X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/0e25ae11020aab8bc3e7b2dd9819f356fed00792..49ec6d1d1bfbf2d176e392e20b44be61538b7fad:/armsrc/iso14443a.c?ds=inline diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index c5557d39..3757043b 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -1,1816 +1,2516 @@ -//----------------------------------------------------------------------------- -// Routines to support ISO 14443 type A. -// -// Gerhard de Koning Gans - May 2008 -//----------------------------------------------------------------------------- -#include -#include "apps.h" -#include "../common/iso14443_crc.c" - -typedef enum { - SEC_D = 1, - SEC_E = 2, - SEC_F = 3, - SEC_X = 4, - SEC_Y = 5, - SEC_Z = 6 -} SecType; - -//----------------------------------------------------------------------------- -// The software UART that receives commands from the reader, and its state -// variables. -//----------------------------------------------------------------------------- -static struct { - enum { - STATE_UNSYNCD, - STATE_START_OF_COMMUNICATION, - STATE_MILLER_X, - STATE_MILLER_Y, - STATE_MILLER_Z, - STATE_ERROR_WAIT - } state; - WORD shiftReg; - int bitCnt; - int byteCnt; - int byteCntMax; - int posCnt; - int syncBit; - int parityBits; - int samples; - int highCnt; - int bitBuffer; - enum { - DROP_NONE, - DROP_FIRST_HALF, - DROP_SECOND_HALF - } drop; - BYTE *output; -} Uart; - -static BOOL MillerDecoding(int bit) -{ - int error = 0; - int bitright; - - if(!Uart.bitBuffer) { - Uart.bitBuffer = bit ^ 0xFF0; - return FALSE; - } - else { - Uart.bitBuffer <<= 4; - Uart.bitBuffer ^= bit; - } - - BOOL EOC = FALSE; - - if(Uart.state != STATE_UNSYNCD) { - Uart.posCnt++; - - if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { - bit = 0x00; - } - else { - bit = 0x01; - } - if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { - bitright = 0x00; - } - else { - bitright = 0x01; - } - if(bit != bitright) { bit = bitright; } - - if(Uart.posCnt == 1) { - // measurement first half bitperiod - if(!bit) { - Uart.drop = DROP_FIRST_HALF; - } - } - else { - // measurement second half bitperiod - if(!bit & (Uart.drop == DROP_NONE)) { - Uart.drop = DROP_SECOND_HALF; - } - else if(!bit) { - // measured a drop in first and second half - // which should not be possible - Uart.state = STATE_ERROR_WAIT; - error = 0x01; - } - - Uart.posCnt = 0; - - switch(Uart.state) { - case STATE_START_OF_COMMUNICATION: - Uart.shiftReg = 0; - if(Uart.drop == DROP_SECOND_HALF) { - // error, should not happen in SOC - Uart.state = STATE_ERROR_WAIT; - error = 0x02; - } - else { - // correct SOC - Uart.state = STATE_MILLER_Z; - } - break; - - case STATE_MILLER_Z: - Uart.bitCnt++; - Uart.shiftReg >>= 1; - if(Uart.drop == DROP_NONE) { - // logic '0' followed by sequence Y - // end of communication - Uart.state = STATE_UNSYNCD; - EOC = TRUE; - } - // if(Uart.drop == DROP_FIRST_HALF) { - // Uart.state = STATE_MILLER_Z; stay the same - // we see a logic '0' } - if(Uart.drop == DROP_SECOND_HALF) { - // we see a logic '1' - Uart.shiftReg |= 0x100; - Uart.state = STATE_MILLER_X; - } - break; - - case STATE_MILLER_X: - Uart.shiftReg >>= 1; - if(Uart.drop == DROP_NONE) { - // sequence Y, we see a '0' - Uart.state = STATE_MILLER_Y; - Uart.bitCnt++; - } - if(Uart.drop == DROP_FIRST_HALF) { - // Would be STATE_MILLER_Z - // but Z does not follow X, so error - Uart.state = STATE_ERROR_WAIT; - error = 0x03; - } - if(Uart.drop == DROP_SECOND_HALF) { - // We see a '1' and stay in state X - Uart.shiftReg |= 0x100; - Uart.bitCnt++; - } - break; - - case STATE_MILLER_Y: - Uart.bitCnt++; - Uart.shiftReg >>= 1; - if(Uart.drop == DROP_NONE) { - // logic '0' followed by sequence Y - // end of communication - Uart.state = STATE_UNSYNCD; - EOC = TRUE; - } - if(Uart.drop == DROP_FIRST_HALF) { - // we see a '0' - Uart.state = STATE_MILLER_Z; - } - if(Uart.drop == DROP_SECOND_HALF) { - // We see a '1' and go to state X - Uart.shiftReg |= 0x100; - Uart.state = STATE_MILLER_X; - } - break; - - case STATE_ERROR_WAIT: - // That went wrong. Now wait for at least two bit periods - // and try to sync again - if(Uart.drop == DROP_NONE) { - Uart.highCnt = 6; - Uart.state = STATE_UNSYNCD; - } - break; - - default: - Uart.state = STATE_UNSYNCD; - Uart.highCnt = 0; - break; - } - - Uart.drop = DROP_NONE; - - // should have received at least one whole byte... - if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { - return TRUE; - } - - if(Uart.bitCnt == 9) { - Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); - Uart.byteCnt++; - - Uart.parityBits <<= 1; - Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); - - if(EOC) { - // when End of Communication received and - // all data bits processed.. - return TRUE; - } - Uart.bitCnt = 0; - } - - /*if(error) { - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = error & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - return TRUE; - }*/ - } - - } - else { - bit = Uart.bitBuffer & 0xf0; - bit >>= 4; - bit ^= 0x0F; - if(bit) { - // should have been high or at least (4 * 128) / fc - // according to ISO this should be at least (9 * 128 + 20) / fc - if(Uart.highCnt == 8) { - // we went low, so this could be start of communication - // it turns out to be safer to choose a less significant - // syncbit... so we check whether the neighbour also represents the drop - Uart.posCnt = 1; // apparently we are busy with our first half bit period - Uart.syncBit = bit & 8; - Uart.samples = 3; - if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } - else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } - if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } - else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } - if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; - if(Uart.syncBit & (Uart.bitBuffer & 8)) { - Uart.syncBit = 8; - - // the first half bit period is expected in next sample - Uart.posCnt = 0; - Uart.samples = 3; - } - } - else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } - - Uart.syncBit <<= 4; - Uart.state = STATE_START_OF_COMMUNICATION; - Uart.drop = DROP_FIRST_HALF; - Uart.bitCnt = 0; - Uart.byteCnt = 0; - Uart.parityBits = 0; - error = 0; - } - else { - Uart.highCnt = 0; - } - } - else { - if(Uart.highCnt < 8) { - Uart.highCnt++; - } - } - } - - return FALSE; -} - -//============================================================================= -// ISO 14443 Type A - Manchester -//============================================================================= - -static struct { - enum { - DEMOD_UNSYNCD, - DEMOD_START_OF_COMMUNICATION, - DEMOD_MANCHESTER_D, - DEMOD_MANCHESTER_E, - DEMOD_MANCHESTER_F, - DEMOD_ERROR_WAIT - } state; - int bitCount; - int posCount; - int syncBit; - int parityBits; - WORD shiftReg; - int buffer; - int buff; - int samples; - int len; - enum { - SUB_NONE, - SUB_FIRST_HALF, - SUB_SECOND_HALF - } sub; - BYTE *output; -} Demod; - -static BOOL ManchesterDecoding(int v) -{ - int bit; - int modulation; - int error = 0; - - if(!Demod.buff) { - Demod.buff = 1; - Demod.buffer = v; - return FALSE; - } - else { - bit = Demod.buffer; - Demod.buffer = v; - } - - if(Demod.state==DEMOD_UNSYNCD) { - Demod.output[Demod.len] = 0xfa; - Demod.syncBit = 0; - //Demod.samples = 0; - Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part - if(bit & 0x08) { Demod.syncBit = 0x08; } - if(!Demod.syncBit) { - if(bit & 0x04) { Demod.syncBit = 0x04; } - } - else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; } - if(!Demod.syncBit) { - if(bit & 0x02) { Demod.syncBit = 0x02; } - } - else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; } - if(!Demod.syncBit) { - if(bit & 0x01) { Demod.syncBit = 0x01; } - - if(Demod.syncBit & (Demod.buffer & 0x08)) { - Demod.syncBit = 0x08; - - // The first half bitperiod is expected in next sample - Demod.posCount = 0; - Demod.output[Demod.len] = 0xfb; - } - } - else if(bit & 0x01) { Demod.syncBit = 0x01; } - - if(Demod.syncBit) { - Demod.len = 0; - Demod.state = DEMOD_START_OF_COMMUNICATION; - Demod.sub = SUB_FIRST_HALF; - Demod.bitCount = 0; - Demod.shiftReg = 0; - Demod.parityBits = 0; - Demod.samples = 0; - if(Demod.posCount) { - switch(Demod.syncBit) { - case 0x08: Demod.samples = 3; break; - case 0x04: Demod.samples = 2; break; - case 0x02: Demod.samples = 1; break; - case 0x01: Demod.samples = 0; break; - } - } - error = 0; - } - } - else { - //modulation = bit & Demod.syncBit; - modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; - - Demod.samples += 4; - - if(Demod.posCount==0) { - Demod.posCount = 1; - if(modulation) { - Demod.sub = SUB_FIRST_HALF; - } - else { - Demod.sub = SUB_NONE; - } - } - else { - Demod.posCount = 0; - if(modulation && (Demod.sub == SUB_FIRST_HALF)) { - if(Demod.state!=DEMOD_ERROR_WAIT) { - Demod.state = DEMOD_ERROR_WAIT; - Demod.output[Demod.len] = 0xaa; - error = 0x01; - } - } - else if(modulation) { - Demod.sub = SUB_SECOND_HALF; - } - - switch(Demod.state) { - case DEMOD_START_OF_COMMUNICATION: - if(Demod.sub == SUB_FIRST_HALF) { - Demod.state = DEMOD_MANCHESTER_D; - } - else { - Demod.output[Demod.len] = 0xab; - Demod.state = DEMOD_ERROR_WAIT; - error = 0x02; - } - break; - - case DEMOD_MANCHESTER_D: - case DEMOD_MANCHESTER_E: - if(Demod.sub == SUB_FIRST_HALF) { - Demod.bitCount++; - Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; - Demod.state = DEMOD_MANCHESTER_D; - } - else if(Demod.sub == SUB_SECOND_HALF) { - Demod.bitCount++; - Demod.shiftReg >>= 1; - Demod.state = DEMOD_MANCHESTER_E; - } - else { - Demod.state = DEMOD_MANCHESTER_F; - } - break; - - case DEMOD_MANCHESTER_F: - // Tag response does not need to be a complete byte! - if(Demod.len > 0 || Demod.bitCount > 0) { - if(Demod.bitCount > 0) { - Demod.shiftReg >>= (9 - Demod.bitCount); - Demod.output[Demod.len] = Demod.shiftReg & 0xff; - Demod.len++; - // No parity bit, so just shift a 0 - Demod.parityBits <<= 1; - } - - Demod.state = DEMOD_UNSYNCD; - return TRUE; - } - else { - Demod.output[Demod.len] = 0xad; - Demod.state = DEMOD_ERROR_WAIT; - error = 0x03; - } - break; - - case DEMOD_ERROR_WAIT: - Demod.state = DEMOD_UNSYNCD; - break; - - default: - Demod.output[Demod.len] = 0xdd; - Demod.state = DEMOD_UNSYNCD; - break; - } - - if(Demod.bitCount>=9) { - Demod.output[Demod.len] = Demod.shiftReg & 0xff; - Demod.len++; - - Demod.parityBits <<= 1; - Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); - - Demod.bitCount = 0; - Demod.shiftReg = 0; - } - - /*if(error) { - Demod.output[Demod.len] = 0xBB; - Demod.len++; - Demod.output[Demod.len] = error & 0xFF; - Demod.len++; - Demod.output[Demod.len] = 0xBB; - Demod.len++; - Demod.output[Demod.len] = bit & 0xFF; - Demod.len++; - Demod.output[Demod.len] = Demod.buffer & 0xFF; - Demod.len++; - Demod.output[Demod.len] = Demod.syncBit & 0xFF; - Demod.len++; - Demod.output[Demod.len] = 0xBB; - Demod.len++; - return TRUE; - }*/ - - } - - } // end (state != UNSYNCED) - - return FALSE; -} - -//============================================================================= -// Finally, a `sniffer' for ISO 14443 Type A -// Both sides of communication! -//============================================================================= - -//----------------------------------------------------------------------------- -// Record the sequence of commands sent by the reader to the tag, with -// triggering so that we start recording at the point that the tag is moved -// near the reader. -//----------------------------------------------------------------------------- -void SnoopIso14443a(void) -{ - - // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT - - #define RECV_CMD_OFFSET 3032 - #define RECV_RES_OFFSET 3096 - #define DMA_BUFFER_OFFSET 3160 - #define DMA_BUFFER_SIZE 4096 - #define TRACE_LENGTH 3000 - -// #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values -// #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values -// #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values -// #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values -// #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values - - // We won't start recording the frames that we acquire until we trigger; - // a good trigger condition to get started is probably when we see a - // response from the tag. - BOOL triggered = TRUE; // FALSE to wait first for card - - // The command (reader -> tag) that we're receiving. - // The length of a received command will in most cases be no more than 18 bytes. - // So 32 should be enough! - BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET); - // The response (tag -> reader) that we're receiving. - BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET); - - // As we receive stuff, we copy it from receivedCmd or receivedResponse - // into trace, along with its length and other annotations. - BYTE *trace = (BYTE *)BigBuf; - int traceLen = 0; - - // The DMA buffer, used to stream samples from the FPGA - SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET; - int lastRxCounter; - SBYTE *upTo; - int smpl; - int maxBehindBy = 0; - - // Count of samples received so far, so that we can include timing - // information in the trace buffer. - int samples = 0; - int rsamples = 0; - - memset(trace, 0x44, RECV_CMD_OFFSET); - - // Set up the demodulator for tag -> reader responses. - Demod.output = receivedResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; - - // And the reader -> tag commands - memset(&Uart, 0, sizeof(Uart)); - Uart.output = receivedCmd; - Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// - Uart.state = STATE_UNSYNCD; - - // And put the FPGA in the appropriate mode - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - - // Setup