X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/1dea88f97640f5979b977a14347c558fabd5496c..e977fb0da3b08802307ea0f3106390cd5ae718b3:/armsrc/legicrf.c?ds=inline

diff --git a/armsrc/legicrf.c b/armsrc/legicrf.c
index bb0badb0..f58cb442 100644
--- a/armsrc/legicrf.c
+++ b/armsrc/legicrf.c
@@ -1,360 +1,1622 @@
-/*
- * LEGIC RF simulation code
- *  
- * (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
- */
-
-#include <proxmark3.h>
-
-#include "apps.h"
+//-----------------------------------------------------------------------------
+// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
+//     2016 Iceman
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// LEGIC RF simulation code
+//-----------------------------------------------------------------------------
 #include "legicrf.h"
-#include "unistd.h"
-#include "stdint.h"
 
 static struct legic_frame {
-	int bits;
-	uint16_t data;
+	uint8_t bits;
+	uint32_t data;
 } current_frame;
+
+static enum {
+  STATE_DISCON,
+  STATE_IV,
+  STATE_CON,
+} legic_state;
+
+static crc_t    legic_crc;
+static int      legic_read_count;
+static uint32_t legic_prng_bc;
+static uint32_t legic_prng_iv;
+
+static int      legic_phase_drift;
+static int      legic_frame_drift;
+static int      legic_reqresp_drift;
+
 AT91PS_TC timer;
+AT91PS_TC prng_timer;
 
-static void setup_timer(void)
-{
-	/* Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
-	 * this it won't be terribly accurate but should be good enough.
-	 */
+/*
+static void setup_timer(void) {
+	// Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
+	// this it won't be terribly accurate but should be good enough.
+	//
 	AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
 	timer = AT91C_BASE_TC1;
 	timer->TC_CCR = AT91C_TC_CLKDIS;
-	timer->TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK3;
+	timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
 	timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
 
-/* At TIMER_CLOCK3 (MCK/32) */
-#define	RWD_TIME_1 150     /* RWD_TIME_PAUSE off, 80us on = 100us */
-#define RWD_TIME_0 90      /* RWD_TIME_PAUSE off, 40us on = 60us */
-#define RWD_TIME_PAUSE 30  /* 20us */
-#define RWD_TIME_FUZZ 20   /* rather generous 13us, since the peak detector + hysteresis fuzz quite a bit */
-#define TAG_TIME_BIT 150   /* 100us for every bit */
-#define TAG_TIME_WAIT 490  /* time from RWD frame end to tag frame start, experimentally determined */
-
+	// 
+    // Set up Timer 2 to use for measuring time between frames in 
+    // tag simulation mode. Runs 4x faster as Timer 1
+	//
+    AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
+    prng_timer = AT91C_BASE_TC2;
+    prng_timer->TC_CCR = AT91C_TC_CLKDIS;
+	prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
+    prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
 }
 
+	AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
+	AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
+
+	// fast clock
+	AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
+	AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
+								AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
+								AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
+	AT91C_BASE_TC0->TC_RA = 1;
+	AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
+	
+*/
+
+// At TIMER_CLOCK3 (MCK/32)
+// testing calculating in ticks. 1.5ticks = 1us 
+#define	RWD_TIME_1 120		// READER_TIME_PAUSE 20us off, 80us on = 100us  80 * 1.5 == 120ticks
+#define RWD_TIME_0 60		// READER_TIME_PAUSE 20us off, 40us on = 60us   40 * 1.5 == 60ticks 
+#define RWD_TIME_PAUSE 30	// 20us == 20 * 1.5 == 30ticks */
+#define TAG_BIT_PERIOD 142	// 100us == 100 * 1.5 == 150ticks
+#define TAG_FRAME_WAIT 495  // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
+
+#define RWD_TIME_FUZZ 20   // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
+
+#define SIM_DIVISOR  586   /* prng_time/SIM_DIVISOR count prng needs to be forwared */
+#define SIM_SHIFT    900   /* prng_time+SIM_SHIFT shift of delayed start */
+
+#define OFFSET_LOG 1024
+
 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
 
-static const struct legic_frame queries[] = {
-		{7, 0x55}, /* 1010 101 */
-};
+#ifndef SHORT_COIL
+# define SHORT_COIL	 LOW(GPIO_SSC_DOUT);
+#endif
+#ifndef OPEN_COIL
+# define OPEN_COIL	HIGH(GPIO_SSC_DOUT);
+#endif
+#ifndef LINE_IN
+# define LINE_IN  AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
+#endif
+// Pause pulse,  off in 20us / 30ticks,
+// ONE / ZERO bit pulse,  
+//    one == 80us / 120ticks
+//    zero == 40us / 60ticks
+#ifndef COIL_PULSE
+# define COIL_PULSE(x) \
+	do { \
+		SHORT_COIL; \
+		WaitTicks( (RWD_TIME_PAUSE) ); \
+		OPEN_COIL; \
+		WaitTicks((x)); \
+	} while (0); 
+#endif
+
+// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces. 
+// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
+#define LEGIC_CARD_MEMSIZE 1024
+static uint8_t* cardmem;
+
+static void frame_append_bit(struct legic_frame * const f, uint8_t bit) {
+	// Overflow, won't happen
+   if (f->bits >= 31) return;
+  
+   f->data |= (bit << f->bits);
+   f->bits++;
+}
+
+static void frame_clean(struct legic_frame * const f) {
+	f->data = 0;
+	f->bits = 0;
+}
+
+// Prng works when waiting in 99.1us cycles.
+// and while sending/receiving in bit frames (100, 60)
+/*static void CalibratePrng( uint32_t time){
+	// Calculate Cycles based on timer 100us
+	uint32_t i =  (time - sendFrameStop) / 100 ;
+
+	// substract cycles of finished frames
+	int k =  i - legic_prng_count()+1; 
+
+	// substract current frame length, rewind to beginning
+	if ( k > 0 )
+		legic_prng_forward(k);
+}
+*/
+
+/* Generate Keystream */
+uint32_t get_key_stream(int skip, int count) {
+
+	int i;
+
+	// Use int to enlarge timer tc to 32bit
+	legic_prng_bc += prng_timer->TC_CV;
 
-static const struct legic_frame responses[] = {
-		{6, 0x3b}, /* 1101 11 */
-};
+	// reset the prng timer.
+
+	/* If skip == -1, forward prng time based */
+	if(skip == -1) {
+		i  = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */
+		i -= legic_prng_count(); /* substract cycles of finished frames */
+		i -= count; /* substract current frame length, rewind to beginning */
+		legic_prng_forward(i);
+	} else {
+		legic_prng_forward(skip);
+	}
+
+	i = (count == 6) ? -1 : legic_read_count;
+
+	/* Generate KeyStream */
+	return legic_prng_get_bits(count);
+}
 
