X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/20f9a2a1d54952ed15066c93490f0e8fb0d43b67..refs/heads/master:/armsrc/appmain.c diff --git a/armsrc/appmain.c b/armsrc/appmain.c index 8be02778..56bf67e0 100644 --- a/armsrc/appmain.c +++ b/armsrc/appmain.c @@ -10,22 +10,41 @@ // executes. //----------------------------------------------------------------------------- +#include + +#include "usb_cdc.h" #include "proxmark3.h" #include "apps.h" +#include "fpga.h" #include "util.h" #include "printf.h" #include "string.h" - -#include - #include "legicrf.h" - +#include "legicrfsim.h" +#include "hitag2.h" +#include "hitagS.h" +#include "iclass.h" +#include "iso14443b.h" +#include "iso15693.h" +#include "lfsampling.h" +#include "BigBuf.h" +#include "mifarecmd.h" +#include "mifareutil.h" +#include "mifaresim.h" +#include "pcf7931.h" +#include "i2c.h" +#include "hfsnoop.h" +#include "fpgaloader.h" #ifdef WITH_LCD -# include "fonts.h" -# include "LCD.h" + #include "LCD.h" #endif -#define abs(x) ( ((x)<0) ? -(x) : (x) ) +static uint32_t hw_capabilities; + +// Craig Young - 14a stand-alone code +#ifdef WITH_ISO14443a + #include "iso14443a.h" +#endif //============================================================================= // A buffer where we can queue things up to be sent through the FPGA, for @@ -33,38 +52,31 @@ // is the order in which they go out on the wire. //============================================================================= -uint8_t ToSend[512]; +#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits +uint8_t ToSend[TOSEND_BUFFER_SIZE]; int ToSendMax; static int ToSendBit; struct common_area common_area __attribute__((section(".commonarea"))); -void BufferClear(void) -{ - memset(BigBuf,0,sizeof(BigBuf)); - Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf)); -} - -void ToSendReset(void) -{ +void ToSendReset(void) { ToSendMax = -1; ToSendBit = 8; } -void ToSendStuffBit(int b) -{ - if(ToSendBit >= 8) { +void ToSendStuffBit(int b) { + if (ToSendBit >= 8) { ToSendMax++; ToSend[ToSendMax] = 0; ToSendBit = 0; } - if(b) { + if (b) { ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); } ToSendBit++; - if(ToSendBit >= sizeof(ToSend)) { + if (ToSendMax >= sizeof(ToSend)) { ToSendBit = 0; DbpString("ToSendStuffBit overflowed!"); } @@ -74,44 +86,11 @@ void ToSendStuffBit(int b) // Debug print functions, to go out over USB, to the usual PC-side client. //============================================================================= -void DbpString(char *str) -{ - /* this holds up stuff unless we're connected to usb */ - if (!UsbConnected()) - return; - - UsbCommand c; - c.cmd = CMD_DEBUG_PRINT_STRING; - c.arg[0] = strlen(str); - if(c.arg[0] > sizeof(c.d.asBytes)) { - c.arg[0] = sizeof(c.d.asBytes); - } - memcpy(c.d.asBytes, str, c.arg[0]); - - UsbSendPacket((uint8_t *)&c, sizeof(c)); - // TODO fix USB so stupid things like this aren't req'd - SpinDelay(50); +void DbpString(char *str) { + uint8_t len = strlen(str); + cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(uint8_t*)str,len); } -#if 0 -void DbpIntegers(int x1, int x2, int x3) -{ - /* this holds up stuff unless we're connected to usb */ - if (!UsbConnected()) - return; - - UsbCommand c; - c.cmd = CMD_DEBUG_PRINT_INTEGERS; - c.arg[0] = x1; - c.arg[1] = x2; - c.arg[2] = x3; - - UsbSendPacket((uint8_t *)&c, sizeof(c)); - // XXX - SpinDelay(50); -} -#endif - void Dbprintf(const char *fmt, ...) { // should probably limit size here; oh well, let's just use a big buffer char output_string[128]; @@ -125,25 +104,29 @@ void Dbprintf(const char *fmt, ...) { } // prints HEX & ASCII -void Dbhexdump(int len, uint8_t *d) { +void Dbhexdump(int len, uint8_t *d, bool bAsci) { int l=0,i; char ascii[9]; while (len>0) { if (len>8) l=8; else l=len; - + memcpy(ascii,d,l); - ascii[l]=0; - + ascii[l]=0; + // filter safe ascii - for (i=0;i126) ascii[i]='.'; + for (i = 0; i < l; i++) + if (ascii[i]<32 || ascii[i]>126) ascii[i] = '.'; - Dbprintf("%-8s %*D",ascii,l,d," "); + if (bAsci) { + Dbprintf("%-8s %*D",ascii, l, d, " "); + } else { + Dbprintf("%*D", l, d, " "); + } - len-=8; - d+=8; + len -= 8; + d += 8; } } @@ -152,27 +135,31 @@ void Dbhexdump(int len, uint8_t *d) { // in ADC units (0 to 1023). Also a routine to average 32 samples and // return that. //----------------------------------------------------------------------------- -static int ReadAdc(int ch) -{ - uint32_t d; +static int ReadAdc(int ch) { + // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value. + // AMPL_HI is a high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant + // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. + // + // The maths are: + // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be + // + // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%) AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; AT91C_BASE_ADC->ADC_MR = - ADC_MODE_PRESCALE(32) | - ADC_MODE_STARTUP_TIME(16) | - ADC_MODE_SAMPLE_HOLD_TIME(8); - AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); + ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz + ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us + ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us + AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; - while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) - ; - d = AT91C_BASE_ADC->ADC_CDR[ch]; - return d; + while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {}; + + return AT91C_BASE_ADC->ADC_CDR[ch] & 0x3ff; } -static int AvgAdc(int ch) -{ +int AvgAdc(int ch) { // was static - merlok{ int i; int a = 0; @@ -183,16 +170,26 @@ static int AvgAdc(int ch) return (a + 15) >> 5; } -void MeasureAntennaTuning(void) -{ - uint8_t *dest = (uint8_t *)BigBuf; - int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;; - int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV +static int AvgAdc_Voltage_HF(void) { + int AvgAdc_Voltage_Low, AvgAdc_Voltage_High; - UsbCommand c; + AvgAdc_Voltage_Low= (MAX_ADC_HF_VOLTAGE_LOW * AvgAdc(ADC_CHAN_HF_LOW)) >> 10; + // if voltage range is about to be exceeded, use high voltage ADC channel if available (RDV40 only) + if (AvgAdc_Voltage_Low > MAX_ADC_HF_VOLTAGE_LOW - 300) { + AvgAdc_Voltage_High = (MAX_ADC_HF_VOLTAGE_HIGH * AvgAdc(ADC_CHAN_HF_HIGH)) >> 10; + if (AvgAdc_Voltage_High >= AvgAdc_Voltage_Low) { + return AvgAdc_Voltage_High; + } + } + return AvgAdc_Voltage_Low; +} - DbpString("Measuring antenna characteristics, please wait."); - memset(BigBuf,0,sizeof(BigBuf)); +static int AvgAdc_Voltage_LF(void) { + return (MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10; +} + +void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[]) { + int i, adcval = 0, peak = 0; /* * Sweeps the useful LF range of the proxmark from @@ -202,173 +199,467 @@ void MeasureAntennaTuning(void) * the resonating frequency of your LF antenna * ( hopefully around 95 if it is tuned to 125kHz!) */ - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - for (i=255; i>19; i--) { + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + SpinDelay(50); + + for (i = 255; i >= 19; i--) { + WDT_HIT(); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); SpinDelay(20); - // Vref = 3.3V, and a 10000:240 voltage divider on the input - // can measure voltages up to 137500 mV - adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10); - if (i==95) vLf125 = adcval; // voltage at 125Khz - if (i==89) vLf134 = adcval; // voltage at 134Khz - - dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes - if(dest[i] > peak) { - peakv = adcval; - peak = dest[i]; - peakf = i; - ptr = i; + adcval = AvgAdc_Voltage_LF(); + if (i == 95) *vLf125 = adcval; // voltage at 125Khz + if (i == 89) *vLf134 = adcval; // voltage at 134Khz + + LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes + if (LF_Results[i] > peak) { + *peakv = adcval; + peak = LF_Results[i]; + *peakf = i; + //ptr = i; } } + for (i = 18; i >= 0; i--) LF_Results[i] = 0; + + return; +} + +void MeasureAntennaTuningHfOnly(int *vHf) { // Let the FPGA drive the high-frequency antenna around 13.56 MHz. - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); + LED_A_ON(); + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); SpinDelay(20); - // Vref = 3300mV, and an 10:1 voltage divider on the input - // can measure voltages up to 33000 mV - vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; - - c.cmd = CMD_MEASURED_ANTENNA_TUNING; - c.arg[0] = (vLf125 << 0) | (vLf134 << 16); - c.arg[1] = vHf; - c.arg[2] = peakf | (peakv << 16); - UsbSendPacket((uint8_t *)&c, sizeof(c)); + *vHf = AvgAdc_Voltage_HF(); + LED_A_OFF(); + return; +} + +void MeasureAntennaTuning(int mode) { + uint8_t LF_Results[256] = {0}; + int peakv = 0, peakf = 0; + int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV + + LED_B_ON(); + + if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) { + // Reverse "standard" order if HF already loaded, to avoid unnecessary swap. + MeasureAntennaTuningHfOnly(&vHf); + MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results); + } else { + if (mode & FLAG_TUNE_LF) { + MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results); + } + if (mode & FLAG_TUNE_HF) { + MeasureAntennaTuningHfOnly(&vHf); + } + } + + cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_B_OFF(); + return; } -void MeasureAntennaTuningHf(void) -{ - int vHf = 0; // in mV +void MeasureAntennaTuningHf(void) { + int vHf = 0; // in mV DbpString("Measuring HF antenna, press button to exit"); + // Let the FPGA drive the high-frequency antenna around 13.56 MHz. + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); + for (;;) { - // Let the FPGA drive the high-frequency antenna around 13.56 MHz. - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); - SpinDelay(20); - // Vref = 3300mV, and an 10:1 voltage divider on the input - // can measure voltages up to 33000 mV - vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; + SpinDelay(500); + vHf = AvgAdc_Voltage_HF(); Dbprintf("%d mV",vHf); if (BUTTON_PRESS()) break; } DbpString("cancelled"); -} + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); -void SimulateTagHfListen(void) -{ - uint8_t *dest = (uint8_t *)BigBuf; - int n = sizeof(BigBuf); - uint8_t v = 0; - int i; - int p = 0; +} - // We're using this mode just so that I can test it out; the simulated - // tag mode would work just as well and be simpler. - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); - // We need to listen to the high-frequency, peak-detected path. - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); +void ReadMem(int addr) { + const uint8_t *data = ((uint8_t *)addr); - FpgaSetupSsc(); + Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", + addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); +} - i = 0; - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0xff; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR; +/* osimage version information is linked in */ +extern struct version_information version_information; +/* bootrom version information is pointed to from _bootphase1_version_pointer */ +extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__; - v <<= 1; - if(r & 1) { - v |= 1; - } - p++; - if(p >= 8) { - dest[i] = v; - v = 0; - p = 0; - i++; +void set_hw_capabilities(void) { + if (I2C_is_available()) { + hw_capabilities |= HAS_SMARTCARD_SLOT; + } - if(i >= n) { - break; - } - } - } + if (false) { // TODO: implement a test + hw_capabilities |= HAS_EXTRA_FLASH_MEM; } - DbpString("simulate tag (now type bitsamples)"); } -void ReadMem(int addr) -{ - const uint8_t *data = ((uint8_t *)addr); - Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", - addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); -} +void SendVersion(void) { + LED_A_ON(); + set_hw_capabilities(); -/* osimage version information is linked in */ -extern struct version_information version_information; -/* bootrom version information is pointed to from _bootphase1_version_pointer */ -extern char *_bootphase1_version_pointer, _flash_start, _flash_end; -void SendVersion(void) -{ - char temp[48]; /* Limited data payload in USB packets */ - DbpString("Prox/RFID mark3 RFID instrument"); + char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */ + char VersionString[USB_CMD_DATA_SIZE] = { '\0' }; /* Try to find the bootrom version information. Expect to find a pointer at * symbol _bootphase1_version_pointer, perform slight sanity checks on the * pointer, then use it. */ char *bootrom_version = *(char**)&_bootphase1_version_pointer; - if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { - DbpString("bootrom version information appears invalid"); + if (bootrom_version < &_flash_start || bootrom_version >= &_flash_end) { + strcat(VersionString, "bootrom version information appears invalid\n"); } else { FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); - DbpString(temp); + strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); } FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); - DbpString(temp); + strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); + + for (int i = 0; i < fpga_bitstream_num; i++) { + strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1); + strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1); + } + + // test availability of SmartCard slot + if (I2C_is_available()) { + strncat(VersionString, "SmartCard Slot: available\n", sizeof(VersionString) - strlen(VersionString) - 1); + } else { + strncat(VersionString, "SmartCard Slot: not available\n", sizeof(VersionString) - strlen(VersionString) - 1); + } - FpgaGatherVersion(temp, sizeof(temp)); - DbpString(temp); + // Send Chip ID and used flash memory + uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start; + uint32_t compressed_data_section_size = common_area.arg1; + cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, hw_capabilities, VersionString, strlen(VersionString) + 1); + LED_A_OFF(); } -#ifdef WITH_LF -// samy's sniff and repeat routine -void SamyRun() -{ - DbpString("Stand-alone mode! No PC necessary."); +// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time. +// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included. +void printUSBSpeed(void) { + Dbprintf("USB Speed:"); + Dbprintf(" Sending USB packets to client..."); - // 3 possible options? no just 2 for now -#define OPTS 2 + #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds + uint8_t *test_data = BigBuf_get_addr(); + uint32_t end_time; + + uint32_t start_time = end_time = GetTickCount(); + uint32_t bytes_transferred = 0; + + while (end_time < start_time + USB_SPEED_TEST_MIN_TIME) { + cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE); + end_time = GetTickCount(); + bytes_transferred += USB_CMD_DATA_SIZE; + } + + Dbprintf(" Time elapsed: %dms", end_time - start_time); + Dbprintf(" Bytes transferred: %d", bytes_transferred); + Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s", + 1000 * bytes_transferred / (end_time - start_time)); + +} + +/** + * Prints runtime information about the PM3. +**/ +void SendStatus(void) { + LED_A_ON(); + BigBuf_print_status(); + Fpga_print_status(); +#ifdef WITH_SMARTCARD + I2C_print_status(); +#endif + printConfig(); //LF Sampling config + printUSBSpeed(); + Dbprintf("Various"); + Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL); + Dbprintf(" ToSendMax..........%d", ToSendMax); + Dbprintf(" ToSendBit..........%d", ToSendBit); + + cmd_send(CMD_ACK, 1, 0, 0, 0, 0); + LED_A_OFF(); +} - int high[OPTS], low[OPTS]; +#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF_StandAlone) + +#define OPTS 2 +void StandAloneMode() { + DbpString("Stand-alone mode! No PC necessary."); // Oooh pretty -- notify user we're in elite samy mode now - LED(LED_RED, 200); + LED(LED_RED, 200); LED(LED_ORANGE, 200); - LED(LED_GREEN, 200); + LED(LED_GREEN, 200); LED(LED_ORANGE, 200); - LED(LED_RED, 200); + LED(LED_RED, 200); LED(LED_ORANGE, 200); - LED(LED_GREEN, 200); + LED(LED_GREEN, 200); LED(LED_ORANGE, 200); - LED(LED_RED, 200); + LED(LED_RED, 200); +} + +#endif + + + +#ifdef WITH_ISO14443a_StandAlone +void StandAloneMode14a() { + StandAloneMode(); + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + int selected = 0; + bool playing = false, GotoRecord = false, GotoClone = false; + bool cardRead[OPTS] = {false}; + uint8_t readUID[10] = {0}; + uint32_t uid_1st[OPTS]={0}; + uint32_t uid_2nd[OPTS]={0}; + uint32_t uid_tmp1 = 0; + uint32_t uid_tmp2 = 0; + iso14a_card_select_t hi14a_card[OPTS]; + + LED(selected + 1, 0); + + for (;;) { + usb_poll(); + WDT_HIT(); + SpinDelay(300); + + if (GotoRecord || !cardRead[selected]) { + GotoRecord = false; + LEDsoff(); + LED(selected + 1, 0); + LED(LED_RED2, 0); + + // record + Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected); + /* need this delay to prevent catching some weird data */ + SpinDelay(500); + /* Code for reading from 14a tag */ + uint8_t uid[10] ={0}; + uint32_t cuid; + iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); + + for ( ; ; ) { + WDT_HIT(); + if (BUTTON_PRESS()) { + if (cardRead[selected]) { + Dbprintf("Button press detected -- replaying card in bank[%d]", selected); + break; + } else if (cardRead[(selected+1)%OPTS]) { + Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS); + selected = (selected+1)%OPTS; + break; + } else { + Dbprintf("Button press detected but no stored tag to play. (Ignoring button)"); + SpinDelay(300); + } + } + if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true)) + continue; + else { + Dbprintf("Read UID:"); Dbhexdump(10,uid,0); + memcpy(readUID,uid,10*sizeof(uint8_t)); + uint8_t *dst = (uint8_t *)&uid_tmp1; + // Set UID byte order + for (int i = 0; i < 4; i++) + dst[i] = uid[3-i]; + dst = (uint8_t *)&uid_tmp2; + for (int i = 0; i < 4; i++) + dst[i] = uid[7-i]; + if (uid_1st[(selected+1) % OPTS] == uid_tmp1 && uid_2nd[(selected+1) % OPTS] == uid_tmp2) { + Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping."); + } else { + if (uid_tmp2) { + Dbprintf("Bank[%d] received a 7-byte UID", selected); + uid_1st[selected] = (uid_tmp1)>>8; + uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8); + } else { + Dbprintf("Bank[%d] received a 4-byte UID", selected); + uid_1st[selected] = uid_tmp1; + uid_2nd[selected] = uid_tmp2; + } + break; + } + } + } + Dbprintf("ATQA = %02X%02X", hi14a_card[selected].atqa[0], hi14a_card[selected].atqa[1]); + Dbprintf("SAK = %02X", hi14a_card[selected].sak); + LEDsoff(); + LED(LED_GREEN, 