X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/057d2e9147bc7d8fb3f7c4d7928e66e23fd58e50..7fd676db11941a7cd20a918e47683d3badf64af1:/client/cmdhfmfhard.c?ds=sidebyside diff --git a/client/cmdhfmfhard.c b/client/cmdhfmfhard.c index e9a2e696..4c2e4e1a 100644 --- a/client/cmdhfmfhard.c +++ b/client/cmdhfmfhard.c @@ -13,31 +13,13 @@ // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on // Computer and Communications Security, 2015 //----------------------------------------------------------------------------- - -#include -#include -#include -#include -#include -#include -#include "proxmark3.h" -#include "cmdmain.h" -#include "ui.h" -#include "util.h" -#include "nonce2key/crapto1.h" -#include "nonce2key/crypto1_bs.h" -#include "parity.h" -#ifdef __WIN32 - #include -#endif -// don't include for APPLE/mac which has malloc stuff elsewhere. -#ifndef __APPLE__ - #include -#endif -#include +#include "cmdhfmfhard.h" #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull -#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster +#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster +#define MIN_NONCES_REQUIRED 4000 // 4000-5000 could be good +#define NONCES_TRIGGER 2500 // every 2500 nonces check if we can crack the key +#define CRACKING_THRESHOLD 39.00f // as 2^39 #define END_OF_LIST_MARKER 0xFFFFFFFF @@ -132,6 +114,12 @@ static partial_indexed_statelist_t partial_statelist[17]; static partial_indexed_statelist_t statelist_bitflip; static statelist_t *candidates = NULL; +bool thread_check_started = false; +bool thread_check_done = false; +bool field_off = false; + +pthread_t thread_check; + static bool generate_candidates(uint16_t, uint16_t); static bool brute_force(void); @@ -272,7 +260,7 @@ static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) for (int16_t i = N; i >= N-n+1; i--) { log_result -= log(i); } - return exp(log_result); + return (log_result > 0) ? exp(log_result) : 0.0; } else { if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception double log_result = 0.0; @@ -282,7 +270,7 @@ static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) for (int16_t i = K+1; i <= N; i++) { log_result -= log(i); } - return exp(log_result); + return (log_result > 0) ? exp(log_result) : 0.0; } else { // recursion return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k))); } @@ -296,11 +284,16 @@ static float sum_probability(uint16_t K, uint16_t n, uint16_t k) if (k > K || p_K[K] == 0.0) return 0.0; double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k); + + if (p_T_is_k_when_S_is_K == 0.0) return 0.0; + double p_S_is_K = p_K[K]; double p_T_is_k = 0; for (uint16_t i = 0; i <= 256; i++) { if (p_K[i] != 0.0) { - p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k); + double tmp = p_hypergeometric(N, i, n, k); + if (tmp != 0.0) + p_T_is_k += p_K[i] * tmp; } } return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); @@ -508,7 +501,7 @@ static void sort_best_first_bytes(void) } } best_first_bytes[j] = i; - } + } // determine how many are above the CONFIDENCE_THRESHOLD uint16_t num_good_nonces = 0; @@ -735,7 +728,7 @@ static void simulate_acquire_nonces() if (total_num_nonces > next_fivehundred) { next_fivehundred = (total_num_nonces/500+1) * 500; printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", - total_num_nonces, + total_num_nonces, total_added_nonces, CONFIDENCE_THRESHOLD * 100.0, num_good_first_bytes); @@ -759,7 +752,6 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ { clock_t time1 = clock(); bool initialize = true; - bool field_off = false; bool finished = false; bool filter_flip_checked = false; uint32_t flags = 0; @@ -771,9 +763,9 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ FILE *fnonces = NULL; UsbCommand resp; + field_off = false; + printf("Acquiring nonces...\n"); - - clearCommandBuffer(); do { flags = 0; @@ -782,7 +774,7 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ flags |= field_off ? 0x0004 : 0; UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}}; memcpy(c.d.asBytes, key, 6); - + clearCommandBuffer(); SendCommand(&c); if (field_off) finished = true; @@ -803,6 +795,7 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ fwrite(write_buf, 1, 4, fnonces); fwrite(&trgBlockNo, 1, 1, fnonces); fwrite(&trgKeyType, 1, 1, fnonces); + fflush(fnonces); } } @@ -821,56 +814,62 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f); - if (nonce_file_write) { + if (nonce_file_write && fnonces) { fwrite(bufp, 1, 9, fnonces); + fflush(fnonces); } - + bufp += 9; } total_num_nonces += num_acquired_nonces; } - - if (first_byte_num == 256 ) { + + if (first_byte_num == 256 && !field_off) { // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum); if (!filter_flip_checked) { Check_for_FilterFlipProperties(); filter_flip_checked = true; } + num_good_first_bytes = estimate_second_byte_sum(); if (total_num_nonces > next_fivehundred) { next_fivehundred = (total_num_nonces/500+1) * 500; - printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", - total_num_nonces, + printf("Acquired %5d nonces (%5d / %5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", + total_num_nonces, total_added_nonces, + (total_added_nonces < MIN_NONCES_REQUIRED) ? MIN_NONCES_REQUIRED : (NONCES_TRIGGER*idx), CONFIDENCE_THRESHOLD * 100.0, num_good_first_bytes); + } - if (total_added_nonces > (2500*idx)) { + if (total_added_nonces >= MIN_NONCES_REQUIRED) { + num_good_first_bytes = estimate_second_byte_sum(); + if (total_added_nonces > (NONCES_TRIGGER * idx)) { + clock_t time1 = clock(); - field_off = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); + bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); time1 = clock() - time1; - if ( time1 > 0 ) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC); - if (known_target_key != -1) brute_force(); + if (time1 > 0) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC); + + if (cracking || known_target_key != -1) { + field_off = brute_force(); // switch off field with next SendCommand and then finish + } + idx++; } } - if (num_good_first_bytes >= GOOD_BYTES_REQUIRED) { - field_off = true; // switch off field with next SendCommand and then finish - } - if (field_off) { - field_off = finished = brute_force(); - } } - + if (!initialize) { if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { - fclose(fnonces); + if (fnonces) fclose(fnonces); return 1; } + if (resp.arg[0]) { - fclose(fnonces); + if (fnonces) fclose(fnonces); return resp.arg[0]; // error during nested_hard } } @@ -879,10 +878,8 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ } while (!finished); - - if (nonce_file_write) { + if (nonce_file_write && fnonces) fclose(fnonces); - } time1 = clock() - time1; if ( time1 > 0 ) { @@ -898,7 +895,8 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ static int init_partial_statelists(void) { const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 }; - const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 }; +// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 }; + const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 }; printf("Allocating memory for partial statelists...