 /* Send a frame in tag mode, the FPGA must have been set up by
  * LegicRfSimulate
  */
-static void frame_send_tag(uint16_t response, int bits)
-{
-#if 0
-	/* Use the SSC to send a response. 8-bit transfers, LSBit first, 100us per bit */
-#else 
+void frame_send_tag(uint16_t response, uint8_t bits) {
+
+	uint16_t mask = 1;
+	
 	/* Bitbang the response */
-	AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
+	SHORT_COIL;
 	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
 	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
-	
+
+	 /* TAG_FRAME_WAIT -> shift by 2 */
+	legic_prng_forward(3);
+	response ^= legic_prng_get_bits(bits);
+
 	/* Wait for the frame start */
-	while(timer->TC_CV < TAG_TIME_WAIT) ;
-	
-	int i;
-	for(i=0; i<bits; i++) {
-		int nextbit = timer->TC_CV + TAG_TIME_BIT;
-		int bit = response & 1;
-		response = response >> 1;
-		if(bit) 
-			AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT;
+	WaitTicks( TAG_FRAME_WAIT );
+
+	for (; mask < BITMASK(bits); mask <<= 1) {	
+		if (response & mask)
+			OPEN_COIL
 		else
-			AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
-		while(timer->TC_CV < nextbit) ;
-	}
-	AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
-#endif
+			SHORT_COIL
+		WaitTicks(TAG_BIT_PERIOD);
+   }
+   SHORT_COIL;
 }
 
 /* Send a frame in reader mode, the FPGA must have been set up by
  * LegicRfReader
  */
-static void frame_send_rwd(uint16_t data, int bits)
-{
-	/* Start clock */
-	timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
-	while(timer->TC_CV > 1) ; /* Wait till the clock has reset */
-	
-	int i;
-	for(i=0; i<bits; i++) {
-		int starttime = timer->TC_CV;
-		int pause_end = starttime + RWD_TIME_PAUSE, bit_end;
-		int bit = data & 1;
-		data = data >> 1;
-		
-		if(bit) {
-			bit_end = starttime + RWD_TIME_1;
-		} else {
-			bit_end = starttime + RWD_TIME_0;
-		}
-		
-		/* RWD_TIME_PAUSE time off, then some time on, so that the complete bit time is
-		 * RWD_TIME_x, where x is the bit to be transmitted */
-		AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
-		while(timer->TC_CV < pause_end) ;
-		AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT;
-		while(timer->TC_CV < bit_end) ;
-	}
+void frame_sendAsReader(uint32_t data, uint8_t bits){
+
+	uint32_t starttime = GET_TICKS, send = 0, mask = 1;
 	
-	{
-		/* One final pause to mark the end of the frame */
-		int pause_end = timer->TC_CV + RWD_TIME_PAUSE;
-		AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
-		while(timer->TC_CV < pause_end) ;
-		AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT;
+	// xor lsfr onto data.
+	send = data ^ legic_prng_get_bits(bits);
+				
+	for (; mask < BITMASK(bits); mask <<= 1) {	
+		if (send & mask)
+			COIL_PULSE(RWD_TIME_1)
+		else
+			COIL_PULSE(RWD_TIME_0)
 	}
+
+	// Final pause to mark the end of the frame
+	COIL_PULSE(0);
 	
-	/* Reset the timer, to measure time until the start of the tag frame */
-	timer->TC_CCR = AT91C_TC_SWTRG;
+	// log
+	uint8_t cmdbytes[] = {bits, BYTEx(data,0), BYTEx(data,1), BYTEx(data,2), BYTEx(send,0), BYTEx(send,1), BYTEx(send,2)};
+	LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, TRUE);
 }
 
 /* Receive a frame from the card in reader emulation mode, the FPGA and
- * timer must have been set up by LegicRfReader and frame_send_rwd.
- * 
+ * timer must have been set up by LegicRfReader and frame_sendAsReader.
+ *
  * The LEGIC RF protocol from card to reader does not include explicit
  * frame start/stop information or length information. The reader must
  * know beforehand how many bits it wants to receive. (Notably: a card
  * sending a stream of 0-bits is indistinguishable from no card present.)
- * 
+ *
  * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
  * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
  * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
  * for edges. Count the edges in each bit interval. If they are approximately
  * 0 this was a 0-bit, if they are approximately equal to the number of edges
  * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
- * timer that's still running from frame_send_rwd in order to get a synchronization
+ * timer that's still running from frame_sendAsReader in order to get a synchronization
  * with the frame that we just sent.
- * 
- * FIXME: Because we're relying on the hysteresis to just do the right thing 
+ *
+ * FIXME: Because we're relying on the hysteresis to just do the right thing
  * the range is severely reduced (and you'll probably also need a good antenna).
- * So this should be fixed some time in the future for a proper receiver. 
+ * So this should be fixed some time in the future for a proper receiver.
  */
-static void frame_receive_rwd(struct legic_frame * const f, int bits)
-{
-	uint16_t the_bit = 1;  /* Use a bitmask to save on shifts */
-	uint16_t data=0;
-	int i, old_level=0, edges=0;
-	int next_bit_at = TAG_TIME_WAIT;
+static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) {
+
+	if ( bits > 32 ) return;
+	
+	uint8_t i = bits, edges = 0;	
+	uint32_t the_bit = 1, next_bit_at = 0, data = 0;
+	uint32_t old_level = 0;
+	volatile uint32_t level = 0;
 	
+	frame_clean(f);
 	
-	if(bits > 16)
-		bits = 16;
+	// calibrate the prng.
+	legic_prng_forward(2);
+	data = legic_prng_get_bits(bits);
+	
+	//FIXED time between sending frame and now listening frame. 330us
+	uint32_t starttime = GET_TICKS;
+	// its about 9+9 ticks delay from end-send to here.
+	WaitTicks( 477 );
 
-	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
-	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
+	next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
 
-	while(timer->TC_CV < next_bit_at) ;
-	next_bit_at += TAG_TIME_BIT;
-	
-	for(i=0; i<bits; i++) {
+	while ( i-- ){
 		edges = 0;
-		while(timer->TC_CV < next_bit_at) {
-			int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
-			if(level != old_level)
-				edges++;
+		while  ( GET_TICKS < next_bit_at) {
+
+			level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
+			
+			if (level != old_level)
+				++edges;
+			
 			old_level = level;
-		}
-		next_bit_at += TAG_TIME_BIT;
-		
-		if(edges > 20 && edges < 60) { /* expected are 42 edges */
-			data |= the_bit;
-		}
-		
+		}		
+
+		next_bit_at += TAG_BIT_PERIOD;
 		
-		the_bit <<= 1;
+		// We expect 42 edges (ONE)
+		if ( edges > 20 )
+			data ^= the_bit;
+
+		the_bit <<= 1;	
 	}
-	
+
+	// output
 	f->data = data;
 	f->bits = bits;
+	
+	// log
+	uint8_t cmdbytes[] = {bits,	BYTEx(data, 0),	BYTEx(data, 1)};
+	LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
 }
 
