X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/0fa9ca5b53e412decad0df1f6b5baca73ae76a9c..5a956258d3d8416f1cd2259319eae784d008a46b:/armsrc/lfops.c?ds=inline

diff --git a/armsrc/lfops.c b/armsrc/lfops.c
index 8ad25ce0..a7e1f1df 100644
--- a/armsrc/lfops.c
+++ b/armsrc/lfops.c
@@ -7,17 +7,16 @@
 #include <proxmark3.h>
 #include "apps.h"
 #include "hitag2.h"
-#include "../common/crc16.c"
+#include "crc16.h"
 
 void AcquireRawAdcSamples125k(BOOL at134khz)
 {
-	if(at134khz) {
+	if (at134khz)
 		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-	} else {
+	else
 		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-	}
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
 
 	// Connect the A/D to the peak-detected low-frequency path.
 	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
@@ -29,36 +28,35 @@ void AcquireRawAdcSamples125k(BOOL at134khz)
 	FpgaSetupSsc();
 
 	// Now call the acquisition routine
-	DoAcquisition125k(at134khz);
+	DoAcquisition125k();
 }
 
 // split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(BOOL at134khz)
+void DoAcquisition125k(void)
 {
 	BYTE *dest = (BYTE *)BigBuf;
 	int n = sizeof(BigBuf);
 	int i;
-
-	memset(dest,0,n);
+	
+	memset(dest, 0, n);
 	i = 0;
 	for(;;) {
-		if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-			SSC_TRANSMIT_HOLDING = 0x43;
+		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+			AT91C_BASE_SSC->SSC_THR = 0x43;
 			LED_D_ON();
 		}
-		if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-			dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
+		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+			dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;
 			i++;
 			LED_D_OFF();
-			if(i >= n) {
-				break;
-			}
+			if (i >= n) break;
 		}
 	}
-	DbpIntegers(dest[0], dest[1], at134khz);
+	Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
+			dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
 }
 
-void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command)
+void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, BYTE *command)
 {
 	BOOL at134khz;
 
@@ -67,18 +65,17 @@ void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYT
 	SpinDelay(2500);
 	
 	// see if 'h' was specified
-	if(command[strlen((char *) command) - 1] == 'h')
-		at134khz= TRUE;
+	if (command[strlen((char *) command) - 1] == 'h')
+		at134khz = TRUE;
 	else
-		at134khz= FALSE;
+		at134khz = FALSE;
 
-	if(at134khz) {
+	if (at134khz)
 		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-	} else {
+	else
 		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-	}
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
 
 	// Give it a bit of time for the resonant antenna to settle.
 	SpinDelay(50);
@@ -89,38 +86,34 @@ void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYT
 	FpgaSetupSsc();
 
 	// now modulate the reader field
-	while(*command != '\0' && *command != ' ')
-		{
+	while(*command != '\0' && *command != ' ') {
 		FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 		LED_D_OFF();
 		SpinDelayUs(delay_off);
-		if(at134khz) {
+		if (at134khz)
 			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-			FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-		} else {
+		else
 			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-			FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-		}
+
+		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
 		LED_D_ON();
-		if(*(command++) == '0') {
+		if(*(command++) == '0')
 			SpinDelayUs(period_0);
-		} else {
+		else
 			SpinDelayUs(period_1);
-		}
-		}
+	}
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LED_D_OFF();
 	SpinDelayUs(delay_off);
-	if(at134khz) {
+	if (at134khz)
 		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-	} else {
+	else
 		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
-	}
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);
 
 	// now do the read
-	DoAcquisition125k(at134khz);
+	DoAcquisition125k();
 }
 
 /* blank r/w tag data stream
@@ -132,7 +125,7 @@ void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYT
 
 [5555fe852c5555555555555555fe0000]
 */
-void ReadTItag()
+void ReadTItag(void)
 {
 	// some hardcoded initial params
 	// when we read a TI tag we sample the zerocross line at 2Mhz
@@ -254,11 +247,10 @@ void ReadTItag()
 		crc = update_crc16(crc, (shift1>>16)&0xff);
 		crc = update_crc16(crc, (shift1>>24)&0xff);
 
