#include <stdlib.h>
#include <string.h>
#include <pthread.h>
+#include <locale.h>
#include <math.h>
#include "proxmark3.h"
#include "cmdmain.h"
} noncelist_t;
-static uint32_t cuid;
+static uint32_t cuid = 0;
static noncelist_t nonces[256];
static uint8_t best_first_bytes[256];
static uint16_t first_byte_Sum = 0;
static uint16_t num_good_first_bytes = 0;
static uint64_t maximum_states = 0;
static uint64_t known_target_key;
-
+static bool write_stats = false;
+static FILE *fstats = NULL;
typedef enum {
}
+static void init_nonce_memory(void)
+{
+ for (uint16_t i = 0; i < 256; i++) {
+ nonces[i].num = 0;
+ nonces[i].Sum = 0;
+ nonces[i].Sum8_guess = 0;
+ nonces[i].Sum8_prob = 0.0;
+ nonces[i].updated = true;
+ nonces[i].first = NULL;
+ }
+ first_byte_num = 0;
+ first_byte_Sum = 0;
+ num_good_first_bytes = 0;
+}
+
+
+static void free_nonce_list(noncelistentry_t *p)
+{
+ if (p == NULL) {
+ return;
+ } else {
+ free_nonce_list(p->next);
+ free(p);
+ }
+}
+
+
+static void free_nonces_memory(void)
+{
+ for (uint16_t i = 0; i < 256; i++) {
+ free_nonce_list(nonces[i].first);
+ }
+}
+
+
static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
{
uint16_t sum = 0;
static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
{
const uint16_t N = 256;
-
-
- if (k > K || p_K[K] == 0.0) return 0.0;
+ if (k > K || p_K[K] == 0.0) return 0.0;
- double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
- double p_S_is_K = p_K[K];
- double p_T_is_k = 0;
- for (uint16_t i = 0; i <= 256; i++) {
- if (p_K[i] != 0.0) {
- p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
- }
+ double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
+ double p_S_is_K = p_K[K];
+ double p_T_is_k = 0;
+ for (uint16_t i = 0; i <= 256; i++) {
+ if (p_K[i] != 0.0) {
+ p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
}
- return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
+ }
+ return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
}
// determine how many are above the CONFIDENCE_THRESHOLD
uint16_t num_good_nonces = 0;
for (uint16_t i = 0; i < 256; i++) {
- if (nonces[best_first_bytes[i]].Sum8_prob > CONFIDENCE_THRESHOLD) {
+ if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
++num_good_nonces;
}
}
uint16_t num_good_nonces = 0;
for (uint16_t i = 0; i < 256; i++) {
- if (nonces[best_first_bytes[i]].Sum8_prob > CONFIDENCE_THRESHOLD) {
+ if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
++num_good_nonces;
}
}
}
PrintAndLog("Reading nonces from file nonces.bin...");
- if (fread(read_buf, 1, 6, fnonces) == 0) {
+ size_t bytes_read = fread(read_buf, 1, 6, fnonces);
+ if ( bytes_read == 0) {
PrintAndLog("File reading error.");
fclose(fnonces);
return 1;
{
printf("Checking for Filter Flip Properties...\n");
+ uint16_t num_bitflips = 0;
+
for (uint16_t i = 0; i < 256; i++) {
nonces[i].BitFlip[ODD_STATE] = false;
nonces[i].BitFlip[EVEN_STATE] = false;
if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
nonces[i].BitFlip[ODD_STATE] = true;
+ num_bitflips++;
} else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
nonces[i].BitFlip[EVEN_STATE] = true;
+ num_bitflips++;
}
}
+
+ if (write_stats) {
+ fprintf(fstats, "%d;", num_bitflips);
+ }
+}
+
+
+static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
+{
+ struct Crypto1State sim_cs = {0, 0};
+// sim_cs.odd = sim_cs.even = 0;
+
+ // init cryptostate with key:
+ for(int8_t i = 47; i > 0; i -= 2) {
+ sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
+ sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
+ }
+
+ *par_enc = 0;
+ uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
+ for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
+ uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
+ uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
+ *nt_enc = (*nt_enc << 8) | nt_byte_enc;
+ uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
+ uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
+ *par_enc = (*par_enc << 1) | nt_byte_par_enc;
+ }
+
+}
+
+
+static void simulate_acquire_nonces()
+{
+ clock_t time1 = clock();
+ bool filter_flip_checked = false;
+ uint32_t total_num_nonces = 0;
+ uint32_t next_fivehundred = 500;
+ uint32_t total_added_nonces = 0;
+
+ cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
+ known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
+
+ printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
+ fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
+
+ do {
+ uint32_t nt_enc = 0;
+ uint8_t par_enc = 0;
+
+ simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
+ //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
+ total_added_nonces += add_nonce(nt_enc, par_enc);
+ total_num_nonces++;
+
+ if (first_byte_num == 256 ) {
+ // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
+ if (!filter_flip_checked) {
+ Check_for_FilterFlipProperties();
+ filter_flip_checked = true;
+ }
+ num_good_first_bytes = estimate_second_byte_sum();
+ if (total_num_nonces > next_fivehundred) {
+ next_fivehundred = (total_num_nonces/500+1) * 500;
+ printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+ total_num_nonces,
+ total_added_nonces,
+ CONFIDENCE_THRESHOLD * 100.0,
+ num_good_first_bytes);
+ }
+ }
+
+ } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
+
+ time1 = clock() - time1;
+ if ( time1 > 0 ) {
+ PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
+ total_num_nonces,
+ ((float)time1)/CLOCKS_PER_SEC,
+ total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
+ }
+ fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
+
}
}
if (!initialize) {
- if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
- if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
+ if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
+ fclose(fnonces);
+ return 1;
+ }
+ if (resp.arg[0]) {
+ fclose(fnonces);
+ return resp.arg[0]; // error during nested_hard
+ }
}
initialize = false;
fclose(fnonces);
}
+ time1 = clock() - time1;
+ if ( time1 > 0 ) {
PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
total_num_nonces,
- ((float)clock()-time1)/CLOCKS_PER_SEC,
- total_num_nonces*60.0*CLOCKS_PER_SEC/((float)clock()-time1));
-
+ ((float)time1)/CLOCKS_PER_SEC,
+ total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
+ );
+ }
return 0;
}
static void init_statelist_cache(void)
{
-
for (uint16_t i = 0; i < 17; i+=2) {
for (uint16_t j = 0; j < 17; j+=2) {
for (uint16_t k = 0; k < 2; k++) {
count, log(count)/log(2),
maximum_states, log(maximum_states)/log(2),
(count>>23)/60);
+ if (write_stats) {
+ fprintf(fstats, "1\n");
+ }
crypto1_destroy(pcs);
return;
}
}
printf("Key NOT found!\n");
+ if (write_stats) {
+ fprintf(fstats, "0\n");
+ }
crypto1_destroy(pcs);
}
}
}
}
- printf("Number of possible keys with Sum(a0) = %d: %lld (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
+ printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
init_statelist_cache();
for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
}
- printf("Number of remaining possible keys: %lld (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
+ printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
+ if (write_stats) {
+ if (maximum_states != 0) {
+ fprintf(fstats, "%1.1f;", log(maximum_states)/log(2.0));
+ } else {
+ fprintf(fstats, "%1.1f;", 0.0);
+ }
+ }
+}
+
+static void free_candidates_memory(statelist_t *sl)
+{
+ if (sl == NULL) {
+ return;
+ } else {
+ free_candidates_memory(sl->next);
+ free(sl);
+ }
+}
+
+