-/* Figure out a response to a frame in tag mode */
-static void frame_respond_tag(struct legic_frame const * const f)
-{
-	LED_D_ON();
-	int i, r_size=0;
-	uint16_t r_data=0;
+// Setup pm3 as a Legic Reader
+static uint32_t setup_phase_reader(uint8_t iv) {
 	
-	for(i=0; i<sizeof(queries)/sizeof(queries[0]); i++) {
-		if(f->bits == queries[i].bits && f->data == queries[i].data) {
-			r_data = responses[i].data;
-			r_size = responses[i].bits;
-			break;
+	// Switch on carrier and let the tag charge for 5ms
+	HIGH(GPIO_SSC_DOUT);
+	WaitUS(5000);
+	
+	ResetTicks();
+	
+	legic_prng_init(0);
+	
+	// send IV handshake
+	frame_sendAsReader(iv, 7);
+
+	// tag and reader has same IV.
+	legic_prng_init(iv);
+
+	frame_receiveAsReader(&current_frame, 6);
+
+	// 292us (438t) - fixed delay before sending ack.
+	// minus log and stuff 100tick?
+	WaitTicks(338);
+	legic_prng_forward(3); 
+	
+	// Send obsfuscated acknowledgment frame.
+	// 0x19 = 0x18 MIM22, 0x01 LSB READCMD 
+	// 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD 
+	switch ( current_frame.data  ) {
+		case 0x0D: frame_sendAsReader(0x19, 6); break;
+		case 0x1D: 
+		case 0x3D: frame_sendAsReader(0x39, 6); break;
+		default: break;
+	}
+
+	legic_prng_forward(2);
+	return current_frame.data;
+}
+
+void LegicCommonInit(bool clear_mem) {
+
+	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
+	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+	/* Bitbang the transmitter */
+	SHORT_COIL;
+	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
+	
+	// reserve a cardmem,  meaning we can use the tracelog function in bigbuff easier.
+	cardmem = BigBuf_get_EM_addr();
+	if ( clear_mem )
+		memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE);
+
+	clear_trace();
+	set_tracing(TRUE);
+	crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
+	
+	StartTicks();
+}
+
+// Switch off carrier, make sure tag is reset
+static void switch_off_tag_rwd(void) {
+	SHORT_COIL;
+	WaitUS(20);
+	WDT_HIT();
+}
+
+// calculate crc4 for a legic READ command 
+static uint32_t legic4Crc(uint8_t cmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) {
+	crc_clear(&legic_crc);	
+	uint32_t temp =  (value << cmd_sz) | (byte_index << 1) | cmd;
+	crc_update(&legic_crc, temp, cmd_sz + 8 );
+	return crc_finish(&legic_crc);
+}
+
+int legic_read_byte( uint16_t index, uint8_t cmd_sz) {
+
+	uint8_t byte, crc, calcCrc = 0;
+	uint32_t cmd = (index << 1) | LEGIC_READ;
+	
+	// 90ticks = 60us (should be 100us but crc calc takes time.)
+	//WaitTicks(330); // 330ticks prng(4) - works
+	WaitTicks(240); // 240ticks prng(3) - works
+	
+	frame_sendAsReader(cmd, cmd_sz);
+	frame_receiveAsReader(&current_frame, 12);
+
+	// CRC check. 
+	byte = BYTEx(current_frame.data, 0);
+	crc = BYTEx(current_frame.data, 1);
+	calcCrc = legic4Crc(LEGIC_READ, index, byte, cmd_sz);
+
+	if( calcCrc != crc ) {
+		Dbprintf("!!! crc mismatch: %x != %x !!!",  calcCrc, crc);
+		return -1;
+	}
+
+	legic_prng_forward(3);
+	return byte;
+}
+
+/* 
+ * - assemble a write_cmd_frame with crc and send it
+ * - wait until the tag sends back an ACK ('1' bit unencrypted)
+ * - forward the prng based on the timing
+ */
+bool legic_write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) {
+
+	bool isOK = false;
+	int8_t i = 40;
+	uint8_t edges = 0;
+	uint8_t	cmd_sz = addr_sz+1+8+4; //crc+data+cmd;
+	uint32_t steps = 0, next_bit_at, start, crc, old_level = 0;
+
+	crc = legic4Crc(LEGIC_WRITE, index, byte, addr_sz+1);
+
+	// send write command
+	uint32_t cmd = LEGIC_WRITE;
+	cmd |= index << 1;			  // index
+	cmd |= byte  << (addr_sz+1);  // Data	
+	cmd	|= (crc & 0xF ) << (addr_sz+1+8); 	// CRC
+	
+	WaitTicks(240);
+	
+	frame_sendAsReader(cmd, cmd_sz);
+	
+	LINE_IN;
+
+	start = GET_TICKS;
+
+	// ACK,  - one single "1" bit after 3.6ms
+	// 3.6ms = 3600us * 1.5 = 5400ticks.
+	WaitTicks(5400);
+	
+	next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
+	
+    while ( i-- ) {
+		WDT_HIT();
+        edges = 0;
+        while ( GET_TICKS < next_bit_at) {
+			
+            volatile uint32_t level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
+            
+			if (level != old_level)
+                ++edges;
+
+            old_level = level;
+        }
+		
+		next_bit_at += TAG_BIT_PERIOD;
+		
+		// We expect 42 edges (ONE)
+        if(edges > 20 ) {
+			steps = ( (GET_TICKS - start) / TAG_BIT_PERIOD);			
+			legic_prng_forward(steps);
+        	isOK = true;
+			goto OUT;
+        }
+    }
+		
+OUT: ;
+	legic_prng_forward(1);
+	
+	uint8_t cmdbytes[] = {1, isOK, BYTEx(steps, 0), BYTEx(steps, 1) };
+	LogTrace(cmdbytes, sizeof(cmdbytes), start, GET_TICKS, NULL, FALSE);
+	return isOK;
+}
+
+int LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) {
+	
+	uint16_t i = 0;
+	uint8_t isOK = 1;
+	legic_card_select_t card;
+	
+	LegicCommonInit(TRUE);
+	
+	if ( legic_select_card_iv(&card, iv) ) {
+		isOK = 0;
+		goto OUT;
+	}
+
+	if (len + offset > card.cardsize)
+		len = card.cardsize - offset;
+
+	LED_B_ON();
+	while (i < len) {
+		int r = legic_read_byte(offset + i, card.cmdsize);
+		
+		if (r == -1 || BUTTON_PRESS()) {			
+	        if ( MF_DBGLEVEL >= 2) DbpString("operation aborted");
+			isOK = 0;
+			goto OUT;
 		}
+		cardmem[i++] = r;
+        WDT_HIT();
 	}
+
+OUT:	
+	WDT_HIT();
+	switch_off_tag_rwd();
+	LEDsoff();
+	cmd_send(CMD_ACK, isOK, len, 0, cardmem, len);
+    return 0;
+}
+
+void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) {
+
+	#define LOWERLIMIT 4
+	uint8_t isOK = 1, msg = 0;
+	legic_card_select_t card;
 	