-		DbpString("Info: Tag data_hi, data_lo, crc = ");
-		DbpIntegers(shift1, shift0, shift2&0xffff);
+		Dbprintf("Info: Tag data: %x%08x, crc=%x",
+			(unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
 		if (crc != (shift2&0xffff)) {
-			DbpString("Error: CRC mismatch, expected");
-			DbpIntegers(0, 0, crc);
+			Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
 		} else {
 			DbpString("Info: CRC is good");
 		}
@@ -274,17 +266,17 @@ void WriteTIbyte(BYTE b)
 	{
 		if (b&(1<<i)) {
 			// stop modulating antenna
-			PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);
+			LOW(GPIO_SSC_DOUT);
 			SpinDelayUs(1000);
 			// modulate antenna
-			PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
+			HIGH(GPIO_SSC_DOUT);
 			SpinDelayUs(1000);
 		} else {
 			// stop modulating antenna
-			PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);
+			LOW(GPIO_SSC_DOUT);
 			SpinDelayUs(300);
 			// modulate antenna
-			PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
+			HIGH(GPIO_SSC_DOUT);
 			SpinDelayUs(1700);
 		}
 	}
@@ -301,56 +293,55 @@ void AcquireTiType(void)
 	memset(BigBuf,0,sizeof(BigBuf));
 
 	// Set up the synchronous serial port
-  PIO_DISABLE = (1<<GPIO_SSC_DIN);
-  PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN);
+	AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
+	AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
 
 	// steal this pin from the SSP and use it to control the modulation
-  PIO_ENABLE = (1<<GPIO_SSC_DOUT);
-	PIO_OUTPUT_ENABLE	= (1<<GPIO_SSC_DOUT);
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
 
-  SSC_CONTROL = SSC_CONTROL_RESET;
-  SSC_CONTROL = SSC_CONTROL_RX_ENABLE | SSC_CONTROL_TX_ENABLE;
+	AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
+	AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
 
-  // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
-  // 48/2 = 24 MHz clock must be divided by 12
-  SSC_CLOCK_DIVISOR = 12;
+	// Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
+	// 48/2 = 24 MHz clock must be divided by 12
+	AT91C_BASE_SSC->SSC_CMR = 12;
 
-  SSC_RECEIVE_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(0);
-	SSC_RECEIVE_FRAME_MODE = SSC_FRAME_MODE_BITS_IN_WORD(32) | SSC_FRAME_MODE_MSB_FIRST;
-	SSC_TRANSMIT_CLOCK_MODE = 0;
-	SSC_TRANSMIT_FRAME_MODE = 0;
+	AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
+	AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
+	AT91C_BASE_SSC->SSC_TCMR = 0;
+	AT91C_BASE_SSC->SSC_TFMR = 0;
 
 	LED_D_ON();
 
 	// modulate antenna
-	PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
+	HIGH(GPIO_SSC_DOUT);
 
 	// Charge TI tag for 50ms.
 	SpinDelay(50);
 
 	// stop modulating antenna and listen
-	PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);
+	LOW(GPIO_SSC_DOUT);
 
 	LED_D_OFF();
 
 	i = 0;
 	for(;;) {
-			if(SSC_STATUS & SSC_STATUS_RX_READY) {
-					BigBuf[i] = SSC_RECEIVE_HOLDING;	// store 32 bit values in buffer
-					i++; if(i >= TIBUFLEN) break;
-			}
-			WDT_HIT();
+		if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+			BigBuf[i] = AT91C_BASE_SSC->SSC_RHR;	// store 32 bit values in buffer
+			i++; if(i >= TIBUFLEN) break;
+		}
+		WDT_HIT();
 	}
 