for the DMA. - FpgaSetupSsc(); - upTo = dmaBuf; - lastRxCounter = DMA_BUFFER_SIZE; - FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE); - - LED_A_ON(); - - // And now we loop, receiving samples. - for(;;) { - WDT_HIT(); - int behindBy = (lastRxCounter - PDC_RX_COUNTER(SSC_BASE)) & - (DMA_BUFFER_SIZE-1); - if(behindBy > maxBehindBy) { - maxBehindBy = behindBy; - if(behindBy > 400) { - DbpString("blew circular buffer!"); - goto done; - } - } - if(behindBy < 1) continue; - - smpl = upTo[0]; - upTo++; - lastRxCounter -= 1; - if(upTo - dmaBuf > DMA_BUFFER_SIZE) { - upTo -= DMA_BUFFER_SIZE; - lastRxCounter += DMA_BUFFER_SIZE; - PDC_RX_NEXT_POINTER(SSC_BASE) = (DWORD)upTo; - PDC_RX_NEXT_COUNTER(SSC_BASE) = DMA_BUFFER_SIZE; - } - - samples += 4; -#define HANDLE_BIT_IF_BODY \ - LED_C_ON(); \ - if(triggered) { \ - trace[traceLen++] = ((rsamples >> 0) & 0xff); \ - trace[traceLen++] = ((rsamples >> 8) & 0xff); \ - trace[traceLen++] = ((rsamples >> 16) & 0xff); \ - trace[traceLen++] = ((rsamples >> 24) & 0xff); \ - trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \ - trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \ - trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \ - trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \ - trace[traceLen++] = Uart.byteCnt; \ - memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \ - traceLen += Uart.byteCnt; \ - if(traceLen > TRACE_LENGTH) break; \ - } \ - /* And ready to receive another command. */ \ - Uart.state = STATE_UNSYNCD; \ - /* And also reset the demod code, which might have been */ \ - /* false-triggered by the commands from the reader. */ \ - Demod.state = DEMOD_UNSYNCD; \ - LED_B_OFF(); \ - - if(MillerDecoding((smpl & 0xF0) >> 4)) { - rsamples = samples - Uart.samples; - HANDLE_BIT_IF_BODY - } - if(ManchesterDecoding(smpl & 0x0F)) { - rsamples = samples - Demod.samples; - LED_B_ON(); - - // timestamp, as a count of samples - trace[traceLen++] = ((rsamples >> 0) & 0xff); - trace[traceLen++] = ((rsamples >> 8) & 0xff); - trace[traceLen++] = ((rsamples >> 16) & 0xff); - trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); - // length - trace[traceLen++] = Demod.len; - memcpy(trace+traceLen, receivedResponse, Demod.len); - traceLen += Demod.len; - if(traceLen > TRACE_LENGTH) break; - - triggered = TRUE; - - // And ready to receive another response. - memset(&Demod, 0, sizeof(Demod)); - Demod.output = receivedResponse; - Demod.state = DEMOD_UNSYNCD; - LED_C_OFF(); - } - - if(BUTTON_PRESS()) { - DbpString("cancelled_a"); - goto done; - } - } - - DbpString("COMMAND FINISHED"); - - DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt); - DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]); - -done: - PDC_CONTROL(SSC_BASE) = PDC_RX_DISABLE; - DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt); - DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]); - LED_A_OFF(); - LED_B_OFF(); - LED_C_OFF(); - LED_D_OFF(); -} - -// Prepare communication bits to send to FPGA -void Sequence(SecType seq) -{ - ToSendMax++; - switch(seq) { - // CARD TO READER - case SEC_D: - // Sequence D: 11110000 - // modulation with subcarrier during first half - ToSend[ToSendMax] = 0xf0; - break; - case SEC_E: - // Sequence E: 00001111 - // modulation with subcarrier during second half - ToSend[ToSendMax] = 0x0f; - break; - case SEC_F: - // Sequence F: 00000000 - // no modulation with subcarrier - ToSend[ToSendMax] = 0x00; - break; - // READER TO CARD - case SEC_X: - // Sequence X: 00001100 - // drop after half a period - ToSend[ToSendMax] = 0x0c; - break; - case SEC_Y: - default: - // Sequence Y: 00000000 - // no drop - ToSend[ToSendMax] = 0x00; - break; - case SEC_Z: - // Sequence Z: 11000000 - // drop at start - ToSend[ToSendMax] = 0xc0; - break; - } -} - -//----------------------------------------------------------------------------- -// Prepare tag messages -//----------------------------------------------------------------------------- -static void CodeIso14443aAsTag(const BYTE *cmd, int len) -{ - int i; - int oddparity; - - ToSendReset(); - - // Correction bit, might be removed when not needed - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(1); // 1 - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(0); - - // Send startbit - Sequence(SEC_D); - - for(i = 0; i < len; i++) { - int j; - BYTE b = cmd[i]; - - // Data bits - oddparity = 0x01; - for(j = 0; j < 8; j++) { - oddparity ^= (b & 1); - if(b & 1) { - Sequence(SEC_D); - } else { - Sequence(SEC_E); - } - b >>= 1; - } - - // Parity bit - if(oddparity) { - Sequence(SEC_D); - } else { - Sequence(SEC_E); - } - } - - // Send stopbit - Sequence(SEC_F); - - // Flush the buffer in FPGA!! - for(i = 0; i < 5; i++) { - Sequence(SEC_F); - } - - // Convert from last byte pos to length - ToSendMax++; - - // Add a few more for slop - ToSend[ToSendMax++] = 0x00; - ToSend[ToSendMax++] = 0x00; - //ToSendMax += 2; -} - -//----------------------------------------------------------------------------- -// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 -//----------------------------------------------------------------------------- -static void CodeStrangeAnswer() -{ - int i; - - ToSendReset(); - - // Correction bit, might be removed when not needed - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(1); // 1 - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(0); - - // Send startbit - Sequence(SEC_D); - - // 0 - Sequence(SEC_E); - - // 0 - Sequence(SEC_E); - - // 1 - Sequence(SEC_D); - - // Send stopbit - Sequence(SEC_F); - - // Flush the buffer in FPGA!! - for(i = 0; i < 5; i++) { - Sequence(SEC_F); - } - - // Convert from last byte pos to length - ToSendMax++; - - // Add a few more for slop - ToSend[ToSendMax++] = 0x00; - ToSend[ToSendMax++] = 0x00; - //ToSendMax += 2; -} - -//----------------------------------------------------------------------------- -// Wait for commands from reader -// Stop when button is pressed -// Or return TRUE when command is captured -//----------------------------------------------------------------------------- -static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen) -{ - // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen - // only, since we are receiving, not transmitting). - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); - - // Now run a `software UART' on the stream of incoming samples. - Uart.output = received; - Uart.byteCntMax = maxLen; - Uart.state = STATE_UNSYNCD; - - for(;;) { - WDT_HIT(); - - if(BUTTON_PRESS()) return FALSE; - - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - SSC_TRANSMIT_HOLDING = 0x00; - } - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - BYTE b = (BYTE)SSC_RECEIVE_HOLDING; - if(MillerDecoding((b & 0xf0) >> 4)) { - *len = Uart.byteCnt; - return TRUE; - } - if(MillerDecoding(b & 0x0f)) { - *len = Uart.byteCnt; - return TRUE; - } - } - } -} - -//----------------------------------------------------------------------------- -// Main loop of simulated tag: receive commands from reader, decide what -// response to send, and send it. -//----------------------------------------------------------------------------- -void SimulateIso14443aTag(int tagType, int TagUid) -{ - // This function contains the tag emulation - - // Prepare protocol messages - // static const BYTE cmd1[] = { 0x26 }; -// static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg -// - static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me -// static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me - - // UID response - // static const BYTE cmd2[] = { 0x93, 0x20 }; - //static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg - - - -// my desfire - static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips - - -// When reader selects us during cascade1 it will send cmd3 -//BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE) -BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire) -ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); - -// send cascade2 2nd half of UID -static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck -// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID - - -// When reader selects us during cascade2 it will send cmd3a -//BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE) -BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire) -ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); - -// When reader tries to authenticate - // static const BYTE cmd5[] = { 0x60, 0x00, 0xf5, 0x7b }; - static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce - - BYTE *resp; - int respLen; - - // Longest possible response will be 16 bytes + 2 CRC = 18 bytes - // This will need - // 144 data bits (18 * 8) - // 18 parity bits - // 2 Start and stop - // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) - // 1 just for the case - // ----------- + - // 166 - // - // 166 bytes, since every bit that needs to be send costs us a byte - // - - - // Respond with card type - BYTE *resp1 = (((BYTE *)BigBuf) + 800); - int resp1Len; - - // Anticollision cascade1 - respond with uid - BYTE *resp2 = (((BYTE *)BigBuf) + 970); - int resp2Len; - - // Anticollision cascade2 - respond with 2nd half of uid if asked - // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88 - BYTE *resp2a = (((BYTE *)BigBuf) + 1140); - int resp2aLen; - - // Acknowledge select - cascade 1 - BYTE *resp3 = (((BYTE *)BigBuf) + 1310); - int resp3Len; - - // Acknowledge select - cascade 2 - BYTE *resp3a = (((BYTE *)BigBuf) + 1480); - int resp3aLen; - - // Response to a read request - not implemented atm - BYTE *resp4 = (((BYTE *)BigBuf) + 1550); - int resp4Len; - - // Authenticate response - nonce - BYTE *resp5 = (((BYTE *)BigBuf) + 1720); - int resp5Len; - - BYTE *receivedCmd = (BYTE *)BigBuf; - int len; - - int i; - int u; - BYTE b; - - // To control where we are in the protocol - int order = 0; - int lastorder; - - // Just to allow some checks - int happened = 0; - int happened2 = 0; - - int cmdsRecvd = 0; - - BOOL fdt_indicator; - - memset(receivedCmd, 0x44, 400); - - // Prepare the responses of the anticollision phase - // there will be not enough time to do this at the moment the reader sends it REQA - - // Answer to request - CodeIso14443aAsTag(response1, sizeof(response1)); - memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; - - // Send our UID (cascade 1) - CodeIso14443aAsTag(response2, sizeof(response2)); - memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; - - // Answer to select (cascade1) - CodeIso14443aAsTag(response3, sizeof(response3)); - memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; - - // Send the cascade 2 2nd part of the uid - CodeIso14443aAsTag(response2a, sizeof(response2a)); - memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax; - - // Answer to select (cascade 2) - CodeIso14443aAsTag(response3a, sizeof(response3a)); - memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax; - - // Strange answer is an example of rare message size (3 bits) - CodeStrangeAnswer(); - memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; - - // Authentication answer (random nonce) - CodeIso14443aAsTag(response5, sizeof(response5)); - memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax; - - // We need to listen to the high-frequency, peak-detected path. - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - FpgaSetupSsc(); - - cmdsRecvd = 0; - - LED_A_ON(); - for(;;) { - - if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) { - DbpString("button press"); - break; - } - // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated - // Okay, look at the command now. - lastorder = order; - i = 1; // first byte transmitted - if(receivedCmd[0] == 0x26) { - // Received a REQUEST - resp = resp1; respLen = resp1Len; order = 1; - //DbpString("Hello request from reader:"); - } else if(receivedCmd[0] == 0x52) { - // Received a WAKEUP - resp = resp1; respLen = resp1Len; order = 6; -// //DbpString("Wakeup request from reader:"); - - } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision - // Received request for UID (cascade 1) - resp = resp2; respLen = resp2Len; order = 2; -// DbpString("UID (cascade 1) request from reader:"); -// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - - - } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision - // Received request for UID (cascade 2) - resp = resp2a; respLen = resp2aLen; order = 20; -// DbpString("UID (cascade 2) request from reader:"); -// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - - - } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select - // Received a SELECT - resp = resp3; respLen = resp3Len; order = 3; -// DbpString("Select (cascade 1) request from reader:"); -// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - - - } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select - // Received a SELECT - resp = resp3a; respLen = resp3aLen; order = 30; -// DbpString("Select (cascade 2) request from reader:"); -// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - - - } else if(receivedCmd[0] == 0x30) { - // Received a READ - resp = resp4; respLen = resp4Len; order = 4; // Do nothing - DbpString("Read request from reader:"); - DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - - - } else if(receivedCmd[0] == 0x50) { - // Received a HALT - resp = resp1; respLen = 0; order = 5; // Do nothing - DbpString("Reader requested we HALT!:"); - - } else if(receivedCmd[0] == 0x60) { - // Received an authentication request - resp = resp5; respLen = resp5Len; order = 7; - DbpString("Authenticate request from reader:"); - DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - - } else if(receivedCmd[0] == 0xE0) { - // Received a RATS request - resp = resp1; respLen = 0;order = 70; - DbpString("RATS request from reader:"); - DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - } else { - // Never seen this command before - DbpString("Unknown command received from reader:"); - DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - DbpIntegers(receivedCmd[3], receivedCmd[4], receivedCmd[5]); - DbpIntegers(receivedCmd[6], receivedCmd[7], receivedCmd[8]); - - // Do not respond - resp = resp1; respLen = 0; order = 0; - } - - // Count number of wakeups received after a halt - if(order == 6 && lastorder == 5) { happened++; } - - // Count number of other messages after a halt - if(order != 6 && lastorder == 5) { happened2++; } - - // Look at last parity bit to determine timing of answer - if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { - // 1236, so correction bit needed - i = 0; - } - - memset(receivedCmd, 0x44, 32); - - if(cmdsRecvd > 999) { - DbpString("1000 commands later..."); - break; - } - else { - cmdsRecvd++; - } - - if(respLen <= 0) continue; - - // Modulate Manchester - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); - SSC_TRANSMIT_HOLDING = 0x00; - FpgaSetupSsc(); - - // ### Transmit the response ### - u = 0; - b = 0x00; - fdt_indicator = FALSE; - for(;;) { - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - volatile BYTE b = (BYTE)SSC_RECEIVE_HOLDING; - (void)b; - } - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - if(i > respLen) { - b = 0x00; - u++; - } else { - b = resp[i]; - i++; - } - SSC_TRANSMIT_HOLDING = b; - - if(u > 4) { - break; - } - } - if(BUTTON_PRESS()) { - break; - } - } - - } - - DbpIntegers(happened, happened2, cmdsRecvd); - LED_A_OFF(); -} - -//----------------------------------------------------------------------------- -// Transmit the command (to the tag) that was placed in ToSend[]. -//----------------------------------------------------------------------------- -static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait) -{ - int c; - - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - - if(*wait < 10) { *wait = 10; } - - for(c = 0; c < *wait;) { - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - SSC_TRANSMIT_HOLDING = 0x00; // For exact timing! - c++; - } - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - volatile DWORD r = SSC_RECEIVE_HOLDING; - (void)r; - } - WDT_HIT(); - } - - c = 0; - for(;;) { - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - SSC_TRANSMIT_HOLDING = cmd[c]; - c++; - if(c >= len) { - break; - } - } - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - volatile DWORD r = SSC_RECEIVE_HOLDING; - (void)r; - } - WDT_HIT(); - } - *samples = (c + *wait) << 3; -} - -//----------------------------------------------------------------------------- -// To generate an arbitrary stream from reader -// -//----------------------------------------------------------------------------- -void ArbitraryFromReader(const BYTE *cmd, int parity, int len) -{ - int i; - int j; - int last; - BYTE b; - - ToSendReset(); - - // Start of Communication (Seq. Z) - Sequence(SEC_Z); - last = 0; - - for(i = 0; i < len; i++) { - // Data bits - b = cmd[i]; - for(j = 0; j < 8; j++) { - if(b & 1) { - // Sequence X - Sequence(SEC_X); - last = 1; - } else { - if(last == 0) { - // Sequence Z - Sequence(SEC_Z); - } - else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - } - b >>= 1; - - } - - // Predefined parity bit, the flipper flips when needed, because of flips in byte sent - if(((parity >> (len - i - 1)) & 1)) { - // Sequence X - Sequence(SEC_X); - last = 1; - } else { - if(last == 0) { - // Sequence Z - Sequence(SEC_Z); - } - else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - } - } - - // End of Communication - if(last == 0) { - // Sequence Z - Sequence(SEC_Z); - } - else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - // Sequence Y - Sequence(SEC_Y); - - // Just to be sure! - Sequence(SEC_Y); - Sequence(SEC_Y); - Sequence(SEC_Y); - - // Convert from last character reference to length - ToSendMax++; -} - -//----------------------------------------------------------------------------- -// Code a 7-bit command without parity bit -// This is especially for 0x26 and 0x52 (REQA and WUPA) -//----------------------------------------------------------------------------- -void ShortFrameFromReader(const BYTE *cmd) -{ - int j; - int last; - BYTE b; - - ToSendReset(); - - // Start of Communication (Seq. Z) - Sequence(SEC_Z); - last = 0; - - b = cmd[0]; - for(j = 0; j < 7; j++) { - if(b & 1) { - // Sequence X - Sequence(SEC_X); - last = 1; - } else { - if(last == 0) { - // Sequence Z - Sequence(SEC_Z); - } - else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - } - b >>= 1; - } - - // End of Communication - if(last == 0) { - // Sequence Z - Sequence(SEC_Z); - } - else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - // Sequence Y - Sequence(SEC_Y); - - // Just to be sure! - Sequence(SEC_Y); - Sequence(SEC_Y); - Sequence(SEC_Y); - - // Convert from last character reference to length - ToSendMax++; -} - -//----------------------------------------------------------------------------- -// Prepare reader command to send to FPGA -// -//----------------------------------------------------------------------------- -void CodeIso14443aAsReader(const BYTE *cmd, int len) -{ - int i, j; - int last; - int oddparity; - BYTE b; - - ToSendReset(); - - // Start of Communication (Seq. Z) - Sequence(SEC_Z); - last = 0; - - for(i = 0; i < len; i++) { - // Data bits - b = cmd[i]; - oddparity = 0x01; - for(j = 0; j < 8; j++) { - oddparity ^= (b & 1); - if(b & 1) { - // Sequence X - Sequence(SEC_X); - last = 1; - } else { - if(last == 0) { - // Sequence Z - Sequence(SEC_Z); - } - else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - } - b >>= 1; - } - - // Parity bit - if(oddparity) { - // Sequence X - Sequence(SEC_X); - last = 1; - } else { - if(last == 0) { - // Sequence Z - Sequence(SEC_Z); - } - else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - } - } - - // End of Communication - if(last == 0) { - // Sequence Z - Sequence(SEC_Z); - } - else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - // Sequence Y - Sequence(SEC_Y); - - // Just to be sure! - Sequence(SEC_Y); - Sequence(SEC_Y); - Sequence(SEC_Y); - - // Convert from last character reference to length - ToSendMax++; -} - - -//----------------------------------------------------------------------------- -// Wait a certain time for tag response -// If a response is captured return TRUE -// If it takes to long return FALSE -//----------------------------------------------------------------------------- -static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer -{ - // buffer needs to be 512 bytes - int c; - - // Set FPGA mode to "reader listen mode", no modulation (listen - // only, since we are receiving, not transmitting). - // Signal field is on with the appropriate LED - LED_D_ON(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); - - // Now get the answer from the card - Demod.output = receivedResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; - - BYTE b; - *elapsed = 0; - - c = 0; - for(;;) { - WDT_HIT(); - - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - SSC_TRANSMIT_HOLDING = 0x00; // To make use of exact timing of next command from reader!! - (*elapsed)++; - } - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - if(c < 512) { c++; } else { return FALSE; } - b = (BYTE)SSC_RECEIVE_HOLDING; - if(ManchesterDecoding((b & 0xf0) >> 4)) { - *samples = ((c - 1) << 3) + 4; - return TRUE; - } - if(ManchesterDecoding(b & 0x0f)) { - *samples = c << 3; - return TRUE; - } - } - } -} - -//----------------------------------------------------------------------------- -// Read an ISO 14443a tag. Send out commands and store answers. -// -//----------------------------------------------------------------------------- -void ReaderIso14443a(DWORD parameter) -{ - // Anticollision - static const BYTE cmd1[] = { 0x52 }; // or 0x26 - static const BYTE cmd2[] = { 0x93,0x20 }; - // UID = 0x2a,0x69,0x8d,0x43,0x8d, last two bytes are CRC bytes - BYTE cmd3[] = { 0x93,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 }; - - // For Ultralight add an extra anticollission layer -> 95 20 and then 95 70 - - // greg - here we will add our cascade level 2 anticolission and select functions to deal with ultralight // and 7-byte UIDs in generall... - BYTE cmd4[] = {0x95,0x20}; // ask for cascade 2 select - // 95 20 - //BYTE cmd3a[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 }; - // 95 70 - - // cascade 2 select - BYTE cmd5[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 }; - - - // RATS (request for answer to select) - //BYTE cmd6[] = { 0xe0,0x50,0xbc,0xa5 }; // original RATS - BYTE cmd6[] = { 0xe0,0x21,0xb2,0xc7 }; // Desfire RATS - - int reqaddr = 2024; // was 2024 - tied to other size changes - int reqsize = 60; - - BYTE *req1 = (((BYTE *)BigBuf) + reqaddr); - int req1Len; - - BYTE *req2 = (((BYTE *)BigBuf) + reqaddr + reqsize); - int req2Len; - - BYTE *req3 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 2)); - int req3Len; - -// greg added req 4 & 5 to deal with cascade 2 section - BYTE *req4 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 3)); - int req4Len; - - BYTE *req5 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 4)); - int req5Len; - - BYTE *req6 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 5)); - int req6Len; - - //BYTE *req7 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 6)); - //int req7Len; - - BYTE *receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes - - BYTE *trace = (BYTE *)BigBuf; - int traceLen = 0; - int rsamples = 0; - - memset(trace, 0x44, 2000); // was 2000 - tied to oter size chnages - // setting it to 3000 causes no tag responses to be detected (2900 is ok) - // setting it to 1000 causes no tag responses to be detected - - // Prepare some commands! - ShortFrameFromReader(cmd1); - memcpy(req1, ToSend, ToSendMax); req1Len = ToSendMax; - - CodeIso14443aAsReader(cmd2, sizeof(cmd2)); - memcpy(req2, ToSend, ToSendMax); req2Len = ToSendMax; - - CodeIso14443aAsReader(cmd3, sizeof(cmd3)); - memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax; - - - CodeIso14443aAsReader(cmd4, sizeof(cmd4)); // 4 is cascade 2 request - memcpy(req4, ToSend, ToSendMax); req4Len = ToSendMax; - - - CodeIso14443aAsReader(cmd5, sizeof(cmd5)); // 5 is cascade 2 select - memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax; - - - CodeIso14443aAsReader(cmd6, sizeof(cmd6)); - memcpy(req6, ToSend, ToSendMax); req6Len = ToSendMax; - - // Setup SSC - FpgaSetupSsc(); - - // Start from off (no field generated) - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelay(200); - - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - FpgaSetupSsc(); - - // Now give it time to spin up. - // Signal field is on with the appropriate LED - LED_D_ON(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - SpinDelay(200); - - LED_A_ON(); - LED_B_OFF(); - LED_C_OFF(); - - int samples = 0; - int tsamples = 0; - int wait = 0; - int elapsed = 0; - - for(;;) { - // Send WUPA (or REQA) - TransmitFor14443a(req1, req1Len, &tsamples, &wait); - // Store answer in buffer - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 1; - memcpy(trace+traceLen, cmd1, 1); - traceLen += 1; - if(traceLen > TRACE_LENGTH) goto done; - - while(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) { - if(BUTTON_PRESS()) goto done; - - // No answer, just continue polling - TransmitFor14443a(req1, req1Len, &tsamples, &wait); - // Store answer in buffer - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 1; - memcpy(trace+traceLen, cmd1, 1); - traceLen += 1; - if(traceLen > TRACE_LENGTH) goto done; - } - - // Store answer in buffer - rsamples = rsamples + (samples - Demod.samples); - trace[traceLen++] = ((rsamples >> 0) & 0xff); - trace[traceLen++] = ((rsamples >> 8) & 0xff); - trace[traceLen++] = ((rsamples >> 16) & 0xff); - trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); - trace[traceLen++] = Demod.len; - memcpy(trace+traceLen, receivedAnswer, Demod.len); - traceLen += Demod.len; - if(traceLen > TRACE_LENGTH) goto done; - - // Ask for card UID - TransmitFor14443a(req2, req2Len, &tsamples, &wait); - // Store answer in buffer - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 2; - memcpy(trace+traceLen, cmd2, 2); - traceLen += 2; - if(traceLen > TRACE_LENGTH) goto done; - - if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) { - continue; - } - - // Store answer in buffer - rsamples = rsamples + (samples - Demod.samples); - trace[traceLen++] = ((rsamples >> 0) & 0xff); - trace[traceLen++] = ((rsamples >> 8) & 0xff); - trace[traceLen++] = ((rsamples >> 16) & 0xff); - trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); - trace[traceLen++] = Demod.len; - memcpy(trace+traceLen, receivedAnswer, Demod.len); - traceLen += Demod.len; - if(traceLen > TRACE_LENGTH) goto done; - - // Construct SELECT UID command - // First copy the 5 bytes (Mifare Classic) after the 93 70 - memcpy(cmd3+2,receivedAnswer,5); - // Secondly compute the two CRC bytes at the end - ComputeCrc14443(CRC_14443_A, cmd3, 7, &cmd3[7], &cmd3[8]); - // Prepare the bit sequence to modulate the subcarrier - // Store answer in buffer - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 9; - memcpy(trace+traceLen, cmd3, 9); - traceLen += 9; - if(traceLen > TRACE_LENGTH) goto done; - CodeIso14443aAsReader(cmd3, sizeof(cmd3)); - memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax; - - // Select the