-	if(r_size != 0) {
-		frame_send_tag(r_data, r_size);
-		LED_A_ON();
-	} else {
-		LED_A_OFF();
+	// uid NOT is writeable.
+	if ( offset <= LOWERLIMIT ) {
+		isOK = 0;
+		goto OUT;
 	}
 	
-	LED_D_OFF();
+	LegicCommonInit(TRUE);
+	
+	if ( legic_select_card_iv(&card, iv) ) {
+		isOK = 0;
+		msg = 1;
+		goto OUT;
+	}
+	
+	if ( len + offset > card.cardsize)
+		len = card.cardsize - offset;
+
+    LED_B_ON();	
+	while( len > 0 ) {
+		--len;		
+		if ( !legic_write_byte( len + offset, data[len], card.addrsize) ) {
+			Dbprintf("operation failed | %02X | %02X | %02X", len + offset, len, data[len] );
+			isOK = 0;
+			goto OUT;
+		}
+		WDT_HIT();
+	}
+OUT:
+	cmd_send(CMD_ACK, isOK, msg,0,0,0);
+	switch_off_tag_rwd();
+	LEDsoff();	
 }
 
-static void frame_append_bit(struct legic_frame * const f, int bit)
-{
-	if(f->bits >= 15)
-		return; /* Overflow, won't happen */
-	f->data |= (bit<<f->bits);
-	f->bits++;
+int legic_select_card_iv(legic_card_select_t *p_card, uint8_t iv){
+
+	if ( p_card == NULL ) return 1;
+	
+	p_card->tagtype = setup_phase_reader(iv);
+	
+	switch(p_card->tagtype) {
+		case 0x0d:
+            p_card->cmdsize = 6;
+			p_card->addrsize = 5;
+			p_card->cardsize = 22;
+			break;
+		case 0x1d:
+			p_card->cmdsize = 9;
+			p_card->addrsize = 8;
+			p_card->cardsize = 256;
+			break;
+		case 0x3d:
+            p_card->cmdsize = 11;
+			p_card->addrsize = 10;
+			p_card->cardsize = 1024;
+			break;
+		default: 
+		    p_card->cmdsize = 0;
+			p_card->addrsize = 0;
+			p_card->cardsize = 0;
+			return 2;
+	}
+	return 0;
+}
+int legic_select_card(legic_card_select_t *p_card){
+	return legic_select_card_iv(p_card, 0x01);
 }
 
-static int frame_is_empty(struct legic_frame const * const f)
-{
-	return( f->bits <= 4 );
+//-----------------------------------------------------------------------------
+// Work with emulator memory
+// 
+// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
+// involved in dealing with emulator memory. But if it is called later, it might
+// destroy the Emulator Memory.
+//-----------------------------------------------------------------------------
+// arg0 = offset
+// arg1 = num of bytes
+void LegicEMemSet(uint32_t arg0, uint32_t arg1, uint8_t *data) {
+	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+	legic_emlset_mem(data, arg0, arg1);
+}
+// arg0 = offset
+// arg1 = num of bytes
+void LegicEMemGet(uint32_t arg0, uint32_t arg1) {
+	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+	uint8_t buf[USB_CMD_DATA_SIZE] = {0x00};
+	legic_emlget_mem(buf, arg0, arg1);
+	LED_B_ON();
+	cmd_send(CMD_ACK, arg0, arg1, 0, buf, USB_CMD_DATA_SIZE);
+	LED_B_OFF();
+}
+void legic_emlset_mem(uint8_t *data, int offset, int numofbytes) {
+	cardmem = BigBuf_get_EM_addr();
+	memcpy(cardmem + offset, data, numofbytes);
+}
+void legic_emlget_mem(uint8_t *data, int offset, int numofbytes) {
+	cardmem = BigBuf_get_EM_addr();
+	memcpy(data, cardmem + offset, numofbytes);
 }
 
-/* Handle (whether to respond) a frame in tag mode */
-static void frame_handle_tag(struct legic_frame const * const f)
-{
-	if(f->bits == 6) {
-		/* Short path */
-		return;
+void LegicRfInfo(void){
+
+	int r;
+	
+	uint8_t buf[sizeof(legic_card_select_t)] = {0x00};
+	legic_card_select_t *card = (legic_card_select_t*) buf;
+	
+	LegicCommonInit(FALSE);
+
+	if ( legic_select_card(card) ) {
+		cmd_send(CMD_ACK,0,0,0,0,0);
+		goto OUT;
 	}
-	if( !frame_is_empty(f) ) {
-		frame_respond_tag(f);
+
+	// read UID bytes
+	for ( uint8_t i = 0; i < sizeof(card->uid); ++i) {
+		r = legic_read_byte(i, card->cmdsize);
+		if ( r == -1 ) {
+			cmd_send(CMD_ACK,0,0,0,0,0);
+			goto OUT;
+		}
+		card->uid[i] = r & 0xFF;
 	}
-}
 
-static void frame_clean(struct legic_frame * const f)
-{
-	f->data = 0;
-	f->bits = 0;
+	// MCC byte.
+	r = legic_read_byte(4, card->cmdsize);
+	uint32_t calc_mcc =  CRC8Legic(card->uid, 4);;
+	if ( r != calc_mcc) {
+		cmd_send(CMD_ACK,0,0,0,0,0);
+		goto OUT;
+	}
+	
+	// OK
+	cmd_send(CMD_ACK, 1, 0, 0, buf, sizeof(legic_card_select_t));
+
+OUT:
+	switch_off_tag_rwd();
+	LEDsoff();
 }
 