 	// return stolen pin to SSP
-	PIO_DISABLE = (1<<GPIO_SSC_DOUT);
-	PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN) | (1<<GPIO_SSC_DOUT);
+	AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
+	AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
 
 	char *dest = (char *)BigBuf;
 	n = TIBUFLEN*32;
 	// unpack buffer
 	for (i=TIBUFLEN-1; i>=0; i--) {
-//		DbpIntegers(0, 0, BigBuf[i]);
 		for (j=0; j<32; j++) {
 			if(BigBuf[i] & (1 << j)) {
 				dest[--n] = 1;
@@ -366,11 +357,6 @@ void AcquireTiType(void)
 // if not provided a valid crc will be computed from the data and written.
 void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)
 {
-
-	// WARNING the order of the bytes in which we calc crc below needs checking
-	// i'm 99% sure the crc algorithm is correct, but it may need to eat the
-	// bytes in reverse or something
-
 	if(crc == 0) {
 	 	crc = update_crc16(crc, (idlo)&0xff);
 		crc = update_crc16(crc, (idlo>>8)&0xff);
@@ -381,8 +367,8 @@ void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)
 		crc = update_crc16(crc, (idhi>>16)&0xff);
 		crc = update_crc16(crc, (idhi>>24)&0xff);
 	}
-	DbpString("Writing the following data to tag:");
-	DbpIntegers(idhi, idlo, crc);
+	Dbprintf("Writing to tag: %x%08x, crc=%x",
+		(unsigned int) idhi, (unsigned int) idlo, crc);
 
 	// TI tags charge at 134.2Khz
 	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
@@ -394,8 +380,8 @@ void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)
 	LED_A_ON();
 
 	// steal this pin from the SSP and use it to control the modulation
-  PIO_ENABLE = (1<<GPIO_SSC_DOUT);
-	PIO_OUTPUT_ENABLE	= (1<<GPIO_SSC_DOUT);
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
 
 	// writing algorithm:
 	// a high bit consists of a field off for 1ms and field on for 1ms
@@ -408,7 +394,7 @@ void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)
 	// finish with 15ms programming time
 
 	// modulate antenna
-	PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
+	HIGH(GPIO_SSC_DOUT);
 	SpinDelay(50);	// charge time
 
 	WriteTIbyte(0xbb); // keyword
@@ -425,7 +411,7 @@ void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)
 	WriteTIbyte( (crc>>8  )&0xff ); // crc hi
 	WriteTIbyte(0x00); // write frame lo
 	WriteTIbyte(0x03); // write frame hi
-	PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
+	HIGH(GPIO_SSC_DOUT);
 	SpinDelay(50);	// programming time
 
 	LED_A_OFF();
@@ -437,24 +423,24 @@ void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)
 	DbpString("Now use tiread to check");
 }
 
-void SimulateTagLowFrequency(int period, int ledcontrol)
+void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
 {
 	int i;
 	BYTE *tab = (BYTE *)BigBuf;
 
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
 
-	PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK);
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
 
-	PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);
-	PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK);
+	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
 
 #define SHORT_COIL()	LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL()	HIGH(GPIO_SSC_DOUT)
+#define OPEN_COIL()		HIGH(GPIO_SSC_DOUT)
 
 	i = 0;
 	for(;;) {
-		while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) {
+		while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
 			if(BUTTON_PRESS()) {
 				DbpString("Stopped");
 				return;
@@ -473,7 +459,7 @@ void SimulateTagLowFrequency(int period, int ledcontrol)
 		if (ledcontrol)
 			LED_D_OFF();
 
-		while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) {
+		while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
 			if(BUTTON_PRESS()) {
 				DbpString("Stopped");
 				return;
@@ -482,7 +468,13 @@ void SimulateTagLowFrequency(int period, int ledcontrol)
 		}
 
 		i++;
-		if(i == period) i = 0;
+		if(i == period) {
+			i = 0;
+			if (gap) { 
+				SHORT_COIL();
+				SpinDelayUs(gap);
+			}
+		}
 	}
 }
 