+static void free_statelist_cache(void)
+{
+ for (uint16_t i = 0; i < 17; i+=2) {
+ for (uint16_t j = 0; j < 17; j+=2) {
+ for (uint16_t k = 0; k < 2; k++) {
+ free(sl_cache[i][j][k].sl);
+ }
+ }
+ }
}
}
-int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow)
+int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
{
+ // initialize Random number generator
+ time_t t;
+ srand((unsigned) time(&t));
+
if (trgkey != NULL) {
known_target_key = bytes_to_num(trgkey, 6);
} else {
known_target_key = -1;
}
- // initialize the list of nonces
- for (uint16_t i = 0; i < 256; i++) {
- nonces[i].num = 0;
- nonces[i].Sum = 0;
- nonces[i].Sum8_guess = 0;
- nonces[i].Sum8_prob = 0.0;
- nonces[i].updated = true;
- nonces[i].first = NULL;
- }
- first_byte_num = 0;
- first_byte_Sum = 0;
- num_good_first_bytes = 0;
-
init_partial_statelists();
init_BitFlip_statelist();
+ write_stats = false;
- if (nonce_file_read) { // use pre-acquired data from file nonces.bin
- if (read_nonce_file() != 0) {
+ if (tests) {
+ // set the correct locale for the stats printing
+ setlocale(LC_ALL, "");
+ write_stats = true;
+ if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
+ PrintAndLog("Could not create/open file hardnested_stats.txt");
return 3;
}
- Check_for_FilterFlipProperties();
- num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
- } else { // acquire nonces.
- uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
- if (is_OK != 0) {
- return is_OK;
+ for (uint32_t i = 0; i < tests; i++) {
+ init_nonce_memory();
+ simulate_acquire_nonces();
+ Tests();
+ printf("Sum(a0) = %d\n", first_byte_Sum);
+ fprintf(fstats, "%d;", first_byte_Sum);
+ generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+ brute_force();
+ free_nonces_memory();
+ free_statelist_cache();
+ free_candidates_memory(candidates);
+ candidates = NULL;
+ }
+ fclose(fstats);
+ } else {
+ init_nonce_memory();
+ if (nonce_file_read) { // use pre-acquired data from file nonces.bin
+ if (read_nonce_file() != 0) {
+ return 3;
+ }
+ Check_for_FilterFlipProperties();
+ num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
+ } else { // acquire nonces.
+ uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
+ if (is_OK != 0) {
+ return is_OK;
+ }
}
- }
-
-
- Tests();
- PrintAndLog("");
- PrintAndLog("Sum(a0) = %d", first_byte_Sum);
- // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
- // best_first_bytes[0],
- // best_first_bytes[1],
- // best_first_bytes[2],
- // best_first_bytes[3],
- // best_first_bytes[4],
- // best_first_bytes[5],
- // best_first_bytes[6],
- // best_first_bytes[7],
- // best_first_bytes[8],
- // best_first_bytes[9] );
- PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
-
- time_t start_time = clock();
- generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
- PrintAndLog("Time for generating key candidates list: %1.0f seconds", (float)(clock() - start_time)/CLOCKS_PER_SEC);
-
- brute_force();
+ Tests();
+
+ PrintAndLog("");
+ PrintAndLog("Sum(a0) = %d", first_byte_Sum);
+ // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
+ // best_first_bytes[0],
+ // best_first_bytes[1],
+ // best_first_bytes[2],
+ // best_first_bytes[3],
+ // best_first_bytes[4],
+ // best_first_bytes[5],
+ // best_first_bytes[6],
+ // best_first_bytes[7],
+ // best_first_bytes[8],
+ // best_first_bytes[9] );
+ PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
+
+ clock_t time1 = clock();
+ generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+ time1 = clock() - time1;
+ if ( time1 > 0 )
+ PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
+ brute_force();
+ free_nonces_memory();
+ free_statelist_cache();
+ free_candidates_memory(candidates);
+ candidates = NULL;
+ }
return 0;
}