-enum emit_mode { 
-	EMIT_RWD, /* Emit in tag simulation mode, e.g. the source is the RWD */
-	EMIT_TAG  /* Emit in reader simulation mode, e.g. the source is the TAG */
-}; 
-static void emit(enum emit_mode mode, int bit)
+/* Handle (whether to respond) a frame in tag mode
+ * Only called when simulating a tag.
+ */
+static void frame_handle_tag(struct legic_frame const * const f)
 {
-	if(bit == -1) {
-		if(mode == EMIT_RWD) {
-			frame_handle_tag(&current_frame);
-		}
-		frame_clean(&current_frame);
-	} else if(bit == 0) {
-		frame_append_bit(&current_frame, 0);
-	} else if(bit == 1) {
-		frame_append_bit(&current_frame, 1);
+	// log
+	//uint8_t cmdbytes[] = {bits,	BYTEx(data, 0),	BYTEx(data, 1)};
+	//LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
+	//Dbprintf("ICE: enter frame_handle_tag: %02x ", f->bits);
+		
+	/* First Part of Handshake (IV) */
+	if(f->bits == 7) {
+
+		LED_C_ON();
+
+		// Reset prng timer
+		//ResetTimer(prng_timer);
+		ResetTicks();
+
+		// IV from reader.
+		legic_prng_init(f->data);
+		
+		Dbprintf("ICE: IV: %02x ", f->data);
+		
+		// We should have three tagtypes with three different answers.
+		legic_prng_forward(2);
+		//frame_send_tag(0x3d, 6); /* MIM1024 0x3d^0x26 = 0x1B */
+		frame_send_tag(0x1d, 6); // MIM256
+		
+		legic_state = STATE_IV;
+		legic_read_count = 0;
+		legic_prng_bc = 0;
+		legic_prng_iv = f->data;
+
+		//ResetTimer(timer);
+		//WaitUS(280);
+		WaitTicks(388);
+		return;
 	}
+
+   /* 0x19==??? */
+   if(legic_state == STATE_IV) {
+      uint32_t local_key = get_key_stream(3, 6);
+      int xored = 0x39 ^ local_key;
+      if((f->bits == 6) && (f->data == xored)) {
+         legic_state = STATE_CON;
+
+		 ResetTimer(timer);
+		 WaitTicks(300);
+         return;
+
+	 } else {
+         legic_state = STATE_DISCON;
+         LED_C_OFF();
+         Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored);
+         return;
+      }
+   }
+
+   /* Read */
+   if(f->bits == 11) {
+      if(legic_state == STATE_CON) {
+         uint32_t key = get_key_stream(2, 11); //legic_phase_drift, 11);
+         uint16_t addr = f->data ^ key; 
+		 addr >>= 1;
+         uint8_t data = cardmem[addr];
+		 
+         uint32_t crc = legic4Crc(LEGIC_READ, addr, data, 11) << 8;
+
+         //legic_read_count++;
+         //legic_prng_forward(legic_reqresp_drift);
+
+         frame_send_tag(crc | data, 12);
+		 //ResetTimer(timer);
+         legic_prng_forward(2);
+		 WaitTicks(330);
+         return;
+      }
+   }
+
+   /* Write */
+   if (f->bits == 23 || f->bits == 21 ) {
+      uint32_t key  = get_key_stream(-1, 23); //legic_frame_drift, 23);
+      uint16_t addr = f->data ^ key; 
+	  addr >>= 1; 
+	  addr &= 0x3ff;
+      uint32_t data = f->data ^ key; 
+	  data >>= 11; 
+	  data &= 0xff;
+
+	  cardmem[addr] = data;
+      /* write command */
+      legic_state = STATE_DISCON;
+      LED_C_OFF();
+      Dbprintf("write - addr: %x, data: %x", addr, data);
+	  // should send a ACK after 3.6ms 
+      return;
+   }
+
+   if(legic_state != STATE_DISCON) {
+      Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count);
+      Dbprintf("IV: %03.3x", legic_prng_iv);
+   }
+
+	legic_state = STATE_DISCON; 
+	legic_read_count = 0;
+	WaitMS(10);
+	LED_C_OFF();
+	return; 
+}
+
+/* Read bit by bit untill full frame is received
+ * Call to process frame end answer
+ */
+static void emit(int bit) {
+
+	switch (bit) {
+		case 1:
+			frame_append_bit(&current_frame, 1);
+			break;			
+		case 0:
+			frame_append_bit(&current_frame, 0);
+			break;
+		default: 
+			if(current_frame.bits <= 4) {
+				frame_clean(&current_frame);
+			} else {
+				frame_handle_tag(&current_frame);
+				frame_clean(&current_frame);
+			}
+			WDT_HIT();
+			break;
+	} 
 }
 
-void LegicRfSimulate(void)
+void LegicRfSimulate(int phase, int frame, int reqresp)
 {
-	/* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, 
-	 * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
-	 * envelope waveform on DIN and should send our response on DOUT.
-	 * 
-	 * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
-	 * measure the time between two rising edges on DIN, and no encoding on the
-	 * subcarrier from card to reader, so we'll just shift out our verbatim data
-	 * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
-	 * seems to be 300us-ish.
-	 */
+  /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, 
+   * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
+   * envelope waveform on DIN and should send our response on DOUT.
+   *
+   * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
+   * measure the time between two rising edges on DIN, and no encoding on the
+   * subcarrier from card to reader, so we'll just shift out our verbatim data
+   * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
+   * seems to be 330us.
+   */
+		
+	int old_level = 0, active = 0;
+	volatile int32_t level = 0;
+	
+	legic_state = STATE_DISCON;
+	legic_phase_drift = phase;
+	legic_frame_drift = frame;
+	legic_reqresp_drift = reqresp;
+
+
+	/* to get the stream of bits from FPGA in sim mode.*/
+	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+	// Set up the synchronous serial port
+	//FpgaSetupSsc();
+	// connect Demodulated Signal to ADC:
 	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-	FpgaSetupSsc();
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K);
-	
+	//FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
+
+	#define LEGIC_DMA_BUFFER 256
+	// The DMA buffer, used to stream samples from the FPGA
+	//uint8_t *dmaBuf = BigBuf_malloc(LEGIC_DMA_BUFFER);
+	//uint8_t *data = dmaBuf;
+	// Setup and start DMA.
+	// if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER) ){
+		// if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); 
+		// return;
+	// }
+
+	//StartCountSspClk();
 	/* Bitbang the receiver */
 	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
 	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
+
+	// need a way to determine which tagtype we are simulating
 	
-	setup_timer();
+	// hook up emulator memory  
+	cardmem = BigBuf_get_EM_addr();
 	
-	int old_level = 0;
-	int active = 0;
+	clear_trace();
+	set_tracing(TRUE);
+
+	crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
+
+	StartTicks();
+
+	LED_B_ON();
+	DbpString("Starting Legic emulator, press button to end");
 	
-	while(!BUTTON_PRESS()) {
-		int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
-		int time = timer->TC_CV;
+	/*
+	 * The mode FPGA_HF_SIMULATOR_MODULATE_212K works like this.
+	 * - A 1-bit input to the FPGA becomes 8 pulses on 212kHz (fc/64) (18.88us).
+	 * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us
+	 *
+	 * In this mode the SOF can be written as 00011101 = 0x1D
+	 * The EOF can be written as 10111000 = 0xb8
+	 * A logic 1 is 01
+	 * A logic 0 is 10
+	volatile uint8_t b;
+	uint8_t i = 0;
+	while( !BUTTON_PRESS() ) {
+		WDT_HIT();
+
+		// not sending anything.
+        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+            AT91C_BASE_SSC->SSC_THR = 0x00;
+        }
+
+		// receive
+		if ( AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY ) {
+			b = (uint8_t) AT91C_BASE_SSC->SSC_RHR;
+			bd[i] = b;
+			++i;
+	//		if(OutOfNDecoding(b & 0x0f))
+	//				*len = Uart.byteCnt;
+			}
 		