@@ -529,7 +521,7 @@ void SimulateTagLowFrequencyBidir(int divisor, int t0)
 	hitag2_init();
 	
 	/* Set up simulator mode, frequency divisor which will drive the FPGA
-	 * and analog mux selection.
+	 * and analog mux selection.
 	 */
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR);
 	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
@@ -539,15 +531,19 @@ void SimulateTagLowFrequencyBidir(int divisor, int t0)
 	/* Set up Timer 1:
 	 * Capture mode, timer source MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
 	 * external trigger rising edge, load RA on rising edge of TIOA, load RB on rising
-	 * edge of TIOA. Assign PA15 to TIOA1 (peripheral B)
+	 * edge of TIOA. Assign PA15 to TIOA1 (peripheral B)
 	 */
 	
-	PMC_PERIPHERAL_CLK_ENABLE = (1 << PERIPH_TC1);
-	PIO_PERIPHERAL_B_SEL = (1 << GPIO_SSC_FRAME);
-	TC1_CCR = TC_CCR_CLKDIS;
-	TC1_CMR = TC_CMR_TCCLKS_TIMER_CLOCK1 | TC_CMR_ETRGEDG_RISING | TC_CMR_ABETRG |
-		TC_CMR_LDRA_RISING | TC_CMR_LDRB_RISING;
-	TC1_CCR = TC_CCR_CLKEN | TC_CCR_SWTRG;
+	AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
+	AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
+	AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
+	AT91C_BASE_TC1->TC_CMR =	TC_CMR_TCCLKS_TIMER_CLOCK1 |
+								AT91C_TC_ETRGEDG_RISING |
+								AT91C_TC_ABETRG |
+								AT91C_TC_LDRA_RISING |
+								AT91C_TC_LDRB_RISING;
+	AT91C_BASE_TC1->TC_CCR =	AT91C_TC_CLKEN |
+								AT91C_TC_SWTRG;
 	
 	/* calculate the new value for the carrier period in terms of TC1 values */
 	t0 = t0/2;
@@ -555,8 +551,8 @@ void SimulateTagLowFrequencyBidir(int divisor, int t0)
 	int overflow = 0;
 	while(!BUTTON_PRESS()) {
 		WDT_HIT();
-		if(TC1_SR & TC_SR_LDRAS) {
-			int ra = TC1_RA;
+		if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
+			int ra = AT91C_BASE_TC1->TC_RA;
 			if((ra > t0*HITAG_T_EOF) | overflow) ra = t0*HITAG_T_EOF+1;
 #if DEBUG_RA_VALUES
 			if(ra > 255 || overflow) ra = 255;
@@ -583,14 +579,14 @@ void SimulateTagLowFrequencyBidir(int divisor, int t0)
 			overflow = 0;
 			LED_D_ON();
 		} else {
-			if(TC1_CV > t0*HITAG_T_EOF) {
+			if(AT91C_BASE_TC1->TC_CV > t0*HITAG_T_EOF) {
 				/* Minor nuisance: In Capture mode, the timer can not be
 				 * stopped by a Compare C. There's no way to stop the clock
 				 * in software, so we'll just have to note the fact that an
 				 * overflow happened and the next loaded timer value might
 				 * have wrapped. Also, this marks the end of frame, and the
 				 * still running counter can be used to determine the correct
-				 * time for the start of the reply.
+				 * time for the start of the reply.
 				 */ 
 				overflow = 1;
 				