card - TransmitFor14443a(req3, req3Len, &samples, &wait); - if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) { - continue; - } - - // Store answer in buffer - rsamples = rsamples + (samples - Demod.samples); - trace[traceLen++] = ((rsamples >> 0) & 0xff); - trace[traceLen++] = ((rsamples >> 8) & 0xff); - trace[traceLen++] = ((rsamples >> 16) & 0xff); - trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); - trace[traceLen++] = Demod.len; - memcpy(trace+traceLen, receivedAnswer, Demod.len); - traceLen += Demod.len; - if(traceLen > TRACE_LENGTH) goto done; - -// OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in -// which case we need to make a cascade 2 request and select - this is a long UID - if (receivedAnswer[0] == 0x88) - { - // Do cascade level 2 stuff - /////////////////////////////////////////////////////////////////// - // First issue a '95 20' identify request - // Ask for card UID (part 2) - TransmitFor14443a(req4, req4Len, &tsamples, &wait); - // Store answer in buffer - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 2; - memcpy(trace+traceLen, cmd4, 2); - traceLen += 2; - if(traceLen > TRACE_LENGTH) { - DbpString("Bugging out, just popped tracelength"); - goto done;} - - if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) { - continue; - } - // Store answer in buffer - rsamples = rsamples + (samples - Demod.samples); - trace[traceLen++] = ((rsamples >> 0) & 0xff); - trace[traceLen++] = ((rsamples >> 8) & 0xff); - trace[traceLen++] = ((rsamples >> 16) & 0xff); - trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); - trace[traceLen++] = Demod.len; - memcpy(trace+traceLen, receivedAnswer, Demod.len); - traceLen += Demod.len; - if(traceLen > TRACE_LENGTH) goto done; - ////////////////////////////////////////////////////////////////// - // Then Construct SELECT UID (cascasde 2) command - DbpString("Just about to copy the UID out of the cascade 2 id req"); - // First copy the 5 bytes (Mifare Classic) after the 95 70 - memcpy(cmd5+2,receivedAnswer,5); - // Secondly compute the two CRC bytes at the end - ComputeCrc14443(CRC_14443_A, cmd4, 7, &cmd5[7], &cmd5[8]); - // Prepare the bit sequence to modulate the subcarrier - // Store answer in buffer - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 9; - memcpy(trace+traceLen, cmd5, 9); - traceLen += 9; - if(traceLen > TRACE_LENGTH) goto done; - CodeIso14443aAsReader(cmd5, sizeof(cmd5)); - memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax; - - // Select the card - TransmitFor14443a(req4, req4Len, &samples, &wait); - if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) { - continue; - } - - // Store answer in buffer - rsamples = rsamples + (samples - Demod.samples); - trace[traceLen++] = ((rsamples >> 0) & 0xff); - trace[traceLen++] = ((rsamples >> 8) & 0xff); - trace[traceLen++] = ((rsamples >> 16) & 0xff); - trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); - trace[traceLen++] = Demod.len; - memcpy(trace+traceLen, receivedAnswer, Demod.len); - traceLen += Demod.len; - if(traceLen > TRACE_LENGTH) goto done; - - } - - // Secondly compute the two CRC bytes at the end - ComputeCrc14443(CRC_14443_A, cmd5, 2, &cmd5[2], &cmd5[3]); - // Send authentication request (Mifare Classic) - TransmitFor14443a(req5, req5Len, &samples, &wait); - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; - trace[traceLen++] = 4; - memcpy(trace+traceLen, cmd5, 4); - traceLen += 4; - if(traceLen > TRACE_LENGTH) goto done; - if(GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) { - rsamples++; - // We received probably a random, continue and trace! - } - else { - // Received nothing - continue; - } - - // Trace the random, i'm curious - rsamples = rsamples + (samples - Demod.samples); - trace[traceLen++] = ((rsamples >> 0) & 0xff); - trace[traceLen++] = ((rsamples >> 8) & 0xff); - trace[traceLen++] = ((rsamples >> 16) & 0xff); - trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); - trace[traceLen++] = Demod.len; - memcpy(trace+traceLen, receivedAnswer, Demod.len); - traceLen += Demod.len; - if(traceLen > TRACE_LENGTH) goto done; - - // Thats it... - } - -done: - LED_A_OFF(); - LED_B_OFF(); - LED_C_OFF(); - DbpIntegers(rsamples, 0xCC, 0xCC); - DbpString("ready.."); -} +//----------------------------------------------------------------------------- +// Merlok - June 2011, 2012 +// Gerhard de Koning Gans - May 2008 +// Hagen Fritsch - June 2010 +// +// This code is licensed to you under the terms of the GNU GPL, version 2 or, +// at your option, any later version. See the LICENSE.txt file for the text of +// the license. +//----------------------------------------------------------------------------- +// Routines to support ISO 14443 type A. +//----------------------------------------------------------------------------- + +#include "proxmark3.h" +#include "apps.h" +#include "util.h" +#include "string.h" + +#include "iso14443crc.h" +#include "iso14443a.h" +#include "crapto1.h" +#include "mifareutil.h" + +static uint32_t iso14a_timeout; +uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET; +int traceLen = 0; +int rsamples = 0; +int tracing = TRUE; +uint8_t trigger = 0; +// the block number for the ISO14443-4 PCB +static uint8_t iso14_pcb_blocknum = 0; + +// CARD TO READER - manchester +// Sequence D: 11110000 modulation with subcarrier during first half +// Sequence E: 00001111 modulation with subcarrier during second half +// Sequence F: 00000000 no modulation with subcarrier +// READER TO CARD - miller +// Sequence X: 00001100 drop after half a period +// Sequence Y: 00000000 no drop +// Sequence Z: 11000000 drop at start +#define SEC_D 0xf0 +#define SEC_E 0x0f +#define SEC_F 0x00 +#define SEC_X 0x0c +#define SEC_Y 0x00 +#define SEC_Z 0xc0 + +const uint8_t OddByteParity[256] = { + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 +}; + + +void iso14a_set_trigger(int enable) { + trigger = enable; +} + +void iso14a_clear_trace(void) { + memset(trace, 0x44, TRACE_SIZE); + traceLen = 0; +} + +void iso14a_set_tracing(int enable) { + tracing = enable; +} + +void iso14a_set_timeout(uint32_t timeout) { + iso14a_timeout = timeout; +} + +//----------------------------------------------------------------------------- +// Generate the parity value for a byte sequence +// +//----------------------------------------------------------------------------- +byte_t oddparity (const byte_t bt) +{ + return OddByteParity[bt]; +} + +uint32_t GetParity(const uint8_t * pbtCmd, int iLen) +{ + int i; + uint32_t dwPar = 0; + + // Generate the encrypted data + for (i = 0; i < iLen; i++) { + // Save the encrypted parity bit + dwPar |= ((OddByteParity[pbtCmd[i]]) << i); + } + return dwPar; +} + +void AppendCrc14443a(uint8_t* data, int len) +{ + ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); +} + +// The function LogTrace() is also used by the iClass implementation in iClass.c +int RAMFUNC LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader) +{ + // Return when trace is full + if (traceLen >= TRACE_SIZE) return FALSE; + + // Trace the random, i'm curious + rsamples += iSamples; + trace[traceLen++] = ((rsamples >> 0) & 0xff); + trace[traceLen++] = ((rsamples >> 8) & 0xff); + trace[traceLen++] = ((rsamples >> 16) & 0xff); + trace[traceLen++] = ((rsamples >> 24) & 0xff); + if (!bReader) { + trace[traceLen - 1] |= 0x80; + } + trace[traceLen++] = ((dwParity >> 0) & 0xff); + trace[traceLen++] = ((dwParity >> 8) & 0xff); + trace[traceLen++] = ((dwParity >> 16) & 0xff); + trace[traceLen++] = ((dwParity >> 24) & 0xff); + trace[traceLen++] = iLen; + memcpy(trace + traceLen, btBytes, iLen); + traceLen += iLen; + return TRUE; +} + +//----------------------------------------------------------------------------- +// The software UART that receives commands from the reader, and its state +// variables. +//----------------------------------------------------------------------------- +static tUart Uart; + +static RAMFUNC int MillerDecoding(int bit) +{ + //int error = 0; + int bitright; + + if(!Uart.bitBuffer) { + Uart.bitBuffer = bit ^ 0xFF0; + return FALSE; + } + else { + Uart.bitBuffer <<= 4; + Uart.bitBuffer ^= bit; + } + + int EOC = FALSE; + + if(Uart.state != STATE_UNSYNCD) { + Uart.posCnt++; + + if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { + bit = 0x00; + } + else { + bit = 0x01; + } + if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { + bitright = 0x00; + } + else { + bitright = 0x01; + } + if(bit != bitright) { bit = bitright; } + + if(Uart.posCnt == 1) { + // measurement first half bitperiod + if(!bit) { + Uart.drop = DROP_FIRST_HALF; + } + } + else { + // measurement second half bitperiod + if(!bit & (Uart.drop == DROP_NONE)) { + Uart.drop = DROP_SECOND_HALF; + } + else if(!bit) { + // measured a drop in first and second half + // which should not be possible + Uart.state = STATE_ERROR_WAIT; + //error = 0x01; + } + + Uart.posCnt = 0; + + switch(Uart.state) { + case STATE_START_OF_COMMUNICATION: + Uart.shiftReg = 0; + if(Uart.drop == DROP_SECOND_HALF) { + // error, should not happen in SOC + Uart.state = STATE_ERROR_WAIT; + //error = 0x02; + } + else { + // correct SOC + Uart.state = STATE_MILLER_Z; + } + break; + + case STATE_MILLER_Z: + Uart.bitCnt++; + Uart.shiftReg >>= 1; + if(Uart.drop == DROP_NONE) { + // logic '0' followed by sequence Y + // end of communication + Uart.state = STATE_UNSYNCD; + EOC = TRUE; + } + // if(Uart.drop == DROP_FIRST_HALF) { + // Uart.state = STATE_MILLER_Z; stay the same + // we see a logic '0' } + if(Uart.drop == DROP_SECOND_HALF) { + // we see a logic '1' + Uart.shiftReg |= 0x100; + Uart.state = STATE_MILLER_X; + } + break; + + case STATE_MILLER_X: + Uart.shiftReg >>= 1; + if(Uart.drop == DROP_NONE) { + // sequence Y, we see a '0' + Uart.state = STATE_MILLER_Y; + Uart.bitCnt++; + } + if(Uart.drop == DROP_FIRST_HALF) { + // Would be STATE_MILLER_Z + // but Z does not follow X, so error + Uart.state = STATE_ERROR_WAIT; + //error = 0x03; + } + if(Uart.drop == DROP_SECOND_HALF) { + // We see a '1' and stay in state X + Uart.shiftReg |= 0x100; + Uart.bitCnt++; + } + break; + + case STATE_MILLER_Y: + Uart.bitCnt++; + Uart.shiftReg >>= 1; + if(Uart.drop == DROP_NONE) { + // logic '0' followed by sequence Y + // end of communication + Uart.state = STATE_UNSYNCD; + EOC = TRUE; + } + if(Uart.drop == DROP_FIRST_HALF) { + // we see a '0' + Uart.state = STATE_MILLER_Z; + } + if(Uart.drop == DROP_SECOND_HALF) { + // We see a '1' and go to state X + Uart.shiftReg |= 0x100; + Uart.state = STATE_MILLER_X; + } + break; + + case STATE_ERROR_WAIT: + // That went wrong. Now wait for at least two bit periods + // and try to sync again + if(Uart.drop == DROP_NONE) { + Uart.highCnt = 6; + Uart.state = STATE_UNSYNCD; + } + break; + + default: + Uart.state = STATE_UNSYNCD; + Uart.highCnt = 0; + break; + } + + Uart.drop = DROP_NONE; + + // should have received at least one whole byte... + if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { + return TRUE; + } + + if(Uart.bitCnt == 9) { + Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); + Uart.byteCnt++; + + Uart.parityBits <<= 1; + Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); + + if(EOC) { + // when End of Communication received and + // all data bits processed.. + return TRUE; + } + Uart.bitCnt = 0; + } + + /*if(error) { + Uart.output[Uart.byteCnt] = 0xAA; + Uart.byteCnt++; + Uart.output[Uart.byteCnt] = error & 0xFF; + Uart.byteCnt++; + Uart.output[Uart.byteCnt] = 0xAA; + Uart.byteCnt++; + Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; + Uart.byteCnt++; + Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; + Uart.byteCnt++; + Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; + Uart.byteCnt++; + Uart.output[Uart.byteCnt] = 0xAA; + Uart.byteCnt++; + return TRUE; + }*/ + } + + } + else { + bit = Uart.bitBuffer & 0xf0; + bit >>= 4; + bit ^= 0x0F; + if(bit) { + // should have been high or at least (4 * 128) / fc + // according to ISO this should be at least (9 * 128 + 20) / fc + if(Uart.highCnt == 8) { + // we went low, so this could be start of communication + // it turns out to be safer to choose a less significant + // syncbit... so we check whether the neighbour also represents the drop + Uart.posCnt = 1; // apparently we are busy with our first half bit period + Uart.syncBit = bit & 8; + Uart.samples = 3; + if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } + else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } + if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } + else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } + if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; + if(Uart.syncBit && (Uart.bitBuffer & 8)) { + Uart.syncBit = 8; + + // the first half bit period is expected in next sample + Uart.posCnt = 0; + Uart.samples = 3; + } + } + else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } + + Uart.syncBit <<= 4; + Uart.state = STATE_START_OF_COMMUNICATION; + Uart.drop = DROP_FIRST_HALF; + Uart.bitCnt = 0; + Uart.byteCnt = 0; + Uart.parityBits = 0; + //error = 0; + } + else { + Uart.highCnt = 0; + } + } + else { + if(Uart.highCnt < 8) { + Uart.highCnt++; + } + } + } + + return FALSE; +} + +//============================================================================= +// ISO 14443 Type A - Manchester +//============================================================================= +static tDemod Demod; + +static RAMFUNC int ManchesterDecoding(int v) +{ + int bit; + int modulation; + //int error = 0; + + if(!Demod.buff) { + Demod.buff = 1; + Demod.buffer = v; + return FALSE; + } + else { + bit = Demod.buffer; + Demod.buffer = v; + } + + if(Demod.state==DEMOD_UNSYNCD) { + Demod.output[Demod.len] = 0xfa; + Demod.syncBit = 0; + //Demod.samples = 0; + Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part + + if(bit & 0x08) { + Demod.syncBit = 0x08; + } + + if(bit & 0x04) { + if(Demod.syncBit) { + bit <<= 4; + } + Demod.syncBit = 0x04; + } + + if(bit & 0x02) { + if(Demod.syncBit) { + bit <<= 2; + } + Demod.syncBit = 0x02; + } + + if(bit & 0x01 && Demod.syncBit) { + Demod.syncBit = 0x01; + } + + if(Demod.syncBit) { + Demod.len = 0; + Demod.state = DEMOD_START_OF_COMMUNICATION; + Demod.sub = SUB_FIRST_HALF; + Demod.bitCount = 0; + Demod.shiftReg = 0; + Demod.parityBits = 0; + Demod.samples = 0; + if(Demod.posCount) { + if(trigger) LED_A_OFF(); + switch(Demod.syncBit) { + case 0x08: Demod.samples = 3; break; + case 0x04: Demod.samples = 2; break; + case 0x02: Demod.samples = 1; break; + case 0x01: Demod.samples = 0; break; + } + } + //error = 0; + } + } + else { + //modulation = bit & Demod.syncBit; + modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; + + Demod.samples += 4; + + if(Demod.posCount==0) { + Demod.posCount = 1; + if(modulation) { + Demod.sub = SUB_FIRST_HALF; + } + else { + Demod.sub = SUB_NONE; + } + } + else { + Demod.posCount = 0; + if(modulation && (Demod.sub == SUB_FIRST_HALF)) { + if(Demod.state!