\n"); for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { @@ -1263,7 +1261,7 @@ static bool TestIfKeyExists(uint64_t key) } count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]); if (found_odd && found_even) { - PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ", + PrintAndLog("\nKey Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ", count, log(count)/log(2), maximum_states, @@ -1301,15 +1299,17 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8) } } - printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); + if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf) + + printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2)); init_statelist_cache(); for (uint16_t p = 0; p <= 16; p += 2) { for (uint16_t q = 0; q <= 16; q += 2) { if (p*(16-q) + (16-p)*q == sum_a0) { - printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", - p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); + // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", + // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); for (uint16_t r = 0; r <= 16; r += 2) { for (uint16_t s = 0; s <= 16; s += 2) { if (r*(16-s) + (16-r)*s == sum_a8) { @@ -1318,9 +1318,9 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8) // and eliminate the need to calculate the other part if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE]) < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) { - add_matching_states(current_candidates, p, r, ODD_STATE); + add_matching_states(current_candidates, p, r, ODD_STATE); if(current_candidates->len[ODD_STATE]) { - add_matching_states(current_candidates, q, s, EVEN_STATE); + add_matching_states(current_candidates, q, s, EVEN_STATE); } else { current_candidates->len[EVEN_STATE] = 0; uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t)); @@ -1349,7 +1349,10 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8) for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; } - float kcalc = log(maximum_states)/log(2.0); + + if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf) + + float kcalc = log(maximum_states)/log(2); printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc); if (write_stats) { if (maximum_states != 0) { @@ -1358,7 +1361,7 @@ static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8) fprintf(fstats, "%1.1f;", 0.0); } } - if (kcalc < 39.00f) return true; + if (kcalc < CRACKING_THRESHOLD) return true; return false; } @@ -1497,7 +1500,7 @@ static const uint64_t crack_states_bitsliced(statelist_t *p){ const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value; for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){ - bitslice_t const * restrict bitsliced_even_state = bitsliced_even_states[block_idx]; + const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx]; size_t state_idx; // set even bits for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){ @@ -1660,16 +1663,18 @@ static bool brute_force(void) PrintAndLog("Looking for known target key in remaining key space..."); ret = TestIfKeyExists(known_target_key); } else { + if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf) + PrintAndLog("Brute force phase starting."); - time_t start, end; - time(&start); + + clock_t time1 = clock(); keys_found = 0; foundkey = 0; crypto1_bs_init(); PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES); - PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24)); + PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24)); // convert to 32 bit little-endian crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8); @@ -1709,21 +1714,15 @@ static bool brute_force(void) pthread_join(threads[i], 0); } - time(&end); - double elapsed_time = difftime(end, start); - - if(keys_found){ - PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %.f seconds", total_states_tested, keys_found, elapsed_time); + time1 = clock() - time1; + if ( time1 < 0 ) time1 = -1; + + if (keys_found && TestIfKeyExists(foundkey)) { + PrintAndLog("Success! Found %u keys after %0.0f seconds", keys_found, ((float)time1)/CLOCKS_PER_SEC); PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey); - known_target_key = foundkey; - - ret = TestIfKeyExists(known_target_key); - - PrintAndLog("Check if key is found in the keyspace: %d", ret); - ret = true; } else { - PrintAndLog("Fail! Tested %"PRIu32" states, in %.f seconds", total_states_tested, elapsed_time); + PrintAndLog("Fail! Tested %"PRIu32" states, in %0.0f seconds", total_states_tested, ((float)time1)/CLOCKS_PER_SEC); } // reset this counter for the next call @@ -1771,15 +1770,26 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc candidates = NULL; } fclose(fstats); + fstats = NULL; } else { init_nonce_memory(); - if (nonce_file_read) { // use pre-acquired data from file nonces.bin + if (nonce_file_read) { // use pre-acquired data from file nonces.bin if (read_nonce_file() != 0) { return 3; } Check_for_FilterFlipProperties(); num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED); - } else { // acquire nonces. + PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); + + clock_t time1 = clock(); + bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); + time1 = clock() - time1; + if (time1 > 0) + PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC); + + if (cracking) + brute_force(); + } else { // acquire nonces. uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); if (is_OK != 0) { return is_OK; @@ -1802,16 +1812,6 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc // best_first_bytes[8], // best_first_bytes[9] ); - //PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); - - //clock_t time1 = clock(); - //generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); - //time1 = clock() - time1; - //if ( time1 > 0 ) - //PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC); - - //brute_force(); - free_nonces_memory(); free_statelist_cache(); free_candidates_memory(candidates); @@ -1819,5 +1819,3 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc } return 0; } - -