@@ -619,37 +615,37 @@ static void hitag_send_bit(int t0, int bit) {
 		/* Manchester: Loaded, then unloaded */
 		LED_A_ON();
 		SHORT_COIL();
-		while(TC1_CV < t0*15);
+		while(AT91C_BASE_TC1->TC_CV < t0*15);
 		OPEN_COIL();
-		while(TC1_CV < t0*31);
+		while(AT91C_BASE_TC1->TC_CV < t0*31);
 		LED_A_OFF();
 	} else if(bit == 0) {
 		/* Manchester: Unloaded, then loaded */
 		LED_B_ON();
 		OPEN_COIL();
-		while(TC1_CV < t0*15);
+		while(AT91C_BASE_TC1->TC_CV < t0*15);
 		SHORT_COIL();
-		while(TC1_CV < t0*31);
+		while(AT91C_BASE_TC1->TC_CV < t0*31);
 		LED_B_OFF();
 	}
-	TC1_CCR = TC_CCR_SWTRG; /* Reset clock for the next bit */
+	AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset clock for the next bit */
 	
 }
 static void hitag_send_frame(int t0, int frame_len, const char const * frame, int fdt)
 {
 	OPEN_COIL();
-	PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT);
+	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
 	
 	/* Wait for HITAG_T_WRESP carrier periods after the last reader bit,
 	 * not that since the clock counts since the rising edge, but T_wresp is
 	 * with respect to the falling edge, we need to wait actually (T_wresp - T_g)
-	 * periods. The gap time T_g varies (4..10).
+	 * periods. The gap time T_g varies (4..10).
 	 */
-	while(TC1_CV < t0*(fdt-8));
+	while(AT91C_BASE_TC1->TC_CV < t0*(fdt-8));
 
-	int saved_cmr = TC1_CMR;
-	TC1_CMR &= ~TC_CMR_ETRGEDG; /* Disable external trigger for the clock */
-	TC1_CCR = TC_CCR_SWTRG; /* Reset the clock and use it for response timing */
+	int saved_cmr = AT91C_BASE_TC1->TC_CMR;
+	AT91C_BASE_TC1->TC_CMR &= ~AT91C_TC_ETRGEDG; /* Disable external trigger for the clock */
+	AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; /* Reset the clock and use it for response timing */
 	
 	int i;
 	for(i=0; i<5; i++)
@@ -660,7 +656,7 @@ static void hitag_send_frame(int t0, int frame_len, const char const * frame, in
 	}
 	
 	OPEN_COIL();
-	TC1_CMR = saved_cmr;
+	AT91C_BASE_TC1->TC_CMR = saved_cmr;
 }
 
 /* Callback structure to cleanly separate tag emulation code from the radio layer. */
@@ -772,7 +768,7 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
 
 	if (ledcontrol)
 		LED_A_ON();
-	SimulateTagLowFrequency(n, ledcontrol);
+	SimulateTagLowFrequency(n, 0, ledcontrol);
 
 	if (ledcontrol)
 		LED_A_OFF();
@@ -813,13 +809,13 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
 		m = sizeof(BigBuf);
 		memset(dest,128,m);
 		for(;;) {
-			if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-				SSC_TRANSMIT_HOLDING = 0x43;
+			if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+				AT91C_BASE_SSC->SSC_THR = 0x43;
 				if (ledcontrol)
 					LED_D_ON();
 			}
-			if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-				dest[i] = (BYTE)SSC_RECEIVE_HOLDING;
+			if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+				dest[i] = (BYTE)AT91C_BASE_SSC->SSC_RHR;
 				// we don't care about actual value, only if it's more or less than a
 				// threshold essentially we capture zero crossings for later analysis
 				if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
@@ -922,8 +918,8 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
 				found=1;
 				idx+=6;
 				if (found && (hi|lo)) {
-					DbpString("TAG ID");
-					DbpIntegers(hi, lo, (lo>>1)&0xffff);
+					Dbprintf("TAG ID: %x%08x (%d)",
+						(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
 					/* if we're only looking for one tag */
 					if (findone)
 					{
@@ -955,8 +951,8 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
 				found=1;
 				idx+=6;
 				if (found && (hi|lo)) {
-					DbpString("TAG ID");
-					DbpIntegers(hi, lo, (lo>>1)&0xffff);
+					Dbprintf("TAG ID: %x%08x (%d)",
+						(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
 					/* if we're only looking for one tag */
 					if (findone)
 					{