=DEMOD_ERROR_WAIT) { + Demod.state = DEMOD_ERROR_WAIT; + Demod.output[Demod.len] = 0xaa; + //error = 0x01; + } + } + else if(modulation) { + Demod.sub = SUB_SECOND_HALF; + } + + switch(Demod.state) { + case DEMOD_START_OF_COMMUNICATION: + if(Demod.sub == SUB_FIRST_HALF) { + Demod.state = DEMOD_MANCHESTER_D; + } + else { + Demod.output[Demod.len] = 0xab; + Demod.state = DEMOD_ERROR_WAIT; + //error = 0x02; + } + break; + + case DEMOD_MANCHESTER_D: + case DEMOD_MANCHESTER_E: + if(Demod.sub == SUB_FIRST_HALF) { + Demod.bitCount++; + Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; + Demod.state = DEMOD_MANCHESTER_D; + } + else if(Demod.sub == SUB_SECOND_HALF) { + Demod.bitCount++; + Demod.shiftReg >>= 1; + Demod.state = DEMOD_MANCHESTER_E; + } + else { + Demod.state = DEMOD_MANCHESTER_F; + } + break; + + case DEMOD_MANCHESTER_F: + // Tag response does not need to be a complete byte! + if(Demod.len > 0 || Demod.bitCount > 0) { + if(Demod.bitCount > 0) { + Demod.shiftReg >>= (9 - Demod.bitCount); + Demod.output[Demod.len] = Demod.shiftReg & 0xff; + Demod.len++; + // No parity bit, so just shift a 0 + Demod.parityBits <<= 1; + } + + Demod.state = DEMOD_UNSYNCD; + return TRUE; + } + else { + Demod.output[Demod.len] = 0xad; + Demod.state = DEMOD_ERROR_WAIT; + //error = 0x03; + } + break; + + case DEMOD_ERROR_WAIT: + Demod.state = DEMOD_UNSYNCD; + break; + + default: + Demod.output[Demod.len] = 0xdd; + Demod.state = DEMOD_UNSYNCD; + break; + } + + if(Demod.bitCount>=9) { + Demod.output[Demod.len] = Demod.shiftReg & 0xff; + Demod.len++; + + Demod.parityBits <<= 1; + Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); + + Demod.bitCount = 0; + Demod.shiftReg = 0; + } + + /*if(error) { + Demod.output[Demod.len] = 0xBB; + Demod.len++; + Demod.output[Demod.len] = error & 0xFF; + Demod.len++; + Demod.output[Demod.len] = 0xBB; + Demod.len++; + Demod.output[Demod.len] = bit & 0xFF; + Demod.len++; + Demod.output[Demod.len] = Demod.buffer & 0xFF; + Demod.len++; + Demod.output[Demod.len] = Demod.syncBit & 0xFF; + Demod.len++; + Demod.output[Demod.len] = 0xBB; + Demod.len++; + return TRUE; + }*/ + + } + + } // end (state != UNSYNCED) + + return FALSE; +} + +//============================================================================= +// Finally, a `sniffer' for ISO 14443 Type A +// Both sides of communication! +//============================================================================= + +//----------------------------------------------------------------------------- +// Record the sequence of commands sent by the reader to the tag, with +// triggering so that we start recording at the point that the tag is moved +// near the reader. +//----------------------------------------------------------------------------- +void RAMFUNC SnoopIso14443a(uint8_t param) { + // param: + // bit 0 - trigger from first card answer + // bit 1 - trigger from first reader 7-bit request + + LEDsoff(); + // init trace buffer + iso14a_clear_trace(); + + // We won't start recording the frames that we acquire until we trigger; + // a good trigger condition to get started is probably when we see a + // response from the tag. + // triggered == FALSE -- to wait first for card + int triggered = !(param & 0x03); + + // The command (reader -> tag) that we're receiving. + // The length of a received command will in most cases be no more than 18 bytes. + // So 32 should be enough! + uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); + // The response (tag -> reader) that we're receiving. + uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); + + // As we receive stuff, we copy it from receivedCmd or receivedResponse + // into trace, along with its length and other annotations. + //uint8_t *trace = (uint8_t *)BigBuf; + + // The DMA buffer, used to stream samples from the FPGA + int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; + int8_t *data = dmaBuf; + int maxDataLen = 0; + int dataLen = 0; + + // Set up the demodulator for tag -> reader responses. + Demod.output = receivedResponse; + Demod.len = 0; + Demod.state = DEMOD_UNSYNCD; + + // Set up the demodulator for the reader -> tag commands + memset(&Uart, 0, sizeof(Uart)); + Uart.output = receivedCmd; + Uart.byteCntMax = 32; // was 100 (greg)////////////////// + Uart.state = STATE_UNSYNCD; + + // Setup for the DMA. + FpgaSetupSsc(); + FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); + + // And put the FPGA in the appropriate mode + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + + // Count of samples received so far, so that we can include timing + // information in the trace buffer. + rsamples = 0; + // And now we loop, receiving samples. + while(true) { + if(BUTTON_PRESS()) { + DbpString("cancelled by button"); + goto done; + } + + LED_A_ON(); + WDT_HIT(); + + int register readBufDataP = data - dmaBuf; + int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; + if (readBufDataP <= dmaBufDataP){ + dataLen = dmaBufDataP - readBufDataP; + } else { + dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1; + } + // test for length of buffer + if(dataLen > maxDataLen) { + maxDataLen = dataLen; + if(dataLen > 400) { + Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); + goto done; + } + } + if(dataLen < 1) continue; + + // primary buffer was stopped( <-- we lost data! + if (!AT91C_BASE_PDC_SSC->PDC_RCR) { + AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; + AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; + } + // secondary buffer sets as primary, secondary buffer was stopped + if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { + AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; + AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; + } + + LED_A_OFF(); + + rsamples += 4; + if(MillerDecoding((data[0] & 0xF0) >> 4)) { + LED_C_ON(); + + // check - if there is a short 7bit request from reader + if ((!triggered) && (param & 0x02) && (Uart.byteCnt == 1) && (Uart.bitCnt = 9)) triggered = TRUE; + + if(triggered) { + if (!LogTrace(receivedCmd, Uart.byteCnt, 0 - Uart.samples, Uart.parityBits, TRUE)) break; + } + /* And ready to receive another command. */ + Uart.state = STATE_UNSYNCD; + /* And also reset the demod code, which might have been */ + /* false-triggered by the commands from the reader. */ + Demod.state = DEMOD_UNSYNCD; + LED_B_OFF(); + } + + if(ManchesterDecoding(data[0] & 0x0F)) { + LED_B_ON(); + + if (!LogTrace(receivedResponse, Demod.len, 0 - Demod.samples, Demod.parityBits, FALSE)) break; + + if ((!triggered) && (param & 0x01)) triggered = TRUE; + + // And ready to receive another response. + memset(&Demod, 0, sizeof(Demod)); + Demod.output = receivedResponse; + Demod.state = DEMOD_UNSYNCD; + LED_C_OFF(); + } + + data++; + if(data > dmaBuf + DMA_BUFFER_SIZE) { + data = dmaBuf; + } + } // main cycle + + DbpString("COMMAND FINISHED"); + +done: + AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; + Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen, Uart.state, Uart.byteCnt); + Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%08x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); + LEDsoff(); +} + +//----------------------------------------------------------------------------- +// Prepare tag messages +//----------------------------------------------------------------------------- +static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity) +{ + int i; + + ToSendReset(); + + // Correction bit, might be removed when not needed + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(1); // 1 + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + + // Send startbit + ToSend[++ToSendMax] = SEC_D; + + for(i = 0; i < len; i++) { + int j; + uint8_t b = cmd[i]; + + // Data bits + for(j = 0; j < 8; j++) { + if(b & 1) { + ToSend[++ToSendMax] = SEC_D; + } else { + ToSend[++ToSendMax] = SEC_E; + } + b >>= 1; + } + + // Get the parity bit + if ((dwParity >> i) & 0x01) { + ToSend[++ToSendMax] = SEC_D; + } else { + ToSend[++ToSendMax] = SEC_E; + } + } + + // Send stopbit + ToSend[++ToSendMax] = SEC_F; + + // Convert from last byte pos to length + ToSendMax++; +} + +static void CodeIso14443aAsTag(const uint8_t *cmd, int len){ + CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len)); +} + +//----------------------------------------------------------------------------- +// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 +//----------------------------------------------------------------------------- +static void CodeStrangeAnswerAsTag() +{ + int i; + + ToSendReset(); + + // Correction bit, might be removed when not needed + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(1); // 1 + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + + // Send startbit + ToSend[++ToSendMax] = SEC_D; + + // 0 + ToSend[++ToSendMax] = SEC_E; + + // 0 + ToSend[++ToSendMax] = SEC_E; + + // 1 + ToSend[++ToSendMax] = SEC_D; + + // Send stopbit + ToSend[++ToSendMax] = SEC_F; + + // Flush the buffer in FPGA!! + for(i = 0; i < 5; i++) { + ToSend[++ToSendMax] = SEC_F; + } + + // Convert from last byte pos to length + ToSendMax++; +} + +static void Code4bitAnswerAsTag(uint8_t cmd) +{ + int i; + + ToSendReset(); + + // Correction bit, might be removed when not needed + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(1); // 1 + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + + // Send startbit + ToSend[++ToSendMax] = SEC_D; + + uint8_t b = cmd; + for(i = 0; i < 4; i++) { + if(b & 1) { + ToSend[++ToSendMax] = SEC_D; + } else { + ToSend[++ToSendMax] = SEC_E; + } + b >>= 1; + } + + // Send stopbit + ToSend[++ToSendMax] = SEC_F; + + // Flush the buffer in FPGA!! + for(i = 0; i < 5; i++) { + ToSend[++ToSendMax] = SEC_F; + } + + // Convert from last byte pos to length + ToSendMax++; +} + +//----------------------------------------------------------------------------- +// Wait for commands from reader +// Stop when button is pressed +// Or return TRUE when command is captured +//----------------------------------------------------------------------------- +static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen) +{ + // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen + // only, since we are receiving, not transmitting). + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); + + // Now run a `software UART' on the stream of incoming samples. + Uart.output = received; + Uart.byteCntMax = maxLen; + Uart.state = STATE_UNSYNCD; + + for(;;) { + WDT_HIT(); + + if(BUTTON_PRESS()) return FALSE; + + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + if(MillerDecoding((b & 0xf0) >> 4)) { + *len = Uart.byteCnt; + return TRUE; + } + if(MillerDecoding(b & 0x0f)) { + *len = Uart.byteCnt; + return TRUE; + } + } + } +} +static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded); + +//----------------------------------------------------------------------------- +// Main loop of simulated tag: receive commands from reader, decide what +// response to send, and send it. +//----------------------------------------------------------------------------- +void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd) +{ + // Enable and clear the trace + tracing = TRUE; + iso14a_clear_trace(); + + // This function contains the tag emulation + uint8_t sak; + + // The first response contains the ATQA (note: bytes are transmitted in reverse order). + uint8_t response1[2]; + + switch (tagType) { + case 1: { // MIFARE Classic + // Says: I am Mifare 1k - original line + response1[0] = 0x04; + response1[1] = 0x00; + sak = 0x08; + } break; + case 2: { // MIFARE Ultralight + // Says: I am a stupid memory tag, no crypto + response1[0] = 0x04; + response1[1] = 0x00; + sak = 0x00; + } break; + case 3: { // MIFARE DESFire + // Says: I am a DESFire tag, ph33r me + response1[0] = 0x04; + response1[1] = 0x03; + sak = 0x20; + } break; + case 4: { // ISO/IEC 14443-4 + // Says: I am a javacard (JCOP) + response1[0] = 0x04; + response1[1] = 0x00; + sak = 0x28; + } break; + default: { + Dbprintf("Error: unkown tagtype (%d)",tagType); + return; + } break; + } + + // The second response contains the (mandatory) first 24 bits of the UID + uint8_t response2[5]; + + // Check if the uid uses the (optional) part + uint8_t response2a[5]; + if (uid_2nd) { + response2[0] = 0x88; + num_to_bytes(uid_1st,3,response2+1); + num_to_bytes(uid_2nd,4,response2a); + response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3]; + + // Configure