-		if(level != old_level) {
-			if(level == 1) {
-				timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
-				if(FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) {
-					/* 1 bit */
-					emit(EMIT_RWD, 1);
+	}
+	 */
+
+	while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+		
+		level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
+
+		uint32_t time = GET_TICKS;
+
+		if (level != old_level) {
+			if (level == 1) {
+
+				//Dbprintf("start, %u ", time);
+				StartTicks();
+				// did we get a signal 
+				if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) {
+					// 1 bit 
+					emit(1);
 					active = 1;
-					LED_B_ON();
-				} else if(FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) {
-					/* 0 bit */
-					emit(EMIT_RWD, 0);
+					LED_A_ON();
+				} else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) {
+					// 0 bit 
+					emit(0);
 					active = 1;
-					LED_B_ON();
-				} else if(active) {
-					/* invalid */
-					emit(EMIT_RWD, -1);
+					LED_A_ON();
+				} else if (active) {
+					// invalid 
+					emit(-1);
 					active = 0;
-					LED_B_OFF();
+					LED_A_OFF();
 				}
 			}
 		}
-		
-		if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) {
-			/* Frame end */
-			emit(EMIT_RWD, -1);
+
+	
+		/* Frame end */
+		if(time >= (RWD_TIME_1 + RWD_TIME_FUZZ) && active) {
+			emit(-1);
 			active = 0;
-			LED_B_OFF();
-		}
-		
-		if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) {
-			timer->TC_CCR = AT91C_TC_CLKDIS;
+			LED_A_OFF();
 		}
-		
-		
+
+		/*
+		* Disable the counter, Then wait for the clock to acknowledge the
+		* shutdown in its status register. Reading the SR has the
+		* side-effect of clearing any pending state in there.
+		*/
+		//if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA))
+		if(time >= (20 * RWD_TIME_1) )
+			StopTicks();
+
 		old_level = level;
 		WDT_HIT();
+}
+
+	WDT_HIT();
+	DbpString("LEGIC Prime emulator stopped");
+	switch_off_tag_rwd();
+	FpgaDisableSscDma();
+	LEDsoff();
+	cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
+}
+
+
+//-----------------------------------------------------------------------------
+// Code up a string of octets at layer 2 (including CRC, we don't generate
+// that here) so that they can be transmitted to the reader. Doesn't transmit
+// them yet, just leaves them ready to send in ToSend[].
+//-----------------------------------------------------------------------------
+// static void CodeLegicAsTag(const uint8_t *cmd, int len)
+// {
+	// int i;
+
+	// ToSendReset();
+
+	// // Transmit a burst of ones, as the initial thing that lets the
+	// // reader get phase sync. This (TR1) must be > 80/fs, per spec,
+	// // but tag that I've tried (a Paypass) exceeds that by a fair bit,
+	// // so I will too.
+	// for(i = 0; i < 20; i++) {
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+	// }
+
+	// // Send SOF.
+	// for(i = 0; i < 10; i++) {
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+	// }
+	// for(i = 0; i < 2; i++) {
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+	// }
+
+	// for(i = 0; i < len; i++) {
+		// int j;
+		// uint8_t b = cmd[i];
+
+		// // Start bit
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+
+		// // Data bits
+		// for(j = 0; j < 8; j++) {
+			// if(b & 1) {
+				// ToSendStuffBit(1);
+				// ToSendStuffBit(1);
+				// ToSendStuffBit(1);
+				// ToSendStuffBit(1);
+			// } else {
+				// ToSendStuffBit(0);
+				// ToSendStuffBit(0);
+				// ToSendStuffBit(0);
+				// ToSendStuffBit(0);
+			// }
+			// b >>= 1;
+		// }
+
+		// // Stop bit
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+	// }
+
+	// // Send EOF.
+	// for(i = 0; i < 10; i++) {
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+	// }
+	// for(i = 0; i < 2; i++) {
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+	// }
+
+	// // Convert from last byte pos to length
+	// ToSendMax++;
+// }
+
+//-----------------------------------------------------------------------------
+// The software UART that receives commands from the reader, and its state
+// variables.
+//-----------------------------------------------------------------------------
+/*
+static struct {
+	enum {
+		STATE_UNSYNCD,
+		STATE_GOT_FALLING_EDGE_OF_SOF,
+		STATE_AWAITING_START_BIT,
+		STATE_RECEIVING_DATA
+	}       state;
+	uint16_t shiftReg;
+	int     bitCnt;
+	int     byteCnt;
+	int     byteCntMax;
+	int     posCnt;
+	uint8_t *output;
+} Uart;
+*/
+/* Receive & handle a bit coming from the reader.
+ *
+ * This function is called 4 times per bit (every 2 subcarrier cycles).
+ * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
+ *
+ * LED handling:
+ * LED A -> ON once we have received the SOF and are expecting the rest.
+ * LED A -> OFF once we have received EOF or are in error state or unsynced
+ *
+ * Returns: true if we received a EOF
+ *          false if we are still waiting for some more
+ */
+// static RAMFUNC int HandleLegicUartBit(uint8_t bit)
+// {
+	// switch(Uart.state) {
+		// case STATE_UNSYNCD:
+			// if(!bit) {
+				// // we went low, so this could be the beginning of an SOF
+				// Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
+				// Uart.posCnt = 0;
+				// Uart.bitCnt = 0;
+			// }
+			// break;
+
+		// case STATE_GOT_FALLING_EDGE_OF_SOF:
+			// Uart.posCnt++;
+			// if(Uart.posCnt == 2) {	// sample every 4 1/fs in the middle of a bit
+				// if(bit) {
+					// if(Uart.bitCnt > 9) {
+						// // we've seen enough consecutive
+						// // zeros that it's a valid SOF
+						// Uart.posCnt = 0;
+						// Uart.byteCnt = 0;
+						// Uart.state = STATE_AWAITING_START_BIT;
+						// LED_A_ON(); // Indicate we got a valid SOF
+					// } else {
+						// // didn't stay down long enough
+						// // before going high, error
+						// Uart.state = STATE_UNSYNCD;
+					// }
+				// } else {
+					// // do nothing, keep waiting
+				// }
+				// Uart.bitCnt++;
+			// }
+			// if(Uart.posCnt >= 4) Uart.posCnt = 0;
+			// if(Uart.bitCnt > 12) {
+				// // Give up if we see too many zeros without
+				// // a one, too.
+				// LED_A_OFF();
+				// Uart.state = STATE_UNSYNCD;
+			// }
+			// break;
+
+		// case STATE_AWAITING_START_BIT:
+			// Uart.posCnt++;
+			// if(bit) {
+				// if(Uart.posCnt > 50/2) {	// max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
+					// // stayed high for too long between
+					// // characters, error
+					// Uart.state = STATE_UNSYNCD;
+				// }
+			// } else {
+				// // falling edge, this starts the data byte
+				// Uart.posCnt = 0;
+				// Uart.bitCnt = 0;
+				// Uart.shiftReg = 0;
+				// Uart.state = STATE_RECEIVING_DATA;
+			// }
+			// break;
+
+		// case STATE_RECEIVING_DATA:
+			// Uart.posCnt++;
+			// if(Uart.posCnt == 2) {
+				// // time to sample a bit
+				// Uart.shiftReg >>= 1;
+				// if(bit) {
+					// Uart.shiftReg |= 0x200;
+				// }
+				// Uart.bitCnt++;
+			// }
+			// if(Uart.posCnt >= 4) {
+				// Uart.posCnt = 0;
+			// }
+			// if(Uart.bitCnt == 10) {
+				// if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
+				// {
+					// // this is a data byte, with correct
+					// // start and stop bits
+					// Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
+					// Uart.byteCnt++;
+
+					// if(Uart.byteCnt >= Uart.byteCntMax) {
+						// // Buffer overflowed, give up
+						// LED_A_OFF();
+						// Uart.state = STATE_UNSYNCD;
+					// } else {
+						// // so get the next byte now
+						// Uart.posCnt = 0;
+						// Uart.state = STATE_AWAITING_START_BIT;
+					// }
+				// } else if (Uart.shiftReg == 0x000) {
+					// // this is an EOF byte
+					// LED_A_OFF(); // Finished receiving
+					// Uart.state = STATE_UNSYNCD;
+					// if (Uart.byteCnt != 0) {
+					// return TRUE;
+					// }
+				// } else {
+					// // this is an error
+					// LED_A_OFF();
+					// Uart.state = STATE_UNSYNCD;
+				// }
+			// }
+			// break;
+
+		// default:
+			// LED_A_OFF();
+			// Uart.state = STATE_UNSYNCD;
+			// break;
+	// }
+
+	// return FALSE;
+// }
+/*
+
+static void UartReset() {
+	Uart.byteCntMax = 3;
+	Uart.state = STATE_UNSYNCD;
+	Uart.byteCnt = 0;
+	Uart.bitCnt = 0;
+	Uart.posCnt = 0;
+	memset(Uart.output, 0x00, 3);
+}
+*/
+// static void UartInit(uint8_t *data) {
+	// Uart.output = data;
+	// UartReset();
+// }
+
+//=============================================================================
+// An LEGIC reader. We take layer two commands, code them
+// appropriately, and then send them to the tag. We then listen for the
+// tag's response, which we leave in the buffer to be demodulated on the
+// PC side.
+//=============================================================================
+/*
+static struct {
+	enum {
+		DEMOD_UNSYNCD,
+		DEMOD_PHASE_REF_TRAINING,
+		DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
+		DEMOD_GOT_FALLING_EDGE_OF_SOF,
+		DEMOD_AWAITING_START_BIT,
+		DEMOD_RECEIVING_DATA
+	}       state;
+	int     bitCount;
+	int     posCount;
+	int     thisBit;
+	uint16_t  shiftReg;
+	uint8_t   *output;
+	int     len;
+	int     sumI;
+	int     sumQ;
+} Demod;
+*/
+/*
+ * Handles reception of a bit from the tag
+ *
+ * This function is called 2 times per bit (every 4 subcarrier cycles).
+ * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
+ *
+ * LED handling:
+ * LED C -> ON once we have received the SOF and are expecting the rest.
+ * LED C -> OFF once we have received EOF or are unsynced
+ *
+ * Returns: true if we received a EOF
+ *          false if we are still waiting for some more
+ *
+ */
+ 
+/*
+static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
+{
+	int v = 0;
+	int ai = ABS(ci);
+	int aq = ABS(cq);
+	int halfci = (ai >> 1);
+	int halfcq = (aq >> 1);
+
+	switch(Demod.state) {
+		case DEMOD_UNSYNCD:
+			
+			CHECK_FOR_SUBCARRIER()
+			
+			if(v > SUBCARRIER_DETECT_THRESHOLD) {	// subcarrier detected
+				Demod.state = DEMOD_PHASE_REF_TRAINING;
+				Demod.sumI = ci;
+				Demod.sumQ = cq;
+				Demod.posCount = 1;
+			}
+			break;
+
+		case DEMOD_PHASE_REF_TRAINING:
+			if(Demod.posCount < 8) {
+			
+				CHECK_FOR_SUBCARRIER()
+				
+				if (v > SUBCARRIER_DETECT_THRESHOLD) {
+					// set the reference phase (will code a logic '1') by averaging over 32 1/fs.
+					// note: synchronization time > 80 1/fs
+					Demod.sumI += ci;
+					Demod.sumQ += cq;
+					++Demod.posCount;
+				} else {
+					// subcarrier lost
+					Demod.state = DEMOD_UNSYNCD;
+				}
+			} else {
+				Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
+			}
+			break;
+
+		case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
+
+			MAKE_SOFT_DECISION()
+
+			//Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
+			// logic '0' detected
+			if (v <= 0) {
+				
+				Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
+			
+				// start of SOF sequence
+				Demod.posCount = 0;
+			} else {
+				// maximum length of TR1 = 200 1/fs
+				if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
+			}
+			++Demod.posCount;
+			break;
+
+		case DEMOD_GOT_FALLING_EDGE_OF_SOF:
+			++Demod.posCount;
+
+			MAKE_SOFT_DECISION()
+
+			if(v > 0) {
+				// low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
+				if(Demod.posCount < 10*2) { 
+					Demod.state = DEMOD_UNSYNCD;
+				} else {
+					LED_C_ON(); // Got SOF
+					Demod.state = DEMOD_AWAITING_START_BIT;
+					Demod.posCount = 0;
+					Demod.len = 0;
+				}
+			} else {
+				// low phase of SOF too long (> 12 etu)
+				if(Demod.posCount > 13*2) { 
+					Demod.state = DEMOD_UNSYNCD;
+					LED_C_OFF();
+				}
+			}
+			break;
+
+		case DEMOD_AWAITING_START_BIT:
+			++Demod.posCount;
+			
+			MAKE_SOFT_DECISION()
+			
+			if(v > 0) {
+				// max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
+				if(Demod.posCount > 3*2) { 
+					Demod.state = DEMOD_UNSYNCD;
+					LED_C_OFF();
+				}
+			} else {
+				// start bit detected
+				Demod.bitCount = 0;
+				Demod.posCount = 1;				// this was the first half
+				Demod.thisBit = v;
+				Demod.shiftReg = 0;
+				Demod.state = DEMOD_RECEIVING_DATA;
+			}
+			break;
+
+		case DEMOD_RECEIVING_DATA:
+		
+			MAKE_SOFT_DECISION()
+			
+			if(Demod.posCount == 0) {
+				// first half of bit
+				Demod.thisBit = v;
+				Demod.posCount = 1;
+			} else {
+				// second half of bit
+				Demod.thisBit += v;
+				Demod.shiftReg >>= 1;
+				// logic '1'
+				if(Demod.thisBit > 0) 
+					Demod.shiftReg |= 0x200;
+				
+				++Demod.bitCount;
+				
+				if(Demod.bitCount == 10) {
+					
+					uint16_t s = Demod.shiftReg;
+					
+					if((s & 0x200) && !(s & 0x001)) { 
+						// stop bit == '1', start bit == '0'
+						uint8_t b = (s >> 1);
+						Demod.output[Demod.len] = b;
+						++Demod.len;
+						Demod.state = DEMOD_AWAITING_START_BIT;
+					} else {
+						Demod.state = DEMOD_UNSYNCD;
+						LED_C_OFF();
+						
+						if(s == 0x000) {
+							// This is EOF (start, stop and all data bits == '0'
+							return TRUE;
+						}
+					}
+				}
+				Demod.posCount = 0;
+			}
+			break;
+
+		default:
+			Demod.state = DEMOD_UNSYNCD;
+			LED_C_OFF();
+			break;
 	}
+	return FALSE;
+}
+*/
+/*
+// Clear out the state of the "UART" that receives from the tag.
+static void DemodReset() {
+	Demod.len = 0;
+	Demod.state = DEMOD_UNSYNCD;
+	Demod.posCount = 0;
+	Demod.sumI = 0;
+	Demod.sumQ = 0;
+	Demod.bitCount = 0;
+	Demod.thisBit = 0;
+	Demod.shiftReg = 0;
+	memset(Demod.output, 0x00, 3);
 }
 
