset SPI
+       SPI_CONTROL = SPI_CONTROL_RESET;
+       // Reset SSC
+       SSC_CONTROL = SSC_CONTROL_RESET;
+
+       // Load the FPGA image, which we have stored in our flash.
+       FpgaDownloadAndGo();
+
+#ifdef WITH_LCD
+
+       LCDInit();
+
+       // test text on different colored backgrounds
+    LCDString(" The quick brown fox  ",        &FONT6x8,1,1+8*0,WHITE  ,BLACK );
+    LCDString("  jumped over the     ",        &FONT6x8,1,1+8*1,BLACK  ,WHITE );
+    LCDString("     lazy dog.        ",        &FONT6x8,1,1+8*2,YELLOW ,RED   );
+    LCDString(" AaBbCcDdEeFfGgHhIiJj ",        &FONT6x8,1,1+8*3,RED    ,GREEN );
+    LCDString(" KkLlMmNnOoPpQqRrSsTt ",        &FONT6x8,1,1+8*4,MAGENTA,BLUE  );
+    LCDString("UuVvWwXxYyZz0123456789",        &FONT6x8,1,1+8*5,BLUE   ,YELLOW);
+    LCDString("`-=[]_;',./~!@#$%^&*()",        &FONT6x8,1,1+8*6,BLACK  ,CYAN  );
+    LCDString("     _+{}|:\\\"<>?     ",&FONT6x8,1,1+8*7,BLUE  ,MAGENTA);
+
+       // color bands
+       LCDFill(0, 1+8* 8, 132, 8, BLACK);
+       LCDFill(0, 1+8* 9, 132, 8, WHITE);
+       LCDFill(0, 1+8*10, 132, 8, RED);
+       LCDFill(0, 1+8*11, 132, 8, GREEN);
+       LCDFill(0, 1+8*12, 132, 8, BLUE);
+       LCDFill(0, 1+8*13, 132, 8, YELLOW);
+       LCDFill(0, 1+8*14, 132, 8, CYAN);
+       LCDFill(0, 1+8*15, 132, 8, MAGENTA);
+
+#endif
+
+       for(;;) {
+               UsbPoll(FALSE);
+               WDT_HIT();
+       }
+}
+
+void SpinDelayUs(int us)
+{
+       int ticks = (48*us) >> 10;
+
+       // Borrow a PWM unit for my real-time clock
+       PWM_ENABLE = PWM_CHANNEL(0);
+       // 48 MHz / 1024 gives 46.875 kHz
+       PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);
+       PWM_CH_DUTY_CYCLE(0) = 0;
+       PWM_CH_PERIOD(0) = 0xffff;
+
+       WORD start = (WORD)PWM_CH_COUNTER(0);
+
+       for(;;) {
+               WORD now = (WORD)PWM_CH_COUNTER(0);
+               if(now == (WORD)(start + ticks)) {
+                       return;
+               }
+               WDT_HIT();
+       }
+}
+
+void SpinDelay(int ms)
+{
+       int ticks = (48000*ms) >> 10;
+
+       // Borrow a PWM unit for my real-time clock
+       PWM_ENABLE = PWM_CHANNEL(0);
+       // 48 MHz / 1024 gives 46.875 kHz
+       PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10);
+       PWM_CH_DUTY_CYCLE(0) = 0;
+       PWM_CH_PERIOD(0) = 0xffff;
+
+       WORD start = (WORD)PWM_CH_COUNTER(0);
+
+       for(;;) {
+               WORD now = (WORD)PWM_CH_COUNTER(0);
+               if(now == (WORD)(start + ticks)) {
+                       return;
+               }
+               WDT_HIT();
+       }
+}
+
+// listen for external reader 
+void ListenReaderField(int limit)
+{
+       int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0;
+       int hf_av, hf_av_new,  hf_baseline= 0, hf_count= 0;
+
+#define LF_ONLY                1
+#define HF_ONLY                2
+
+       LED_A_OFF();
+       LED_B_OFF();
+       LED_C_OFF();
+       LED_D_OFF();
+
+       lf_av= ReadAdc(ADC_CHAN_LF);
+
+       if(limit != HF_ONLY) 
+               {
+               DbpString("LF 125/134 Baseline:");
+               DbpIntegers(lf_av,0,0);
+               lf_baseline= lf_av;
+               }
+
+       hf_av= ReadAdc(ADC_CHAN_HF);
+
+
+       if (limit != LF_ONLY) 
+               {
+               DbpString("HF 13.56 Baseline:");
+               DbpIntegers(hf_av,0,0);
+               hf_baseline= hf_av;
+               }
+
+       for(;;) 
+               {
+               if(BUTTON_PRESS()) 
+                       {
+                       DbpString("Stopped");
+                       LED_B_OFF();
+                       LED_D_OFF();
+                       return;
+                       }
+               WDT_HIT();
+
+
+               if (limit != HF_ONLY) 
+                       {
+                       if (abs(lf_av - lf_baseline) > 10)
+                               LED_D_ON();
+                       else
+                               LED_D_OFF();
+                       ++lf_count;
+                       lf_av_new= ReadAdc(ADC_CHAN_LF);
+                       // see if there's a significant change
+                       if(abs(lf_av - lf_av_new) > 10) 
+                               {
+                               DbpString("LF 125/134 Field Change:");
+                               DbpIntegers(lf_av,lf_av_new,lf_count);
+                               lf_av= lf_av_new;
+                               lf_count= 0;
+                               }
+                       }
+
+               if (limit != LF_ONLY) 
+                       {
+                       if (abs(hf_av - hf_baseline) > 10)
+                               LED_B_ON();
+                       else
+                               LED_B_OFF();
+                       ++hf_count;
+                       hf_av_new= ReadAdc(ADC_CHAN_HF);
+                       // see if there's a significant change
+                       if(abs(hf_av - hf_av_new) > 10) 
+                               {
+                               DbpString("HF 13.56 Field Change:");
+                               DbpIntegers(hf_av,hf_av_new,hf_count);
+                               hf_av= hf_av_new;
+                               hf_count= 0;
+                               }
+                       }
+               }
+}
Impressum, Datenschutz