the ATQA and SAK accordingly + response1[0] |= 0x40; + sak |= 0x04; + } else { + num_to_bytes(uid_1st,4,response2); + // Configure the ATQA and SAK accordingly + response1[0] &= 0xBF; + sak &= 0xFB; + } + + // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID. + response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; + + // Prepare the mandatory SAK (for 4 and 7 byte UID) + uint8_t response3[3]; + response3[0] = sak; + ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); + + // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit + uint8_t response3a[3]; + response3a[0] = sak & 0xFB; + ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); + + uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce + uint8_t response6[] = { 0x03, 0x3B, 0x00, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS + ComputeCrc14443(CRC_14443_A, response6, 3, &response6[3], &response6[4]); + + uint8_t *resp; + int respLen; + + // Longest possible response will be 16 bytes + 2 CRC = 18 bytes + // This will need + // 144 data bits (18 * 8) + // 18 parity bits + // 2 Start and stop + // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) + // 1 just for the case + // ----------- + + // 166 + // + // 166 bytes, since every bit that needs to be send costs us a byte + // + + // Respond with card type + uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); + int resp1Len; + + // Anticollision cascade1 - respond with uid + uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 166); + int resp2Len; + + // Anticollision cascade2 - respond with 2nd half of uid if asked + // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88 + uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140); + int resp2aLen; + + // Acknowledge select - cascade 1 + uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*2)); + int resp3Len; + + // Acknowledge select - cascade 2 + uint8_t *resp3a = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*3)); + int resp3aLen; + + // Response to a read request - not implemented atm + uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*4)); + int resp4Len; + + // Authenticate response - nonce + uint8_t *resp5 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*5)); + int resp5Len; + + // Authenticate response - nonce + uint8_t *resp6 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*6)); + int resp6Len; + + uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); + int len; + + // To control where we are in the protocol + int order = 0; + int lastorder; + + // Just to allow some checks + int happened = 0; + int happened2 = 0; + + int cmdsRecvd = 0; + uint8_t* respdata = NULL; + int respsize = 0; + uint8_t nack = 0x04; + + memset(receivedCmd, 0x44, RECV_CMD_SIZE); + + // Prepare the responses of the anticollision phase + // there will be not enough time to do this at the moment the reader sends it REQA + + // Answer to request + CodeIso14443aAsTag(response1, sizeof(response1)); + memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; + + // Send our UID (cascade 1) + CodeIso14443aAsTag(response2, sizeof(response2)); + memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; + + // Answer to select (cascade1) + CodeIso14443aAsTag(response3, sizeof(response3)); + memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; + + // Send the cascade 2 2nd part of the uid + CodeIso14443aAsTag(response2a, sizeof(response2a)); + memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax; + + // Answer to select (cascade 2) + CodeIso14443aAsTag(response3a, sizeof(response3a)); + memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax; + + // Strange answer is an example of rare message size (3 bits) + CodeStrangeAnswerAsTag(); + memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; + + // Authentication answer (random nonce) + CodeIso14443aAsTag(response5, sizeof(response5)); + memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax; + + // dummy ATS (pseudo-ATR), answer to RATS + CodeIso14443aAsTag(response6, sizeof(response6)); + memcpy(resp6, ToSend, ToSendMax); resp6Len = ToSendMax; + + // We need to listen to the high-frequency, peak-detected path. + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + FpgaSetupSsc(); + + cmdsRecvd = 0; + + LED_A_ON(); + for(;;) { + + if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) { + DbpString("button press"); + break; + } + // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated + // Okay, look at the command now. + lastorder = order; + if(receivedCmd[0] == 0x26) { // Received a REQUEST + resp = resp1; respLen = resp1Len; order = 1; + respdata = response1; + respsize = sizeof(response1); + } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP + resp = resp1; respLen = resp1Len; order = 6; + respdata = response1; + respsize = sizeof(response1); + } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1) + resp = resp2; respLen = resp2Len; order = 2; + respdata = response2; + respsize = sizeof(response2); + } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2) + resp = resp2a; respLen = resp2aLen; order = 20; + respdata = response2a; + respsize = sizeof(response2a); + } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1) + resp = resp3; respLen = resp3Len; order = 3; + respdata = response3; + respsize = sizeof(response3); + } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2) + resp = resp3a; respLen = resp3aLen; order = 30; + respdata = response3a; + respsize = sizeof(response3a); + } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ + resp = resp4; respLen = resp4Len; order = 4; // Do nothing + Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]); + respdata = &nack; + respsize = sizeof(nack); // 4-bit answer + } else if(receivedCmd[0] == 0x50) { // Received a HALT + DbpString("Reader requested we HALT!:"); + // Do not respond + resp = resp1; respLen = 0; order = 0; + respdata = NULL; + respsize = 0; + } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request + resp = resp5; respLen = resp5Len; order = 7; + respdata = response5; + respsize = sizeof(response5); + } else if(receivedCmd[0] == 0xE0) { // Received a RATS request + resp = resp6; respLen = resp6Len; order = 70; + respdata = response6; + respsize = sizeof(response6); + } else { + // Never seen this command before + Dbprintf("Received (len=%d): %02x %02x %02x %02x %02x %02x %02x %02x %02x", + len, + receivedCmd[0], receivedCmd[1], receivedCmd[2], + receivedCmd[3], receivedCmd[4], receivedCmd[5], + receivedCmd[6], receivedCmd[7], receivedCmd[8]); + // Do not respond + resp = resp1; respLen = 0; order = 0; + respdata = NULL; + respsize = 0; + } + + // Count number of wakeups received after a halt + if(order == 6 && lastorder == 5) { happened++; } + + // Count number of other messages after a halt + if(order != 6 && lastorder == 5) { happened2++; } + + // Look at last parity bit to determine timing of answer + if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { + // 1236, so correction bit needed + //i = 0; + } + + if(cmdsRecvd > 999) { + DbpString("1000 commands later..."); + break; + } else { + cmdsRecvd++; + } + + if(respLen > 0) { + EmSendCmd14443aRaw(resp, respLen, receivedCmd[0] == 0x52); + } + + if (tracing) { + LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE); + if (respdata != NULL) { + LogTrace(respdata,respsize, 0, SwapBits(GetParity(respdata,respsize),respsize), FALSE); + } + if(traceLen > TRACE_SIZE) { + DbpString("Trace full"); + break; + } + } + + memset(receivedCmd, 0x44, RECV_CMD_SIZE); + } + + Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); + LED_A_OFF(); +} + +//----------------------------------------------------------------------------- +// Transmit the command (to the tag) that was placed in ToSend[]. +//----------------------------------------------------------------------------- +static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait) +{ + int c; + + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + + if (wait) + if(*wait < 10) + *wait = 10; + + for(c = 0; c < *wait;) { + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! + c++; + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; + (void)r; + } + WDT_HIT(); + } + + c = 0; + for(;;) { + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = cmd[c]; + c++; + if(c >= len) { + break; + } + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; + (void)r; + } + WDT_HIT(); + } + if (samples) *samples = (c + *wait) << 3; +} + +//----------------------------------------------------------------------------- +// Code a 7-bit command without parity bit +// This is especially for 0x26 and 0x52 (REQA and WUPA) +//----------------------------------------------------------------------------- +void ShortFrameFromReader(const uint8_t bt) +{ + int j; + int last; + uint8_t b; + + ToSendReset(); + + // Start of Communication (Seq. Z) + ToSend[++ToSendMax] = SEC_Z; + last = 0; + + b = bt; + for(j = 0; j < 7; j++) { + if(b & 1) { + // Sequence X + ToSend[++ToSendMax] = SEC_X; + last = 1; + } else { + if(last == 0) { + // Sequence Z + ToSend[++ToSendMax] = SEC_Z; + } + else { + // Sequence Y + ToSend[++ToSendMax] = SEC_Y; + last = 0; + } + } + b >>= 1; + } + + // End of Communication + if(last == 0) { + // Sequence Z + ToSend[++ToSendMax] = SEC_Z; + } + else { + // Sequence Y + ToSend[++ToSendMax] = SEC_Y; + last = 0; + } + // Sequence Y + ToSend[++ToSendMax] = SEC_Y; + + // Just to be sure! + ToSend[++ToSendMax] = SEC_Y; + ToSend[++ToSendMax] = SEC_Y; + ToSend[++ToSendMax] = SEC_Y; + + // Convert from last character reference to length + ToSendMax++; +} + +//----------------------------------------------------------------------------- +// Prepare reader command to send to FPGA +// +//----------------------------------------------------------------------------- +void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) +{ + int i, j; + int last; + uint8_t b; + + ToSendReset(); + + // Start of Communication (Seq. Z) + ToSend[++ToSendMax] = SEC_Z; + last = 0; + + // Generate send structure for the data bits + for (i = 0; i < len; i++) { + // Get the current byte to send + b = cmd[i]; + + for (j = 0; j < 8; j++) { + if (b & 1) { + // Sequence X + ToSend[++ToSendMax] = SEC_X; + last = 1; + } else { + if (last == 0) { + // Sequence Z + ToSend[++ToSendMax] = SEC_Z; + } else { + // Sequence Y + ToSend[++ToSendMax] = SEC_Y; + last = 0; + } + } + b >>= 1; + } + + // Get the parity bit + if ((dwParity >> i) & 0x01) { + // Sequence X + ToSend[++ToSendMax] = SEC_X; + last = 1; + } else { + if (last == 0) { + // Sequence Z + ToSend[++ToSendMax] = SEC_Z; + } else { + // Sequence Y + ToSend[++ToSendMax] = SEC_Y; + last = 0; + } + } + } + + // End of Communication + if (last == 0) { + // Sequence Z + ToSend[++ToSendMax] = SEC_Z; + } else { + // Sequence Y + ToSend[++ToSendMax] = SEC_Y; + last = 0; + } + // Sequence Y + ToSend[++ToSendMax] = SEC_Y; + + // Just to be sure! + ToSend[++ToSendMax] = SEC_Y; + ToSend[++ToSendMax] = SEC_Y; + ToSend[++ToSendMax] = SEC_Y; + + // Convert from last character reference to length + ToSendMax++; +} + +//----------------------------------------------------------------------------- +// Wait for commands from reader +// Stop when button is pressed (return 1) or field was gone (return 2) +// Or return 0 when command is captured +//----------------------------------------------------------------------------- +static int EmGetCmd(uint8_t *received, int *len, int maxLen) +{ + *len = 0; + + uint32_t timer = 0, vtime = 0; + int analogCnt = 0; + int analogAVG = 0; + + // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen + // only, since we are receiving, not transmitting). + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); + + // Set ADC to read field strength + AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; + AT91C_BASE_ADC->ADC_MR = + ADC_MODE_PRESCALE(32) | + ADC_MODE_STARTUP_TIME(16) | + ADC_MODE_SAMPLE_HOLD_TIME(8); + AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); + // start ADC + AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; + + // Now run a 'software UART' on the stream of incoming samples. + Uart.output = received; + Uart.byteCntMax = maxLen; + Uart.state = STATE_UNSYNCD; + + for(;;) { + WDT_HIT(); + + if (BUTTON_PRESS()) return 1; + + // test if the field exists + if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) { + analogCnt++; + analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; + AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; + if (analogCnt >= 32) { + if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { + vtime = GetTickCount(); + if (!timer) timer = vtime; + // 50ms no field --> card to idle state + if (vtime - timer > 50) return 2; + } else + if (timer) timer = 0; + analogCnt = 0; + analogAVG = 0; + } + } + // transmit none + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; + } + // receive and test the miller decoding + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + if(MillerDecoding((b & 0xf0) >> 4)) { + *len = Uart.byteCnt; + if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE); + return 0; + } + if(MillerDecoding(b & 0x0f)) { + *len = Uart.byteCnt; + if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE); + return 0; + } + } + } +} + +static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded) +{ + int i, u = 0; + uint8_t b = 0; + + // Modulate Manchester + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); + AT91C_BASE_SSC->SSC_THR = 0x00; + FpgaSetupSsc(); + + // include correction bit + i = 1; + if((Uart.parityBits & 0x01) || correctionNeeded) { + // 