-void LegicRfReader(void)
+static void DemodInit(uint8_t *data) {
+	Demod.output = data;
+	DemodReset();
+}
+*/
+
+/*
+ *  Demodulate the samples we received from the tag, also log to tracebuffer
+ *  quiet: set to 'TRUE' to disable debug output
+ */
+ 
+ /*
+ #define LEGIC_DMA_BUFFER_SIZE 256
+
+ static void GetSamplesForLegicDemod(int n, bool quiet)
 {
-	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-	FpgaSetupSsc();
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
+	int max = 0;
+	bool gotFrame = FALSE;
+	int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
+	int	ci, cq, samples = 0;
+
+	BigBuf_free();
+
+	// And put the FPGA in the appropriate mode
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
+
+	// The response (tag -> reader) that we're receiving.
+	// Set up the demodulator for tag -> reader responses.
+	DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
 	
-	/* Bitbang the transmitter */
-	AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
-	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+	// The DMA buffer, used to stream samples from the FPGA
+	int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
+	int8_t *upTo = dmaBuf;
+
+	// Setup and start DMA.
+	if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
+		if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); 
+		return;
+	}	
+
+	// Signal field is ON with the appropriate LED:
+	LED_D_ON();
+	for(;;) {
+		int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
+		if(behindBy > max) max = behindBy;
+
+		while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
+			ci = upTo[0];
+			cq = upTo[1];
+			upTo += 2;
+			if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
+				upTo = dmaBuf;
+				AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
+				AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
+			}
+			lastRxCounter -= 2;
+			if(lastRxCounter <= 0)
+				lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
+
+			samples += 2;
+
+			gotFrame = HandleLegicSamplesDemod(ci , cq );
+			if ( gotFrame )
+				break;
+		}
+
+		if(samples > n || gotFrame)
+			break;
+	}
+
+	FpgaDisableSscDma();
+
+	if (!quiet && Demod.len == 0) {
+		Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
+			max,
+			samples, 
+			gotFrame, 
+			Demod.len, 
+			Demod.sumI, 
+			Demod.sumQ
+		);
+	}
+
+	//Tracing
+	if (Demod.len > 0) {
+		uint8_t parity[MAX_PARITY_SIZE] = {0x00};
+		LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
+	}
+}
+
+*/
+
+//-----------------------------------------------------------------------------
+// Transmit the command (to the tag) that was placed in ToSend[].
+//-----------------------------------------------------------------------------
+/*
+static void TransmitForLegic(void)
+{
+	int c;
+
+	FpgaSetupSsc();
 	
-	setup_timer();
+	while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
+		AT91C_BASE_SSC->SSC_THR = 0xff;
+
+	// Signal field is ON with the appropriate Red LED
+	LED_D_ON();
+
+	// Signal we are transmitting with the Green LED
+	LED_B_ON();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
 	
-	while(!BUTTON_PRESS()) {
-		/* Switch on carrier and let the tag charge for 1ms */
-		AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT;
-		SpinDelay(1);
-		
-		LED_A_ON();
-		frame_send_rwd(queries[0].data, queries[0].bits);
-		LED_A_OFF();
-		
-		frame_clean(&current_frame);
-		LED_B_ON();
-		frame_receive_rwd(&current_frame, responses[0].bits);
-		LED_B_OFF();
-		
-		/* Switch off carrier, make sure tag is reset */
-		AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
-		SpinDelay(10);
-		
+	for(c = 0; c < 10;) {
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+			AT91C_BASE_SSC->SSC_THR = 0xff;
+			c++;
+		}
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+			volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+			(void)r;
+		}
+		WDT_HIT();
+	}
+
+	c = 0;
+	for(;;) {
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+			AT91C_BASE_SSC->SSC_THR = ToSend[c];
+			legic_prng_forward(1); // forward the lfsr 
+			c++;
+			if(c >= ToSendMax) {
+				break;
+			}
+		}
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+			volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+			(void)r;
+		}
 		WDT_HIT();
 	}
+	LED_B_OFF();
+}
+*/
+
+//-----------------------------------------------------------------------------
+// Code a layer 2 command (string of octets, including CRC) into ToSend[],
+// so that it is ready to transmit to the tag using TransmitForLegic().
+//-----------------------------------------------------------------------------
+/*
+static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
+{
+	int i, j;
+	uint8_t b;
+
+	ToSendReset();
+
+	// Send SOF
+	for(i = 0; i < 7; i++)
+		ToSendStuffBit(1);
+
+
+	for(i = 0; i < cmdlen; i++) {
+		// Start bit
+		ToSendStuffBit(0);
+
+		// Data bits
+		b = cmd[i];
+		for(j = 0; j < bits; j++) {
+			if(b & 1) {
+				ToSendStuffBit(1);
+			} else {
+				ToSendStuffBit(0);
+			}
+			b >>= 1;
+		}
+	}
+	
+	// Convert from last character reference to length
+	++ToSendMax;
+}
+*/
+/**
+  Convenience function to encode, transmit and trace Legic comms
+  **/
+/*
+  static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
+{
+	CodeLegicBitsAsReader(cmd, cmdlen, bits);
+	TransmitForLegic();
+	if (tracing) {
+		uint8_t parity[1] = {0x00};
+		LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
+	}
+}
+
+*/
+// Set up LEGIC communication
+/*
+void ice_legic_setup() {
+
+	// standard things.
+	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+	BigBuf_free(); BigBuf_Clear_ext(false);
+	clear_trace();
+	set_tracing(TRUE);
+	DemodReset();
+	UartReset();
 	
+	// Set up the synchronous serial port
+	FpgaSetupSsc();
+
+	// connect Demodulated Signal to ADC:
+	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+	// Signal field is on with the appropriate LED
+    LED_D_ON();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
+	SpinDelay(20);
+	// Start the timer
+	//StartCountSspClk();
+	
+	// initalize CRC 
+	crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
+
+	// initalize prng
+	legic_prng_init(0);
 }
+*/
\ No newline at end of file