1236, so correction bit needed + i = 0; + } + + // send cycle + for(;;) { + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + (void)b; + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + if(i > respLen) { + b = 0xff; // was 0x00 + u++; + } else { + b = resp[i]; + i++; + } + AT91C_BASE_SSC->SSC_THR = b; + + if(u > 4) break; + } + if(BUTTON_PRESS()) { + break; + } + } + + return 0; +} + +int EmSend4bitEx(uint8_t resp, int correctionNeeded){ + Code4bitAnswerAsTag(resp); + int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); + if (tracing) LogTrace(&resp, 1, GetDeltaCountUS(), GetParity(&resp, 1), FALSE); + return res; +} + +int EmSend4bit(uint8_t resp){ + return EmSend4bitEx(resp, 0); +} + +int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par){ + CodeIso14443aAsTagPar(resp, respLen, par); + int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); + if (tracing) LogTrace(resp, respLen, GetDeltaCountUS(), par, FALSE); + return res; +} + +int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){ + return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen)); +} + +int EmSendCmd(uint8_t *resp, int respLen){ + return EmSendCmdExPar(resp, respLen, 0, GetParity(resp, respLen)); +} + +int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){ + return EmSendCmdExPar(resp, respLen, 0, par); +} + +//----------------------------------------------------------------------------- +// Wait a certain time for tag response +// If a response is captured return TRUE +// If it takes to long return FALSE +//----------------------------------------------------------------------------- +static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer +{ + // buffer needs to be 512 bytes + int c; + + // Set FPGA mode to "reader listen mode", no modulation (listen + // only, since we are receiving, not transmitting). + // Signal field is on with the appropriate LED + LED_D_ON(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); + + // Now get the answer from the card + Demod.output = receivedResponse; + Demod.len = 0; + Demod.state = DEMOD_UNSYNCD; + + uint8_t b; + if (elapsed) *elapsed = 0; + + c = 0; + for(;;) { + WDT_HIT(); + + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! + if (elapsed) (*elapsed)++; + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + if(c < iso14a_timeout) { c++; } else { return FALSE; } + b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + if(ManchesterDecoding((b>>4) & 0xf)) { + *samples = ((c - 1) << 3) + 4; + return TRUE; + } + if(ManchesterDecoding(b & 0x0f)) { + *samples = c << 3; + return TRUE; + } + } + } +} + +void ReaderTransmitShort(const uint8_t* bt) +{ + int wait = 0; + int samples = 0; + + ShortFrameFromReader(*bt); + + // Select the card + TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); + + // Store reader command in buffer + if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE); +} + +void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par) +{ + int wait = 0; + int samples = 0; + + // This is tied to other size changes + // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; + CodeIso14443aAsReaderPar(frame,len,par); + + // Select the card + TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); + if(trigger) + LED_A_ON(); + + // Store reader command in buffer + if (tracing) LogTrace(frame,len,0,par,TRUE); +} + + +void ReaderTransmit(uint8_t* frame, int len) +{ + // Generate parity and redirect + ReaderTransmitPar(frame,len,GetParity(frame,len)); +} + +int ReaderReceive(uint8_t* receivedAnswer) +{ + int samples = 0; + if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE; + if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); + if(samples == 0) return FALSE; + return Demod.len; +} + +int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr) +{ + int samples = 0; + if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE; + if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); + *parptr = Demod.parityBits; + if(samples == 0) return FALSE; + return Demod.len; +} + +/* performs iso14443a anticolision procedure + * fills the uid pointer unless NULL + * fills resp_data unless NULL */ +int iso14443a_select_card(uint8_t * uid_ptr, iso14a_card_select_t * resp_data, uint32_t * cuid_ptr) { + uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP + uint8_t sel_all[] = { 0x93,0x20 }; + uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; + uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 + + uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes + + uint8_t sak = 0x04; // cascade uid + int cascade_level = 0; + + int len; + + // clear uid + memset(uid_ptr, 0, 8); + + // Broadcast for a card, WUPA (0x52) will force response from all cards in the field + ReaderTransmitShort(wupa); + // Receive the ATQA + if(!ReaderReceive(resp)) return 0; + + if(resp_data) + memcpy(resp_data->atqa, resp, 2); + + // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in + // which case we need to make a cascade 2 request and select - this is a long UID + // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. + for(; sak & 0x04; cascade_level++) + { + // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) + sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; + + // SELECT_ALL + ReaderTransmit(sel_all,sizeof(sel_all)); + if (!ReaderReceive(resp)) return 0; + if(uid_ptr) memcpy(uid_ptr + cascade_level*4, resp, 4); + + // calculate crypto UID + if(cuid_ptr) *cuid_ptr = bytes_to_num(resp, 4); + + // Construct SELECT UID command + memcpy(sel_uid+2,resp,5); + AppendCrc14443a(sel_uid,7); + ReaderTransmit(sel_uid,sizeof(sel_uid)); + + // Receive the SAK + if (!ReaderReceive(resp)) return 0; + sak = resp[0]; + } + if(resp_data) { + resp_data->sak = sak; + resp_data->ats_len = 0; + } + //-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3 + if (uid_ptr[0] == 0x88) { + memcpy(uid_ptr, uid_ptr + 1, 7); + uid_ptr[7] = 0; + } + + if( (sak & 0x20) == 0) + return 2; // non iso14443a compliant tag + + // Request for answer to select + if(resp_data) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!! + AppendCrc14443a(rats, 2); + ReaderTransmit(rats, sizeof(rats)); + + if (!(len = ReaderReceive(resp))) return 0; + + memcpy(resp_data->ats, resp, sizeof(resp_data->ats)); + resp_data->ats_len = len; + } + + // reset the PCB block number + iso14_pcb_blocknum = 0; + + return 1; +} + +void iso14443a_setup() { + // Setup SSC + FpgaSetupSsc(); + // Start from off (no field generated) + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelay(200); + + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + + // Now give it time to spin up. + // Signal field is on with the appropriate LED + LED_D_ON(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + SpinDelay(200); + + iso14a_timeout = 2048; //default +} + +int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { + uint8_t real_cmd[cmd_len+4]; + real_cmd[0] = 0x0a; //I-Block + // put block number into the PCB + real_cmd[0] |= iso14_pcb_blocknum; + real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards + memcpy(real_cmd+2, cmd, cmd_len); + AppendCrc14443a(real_cmd,cmd_len+2); + + ReaderTransmit(real_cmd, cmd_len+4); + size_t len = ReaderReceive(data); + uint8_t * data_bytes = (uint8_t *) data; + if (!len) + return 0; //DATA LINK ERROR + // if we received an I- or R(ACK)-Block with a block number equal to the + // current block number, toggle the current block number + else if (len >= 4 // PCB+CID+CRC = 4 bytes + && ((data_bytes[0] & 0xC0) == 0 // I-Block + || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0 + && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers + { + iso14_pcb_blocknum ^= 1; + } + + return len; +} + +//----------------------------------------------------------------------------- +// Read an ISO 14443a tag. Send out commands and store answers. +// +//----------------------------------------------------------------------------- +void ReaderIso14443a(UsbCommand * c, UsbCommand * ack) +{ + iso14a_command_t param = c->arg[0]; + uint8_t * cmd = c->d.asBytes; + size_t len = c->arg[1]; + + if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(1); + + if(param & ISO14A_CONNECT) { + iso14443a_setup(); + ack->arg[0] = iso14443a_select_card(ack->d.asBytes, (iso14a_card_select_t *) (ack->d.asBytes+12), NULL); + UsbSendPacket((void *)ack, sizeof(UsbCommand)); + } + + if(param & ISO14A_SET_TIMEOUT) { + iso14a_timeout = c->arg[2]; + } + + if(param & ISO14A_SET_TIMEOUT) { + iso14a_timeout = c->arg[2]; + } + + if(param & ISO14A_APDU) { + ack->arg[0] = iso14_apdu(cmd, len, ack->d.asBytes); + UsbSendPacket((void *)ack, sizeof(UsbCommand)); + } + + if(param & ISO14A_RAW) { + if(param & ISO14A_APPEND_CRC) { + AppendCrc14443a(cmd,len); + len += 2; + } + ReaderTransmit(cmd,len); + ack->arg[0] = ReaderReceive(ack->d.asBytes); + UsbSendPacket((void *)ack, sizeof(UsbCommand)); + } + + if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(0); + + if(param & ISO14A_NO_DISCONNECT) + return; + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LEDsoff(); +} + +//----------------------------------------------------------------------------- +// Read an ISO 14443a tag. Send out commands and store answers. +// +//----------------------------------------------------------------------------- +void ReaderMifare(uint32_t parameter) +{ + // Mifare AUTH + uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; + uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; + + uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes + traceLen = 0; + tracing = false; + + iso14443a_setup(); + + LED_A_ON(); + LED_B_OFF(); + LED_C_OFF(); + + byte_t nt_diff = 0; + LED_A_OFF(); + byte_t par = 0; + //byte_t par_mask = 0xff; + byte_t par_low = 0; + int led_on = TRUE; + uint8_t uid[8]; + uint32_t cuid; + + tracing = FALSE; + byte_t nt[4] = {0,0,0,0}; + byte_t nt_attacked[4], nt_noattack[4]; + byte_t par_list[8] = {0,0,0,0,0,0,0,0}; + byte_t ks_list[8] = {0,0,0,0,0,0,0,0}; + num_to_bytes(parameter, 4, nt_noattack); + int isOK = 0, isNULL = 0; + + while(TRUE) + { + LED_C_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelay(50); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + LED_C_ON(); + SpinDelay(2); + + // Test if the action was cancelled + if(BUTTON_PRESS()) { + break; + } + + if(!iso14443a_select_card(uid, NULL, &cuid)) continue; + + // Transmit MIFARE_CLASSIC_AUTH + ReaderTransmit(mf_auth, sizeof(mf_auth)); + + // Receive the (16 bit) "random" nonce + if (!ReaderReceive(receivedAnswer)) continue; + memcpy(nt, receivedAnswer, 4); + + // Transmit reader nonce and reader answer + ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar),par); + + // Receive 4 bit answer + if (ReaderReceive(receivedAnswer)) + { + if ( (parameter != 0) && (memcmp(nt, nt_noattack, 4) == 0) ) continue; + + isNULL = !(nt_attacked[0] == 0) && (nt_attacked[1] == 0) && (nt_attacked[2] == 0) && (nt_attacked[3] == 0); + if ( (isNULL != 0 ) && (memcmp(nt, nt_attacked, 4) != 0) ) continue; + + if (nt_diff == 0) + { + LED_A_ON(); + memcpy(nt_attacked, nt, 4); + //par_mask = 0xf8; + par_low = par & 0x07; + } + + led_on = !led_on; + if(led_on) LED_B_ON(); else LED_B_OFF(); + par_list[nt_diff] = par; + ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; + + // Test if the information is complete + if (nt_diff == 0x07) { + isOK = 1; + break; + } + + nt_diff = (nt_diff + 1) & 0x07; + mf_nr_ar[3] = nt_diff << 5; + par = par_low; + } else { + if (nt_diff == 0) + { + par++; + } else { + par = (((par >> 3) + 1) << 3) | par_low; + } + } + } + + LogTrace(nt, 4, 0, GetParity(nt, 4), TRUE); + LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE); + LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE); + + UsbCommand ack = {CMD_ACK, {isOK, 0, 0}}; + memcpy(ack.d.asBytes + 0, uid, 4); + memcpy(ack.d.asBytes + 4, nt, 4); + memcpy(ack.d.asBytes + 8, par_list, 8); + memcpy(ack.d.asBytes + 16, ks_list, 8); + + LED_B_ON(); + UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand)); + LED_B_OFF(); + + // Thats it... + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LEDsoff(); + tracing = TRUE; + + if (MF_DBGLEVEL >= 1) DbpString("COMMAND mifare FINISHED"); +} + + +//----------------------------------------------------------------------------- +// MIFARE 1K simulate. +// +//----------------------------------------------------------------------------- +void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) +{ + int cardSTATE = MFEMUL_NOFIELD; + int _7BUID = 0; + int vHf = 0; // in mV + //int nextCycleTimeout = 0; + int res; +// uint32_t timer = 0; + uint32_t selTimer = 0; + uint32_t authTimer = 0; + uint32_t par = 0; + int len = 0; + uint8_t cardWRBL = 0; + uint8_t cardAUTHSC = 0; + uint8_t cardAUTHKEY = 0xff; // no authentication + //uint32_t cardRn = 0; + uint32_t cardRr = 0; + uint32_t cuid = 0; + //uint32_t rn_enc = 0; + uint32_t ans = 0; + uint32_t cardINTREG = 0; + uint8_t cardINTBLOCK = 0; + struct Crypto1State mpcs = {0, 0}; + struct Crypto1State *pcs; + pcs = &mpcs; + + uint8_t* receivedCmd = eml_get_bigbufptr_recbuf(); + uint8_t *response = eml_get_bigbufptr_sendbuf(); + + static uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID + + static uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; + static uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!! + + static uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; + static uint8_t rSAK1[] = {0x04, 0xda, 0x17}; + + static uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; +// static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f}; + static uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; + + // clear trace + traceLen = 0; + tracing = true; + + // Authenticate response - nonce + uint32_t nonce = bytes_to_num(rAUTH_NT, 4); + + // get UID from emul memory + emlGetMemBt(receivedCmd, 7, 1); + _7BUID = !(receivedCmd[0] == 0x00); + if (!_7BUID) { // ---------- 4BUID + rATQA[0] = 0x04; + + emlGetMemBt(rUIDBCC1, 0, 4); + rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; + } else { // ---------- 7BUID + rATQA[0] = 0x44; + + rUIDBCC1[0] = 0x88; + emlGetMemBt(&rUIDBCC1[1], 0, 3); + rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; + emlGetMemBt(rUIDBCC2, 3, 4); + rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; + } + +// -------------------------------------- test area + +// -------------------------------------- END test area + // start mkseconds counter + StartCountUS(); + + // We need to listen to the high-frequency, peak-detected path. + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + FpgaSetupSsc(); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); + SpinDelay(200); + + if (MF_DBGLEVEL >= 1) Dbprintf("Started. 7buid=%d", _7BUID); + // calibrate mkseconds counter + GetDeltaCountUS(); + while (true) { + WDT_HIT(); + + if(BUTTON_PRESS()) { + break; + } + + // find reader field + // Vref = 3300mV, and an 10:1 voltage divider on the input + // can measure voltages up to 33000 mV + if (cardSTATE == MFEMUL_NOFIELD) { + vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; + if (vHf > MF_MINFIELDV) { + cardSTATE_TO_IDLE(); + LED_A_ON(); + } + } + + if (cardSTATE != MFEMUL_NOFIELD) { + res = EmGetCmd(receivedCmd, &len, RECV_CMD_SIZE); // (+ nextCycleTimeout) + if (res == 2) { + cardSTATE = MFEMUL_NOFIELD; + LEDsoff(); + continue; + } + if(res) break; + } + + //nextCycleTimeout = 0; + +// if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]); + + if (len != 4 && cardSTATE != MFEMUL_NOFIELD) { // len != 4 <---- speed up the code 4 authentication + // REQ or WUP request in ANY state and WUP in HALTED state + if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) { + selTimer = GetTickCount(); + EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52)); + cardSTATE = MFEMUL_SELECT1; + + // init crypto block + LED_B_OFF(); + LED_C_OFF(); + crypto1_destroy(pcs); + cardAUTHKEY = 0xff; + } + } + + switch (cardSTATE) { + case MFEMUL_NOFIELD:{ + break; + } + case MFEMUL_HALTED:{ + break; + } + case MFEMUL_IDLE:{ + break; + } + case MFEMUL_SELECT1:{ + // select all + if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) { + EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1)); + break; + } + + // select card + if (len == 9 && + (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { + if (!_7BUID) + EmSendCmd(rSAK, sizeof(rSAK)); + else + EmSendCmd(rSAK1, sizeof(rSAK1)); + + cuid = bytes_to_num(rUIDBCC1, 4); + if (!_7BUID) { + cardSTATE = MFEMUL_WORK; + LED_B_ON(); + if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); + break; + } else { + cardSTATE = MFEMUL_SELECT2; + break; + } + } + + break; + } + case MFEMUL_SELECT2:{ + if (!len) break; + + if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) { + EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); + break; + } + + // select 2 card + if (len == 9 && + (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { + EmSendCmd(rSAK, sizeof(rSAK)); + + cuid = bytes_to_num(rUIDBCC2, 4); + cardSTATE = MFEMUL_WORK; + LED_B_ON(); + if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); + break; + } + + // i guess there is a command). go into the work state. + if (len != 4) break; + cardSTATE = MFEMUL_WORK; + goto lbWORK; + } + case MFEMUL_AUTH1:{ + if (len == 8) { + // --- crypto + //rn_enc = bytes_to_num(receivedCmd, 4); + //cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1); + cardRr = bytes_to_num(&receivedCmd[4], 4) ^ crypto1_word(pcs, 0, 0); + // test if auth OK + if (cardRr != prng_successor(nonce, 64)){ + if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr, prng_successor(nonce, 64)); + cardSTATE_TO_IDLE(); + break; + } + ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); + num_to_bytes(ans, 4, rAUTH_AT); + // --- crypto + EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); + cardSTATE = MFEMUL_AUTH2; + } else { + cardSTATE_TO_IDLE(); + } + if (cardSTATE != MFEMUL_AUTH2) break; + } + case MFEMUL_AUTH2:{ + LED_C_ON(); + cardSTATE = MFEMUL_WORK; + if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer); + break; + } + case MFEMUL_WORK:{ +lbWORK: if (len == 0) break; + + if (cardAUTHKEY == 0xff) { + // first authentication + if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { + authTimer = GetTickCount(); + + cardAUTHSC = receivedCmd[1] / 4; // received block num + cardAUTHKEY = receivedCmd[0] - 0x60; + + // --- crypto + crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); + ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); + num_to_bytes(nonce, 4, rAUTH_AT); + EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); + // --- crypto + +// last working revision +// EmSendCmd14443aRaw(resp1, resp1Len, 0); +// LogTrace(NULL, 0, GetDeltaCountUS(), 0, true); + + cardSTATE = MFEMUL_AUTH1; + //nextCycleTimeout = 10; + break; + } + } else { + // decrypt seqence + mf_crypto1_decrypt(pcs, receivedCmd, len); + + // nested authentication + if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { + authTimer = GetTickCount(); + + cardAUTHSC = receivedCmd[1] / 4; // received block num + cardAUTHKEY = receivedCmd[0] - 0x60; + + // --- crypto + crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); + ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); + num_to_bytes(ans, 4, rAUTH_AT); + EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); + // --- crypto + + cardSTATE = MFEMUL_AUTH1; + //nextCycleTimeout = 10; + break; + } + } + + // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued + // BUT... ACK --> NACK + if (len == 1 && receivedCmd[0] == CARD_ACK) { + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); + break; + } + + // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK) + if (len == 1 && receivedCmd[0] == CARD_NACK_NA) { + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); + break; + } + + // read block + if (len == 4 && receivedCmd[0] == 0x30) { + if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) { + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); + break; + } + emlGetMem(response, receivedCmd[1], 1); + AppendCrc14443a(response, 16); + mf_crypto1_encrypt(pcs, response, 18, &par); + EmSendCmdPar(response, 18, par); + break; + } + + // write block + if (len == 4 && receivedCmd[0] == 0xA0) { + if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) { + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); + break; + } + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); + //nextCycleTimeout = 50; + cardSTATE = MFEMUL_WRITEBL2; + cardWRBL = receivedCmd[1]; + break; + } + + // works with cardINTREG + + // increment, decrement, restore + if (len == 4 && (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2)) { + if (receivedCmd[1] >= 16 * 4 || + receivedCmd[1] / 4 != cardAUTHSC || + emlCheckValBl(receivedCmd[1])) { + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); + break; + } + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); + if (receivedCmd[0] == 0xC1) + cardSTATE = MFEMUL_INTREG_INC; + if (receivedCmd[0] == 0xC0) + cardSTATE = MFEMUL_INTREG_DEC; + if (receivedCmd[0] == 0xC2) + cardSTATE = MFEMUL_INTREG_REST; + cardWRBL = receivedCmd[1]; + + break; + } + + + // transfer + if (len == 4 && receivedCmd[0] == 0xB0) { + if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) { + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); + break; + } + + if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); + else + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); + + break; + } + + // halt + if (len == 4 && (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00)) { + LED_B_OFF(); + LED_C_OFF(); + cardSTATE = MFEMUL_HALTED; + if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer); + break; + } + + // command not allowed + if (len == 4) { + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); + break; + } + + // case break + break; + } + case MFEMUL_WRITEBL2:{ + if (len == 18){ + mf_crypto1_decrypt(pcs, receivedCmd, len); + emlSetMem(receivedCmd, cardWRBL, 1); + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); + cardSTATE = MFEMUL_WORK; + break; + } else { + cardSTATE_TO_IDLE(); + break; + } + break; + } + + case MFEMUL_INTREG_INC:{ + mf_crypto1_decrypt(pcs, receivedCmd, len); + memcpy(&ans, receivedCmd, 4); + if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); + cardSTATE_TO_IDLE(); + break; + } + cardINTREG = cardINTREG + ans; + cardSTATE = MFEMUL_WORK; + break; + } + case MFEMUL_INTREG_DEC:{ + mf_crypto1_decrypt(pcs, receivedCmd, len); + memcpy(&ans, receivedCmd, 4); + if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); + cardSTATE_TO_IDLE(); + break; + } + cardINTREG = cardINTREG - ans; + cardSTATE = MFEMUL_WORK; + break; + } + case MFEMUL_INTREG_REST:{ + mf_crypto1_decrypt(pcs, receivedCmd, len); + memcpy(&ans, receivedCmd, 4); + if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { + EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); + cardSTATE_TO_IDLE(); + break; + } + cardSTATE = MFEMUL_WORK; + break; + } + } + } + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LEDsoff(); + + // add trace trailer + memset(rAUTH_NT, 0x44, 4); + LogTrace(rAUTH_NT, 4, 0, 0, TRUE); + + if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen); +} + +//----------------------------------------------------------------------------- +// MIFARE sniffer. +// +//----------------------------------------------------------------------------- +void RAMFUNC SniffMifare(uint8_t param) { + // param: + // bit 0 - trigger from first card answer + // bit 1 - trigger from first reader 7-bit request + + // C(red) A(yellow) B(green) + LEDsoff(); + // init trace buffer + iso14a_clear_trace(); + + // The command (reader -> tag) that we're receiving. + // The length of a received command will in most cases be no more than 18 bytes. + // So 32 should be enough! + uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); + // The response (tag -> reader) that we're receiving. + uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); + + // As we receive stuff, we copy it from receivedCmd or receivedResponse + // into trace, along with its length and other annotations. + //uint8_t *trace = (uint8_t *)BigBuf; + + // The DMA buffer, used to stream samples from the FPGA + int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; + int8_t *data = dmaBuf; + int maxDataLen = 0; + int dataLen = 0; + + // Set up the demodulator for tag -> reader responses. + Demod.output = receivedResponse; + Demod.len = 0; + Demod.state = DEMOD_UNSYNCD; + + // Set up the demodulator for the reader -> tag commands + memset(&Uart, 0, sizeof(Uart)); + Uart.output = receivedCmd; + Uart.byteCntMax = 32; // was 100 (greg)////////////////// + Uart.state = STATE_UNSYNCD; + + // Setup for the DMA. + FpgaSetupSsc(); + FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); + + // And put the FPGA in the appropriate mode + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + + // init sniffer + MfSniffInit(); + int sniffCounter = 0; + + // And now we loop, receiving samples. + while(true) { + if(BUTTON_PRESS()) { + DbpString("cancelled by button"); + goto done; + } + + LED_A_ON(); + WDT_HIT(); + + if (++sniffCounter > 65) { + if (MfSniffSend(2000)) { + FpgaEnableSscDma(); + } + sniffCounter = 0; + } + + int register readBufDataP = data - dmaBuf; + int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; + if (readBufDataP <= dmaBufDataP){ + dataLen = dmaBufDataP - readBufDataP; + } else { + dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1; + } + // test for length of buffer + if(dataLen > maxDataLen) { + maxDataLen = dataLen; + if(dataLen > 400) { + Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); + goto done; + } + } + if(dataLen < 1) continue; + + // primary buffer was stopped( <-- we lost data! + if (!AT91C_BASE_PDC_SSC->PDC_RCR) { + AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; + AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; + Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary + } + // secondary buffer sets as primary, secondary buffer was stopped + if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { + AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; + AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; + } + + LED_A_OFF(); + + if(MillerDecoding((data[0] & 0xF0) >> 4)) { + LED_C_INV(); + // check - if there is a short 7bit request from reader + if (MfSniffLogic(receivedCmd, Uart.byteCnt, Uart.parityBits, Uart.bitCnt, TRUE)) break; + + /* And ready to receive another command. */ + Uart.state = STATE_UNSYNCD; + + /* And also reset the demod code */ + Demod.state = DEMOD_UNSYNCD; + } + + if(ManchesterDecoding(data[0] & 0x0F)) { + LED_C_INV(); + + if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break; + + // And ready to receive another response. + memset(&Demod, 0, sizeof(Demod)); + Demod.output = receivedResponse; + Demod.state = DEMOD_UNSYNCD; + + /* And also reset the uart code */ + Uart.state = STATE_UNSYNCD; + } + + data++; + if(data > dmaBuf + DMA_BUFFER_SIZE) { + data = dmaBuf; + } + } // main cycle + + DbpString("COMMAND FINISHED"); + +done: + FpgaDisableSscDma(); + MfSniffEnd(); + + Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x Uart.byteCntMax=%x", maxDataLen, Uart.state, Uart.byteCnt, Uart.byteCntMax); + LEDsoff(); +} \ No newline at end of file