200); + LED(LED_ORANGE, 200); + LED(LED_GREEN, 200); + LED(LED_ORANGE, 200); + + LEDsoff(); + LED(selected + 1, 0); + + // Next state is replay: + playing = true; + + cardRead[selected] = true; + } else if (GotoClone) { /* MF Classic UID clone */ + GotoClone=false; + LEDsoff(); + LED(selected + 1, 0); + LED(LED_ORANGE, 250); + + + // record + Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]); + + // wait for button to be released + while(BUTTON_PRESS()) { + // Delay cloning until card is in place + WDT_HIT(); + } + Dbprintf("Starting clone. [Bank: %u]", selected); + // need this delay to prevent catching some weird data + SpinDelay(500); + // Begin clone function here: + /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards: + UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}}; + memcpy(c.d.asBytes, data, 16); + SendCommand(&c); + + Block read is similar: + UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}}; + We need to imitate that call with blockNo 0 to set a uid. + + The get and set commands are handled in this file: + // Work with "magic Chinese" card + case CMD_MIFARE_CSETBLOCK: + MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_CGETBLOCK: + MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + + mfCSetUID provides example logic for UID set workflow: + -Read block0 from card in field with MifareCGetBlock() + -Configure new values without replacing reserved bytes + memcpy(block0, uid, 4); // Copy UID bytes from byte array + // Mifare UID BCC + block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5 + Bytes 5-7 are reserved SAK and ATQA for mifare classic + -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it + */ + uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0}; + // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo + MifareCGetBlock(0x3F, 1, 0, oldBlock0); + if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) { + Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected); + playing = true; + } else { + Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0], oldBlock0[1], oldBlock0[2], oldBlock0[3]); + memcpy(newBlock0, oldBlock0, 16); + // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic) + + newBlock0[0] = uid_1st[selected] >> 24; + newBlock0[1] = 0xFF & (uid_1st[selected] >> 16); + newBlock0[2] = 0xFF & (uid_1st[selected] >> 8); + newBlock0[3] = 0xFF & (uid_1st[selected]); + newBlock0[4] = newBlock0[0] ^ newBlock0[1] ^ newBlock0[2] ^ newBlock0[3]; + // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain + MifareCSetBlock(0, 0xFF, 0, newBlock0); + MifareCGetBlock(0x3F, 1, 0, testBlock0); + if (memcmp(testBlock0, newBlock0, 16) == 0) { + DbpString("Cloned successfull!"); + cardRead[selected] = false; // Only if the card was cloned successfully should we clear it + playing = false; + GotoRecord = true; + selected = (selected+1) % OPTS; + } else { + Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected); + playing = true; + } + } + LEDsoff(); + LED(selected + 1, 0); + + } else if (playing) { + // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected]) + // Change where to record (or begin playing) + LEDsoff(); + LED(selected + 1, 0); + + // Begin transmitting + LED(LED_GREEN, 0); + DbpString("Playing"); + for ( ; ; ) { + WDT_HIT(); + int button_action = BUTTON_HELD(1000); + if (button_action == 0) { // No button action, proceed with sim + uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break + Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected], uid_2nd[selected], selected); + if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) { + DbpString("Mifare Classic"); + SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data); // Mifare Classic + } else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) { + DbpString("Mifare Ultralight"); + SimulateIso14443aTag(2, uid_1st[selected], uid_2nd[selected], data); // Mifare Ultralight + } else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) { + DbpString("Mifare DESFire"); + SimulateIso14443aTag(3, uid_1st[selected], uid_2nd[selected], data); // Mifare DESFire + } else { + Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation"); + SimulateIso14443aTag(1, uid_1st[selected], uid_2nd[selected], data); + } + } else if (button_action == BUTTON_SINGLE_CLICK) { + selected = (selected + 1) % OPTS; + Dbprintf("Done playing. Switching to record mode on bank %d",selected); + GotoRecord = true; + break; + } else if (button_action == BUTTON_HOLD) { + Dbprintf("Playtime over. Begin cloning..."); + GotoClone = true; + break; + } + WDT_HIT(); + } + + /* We pressed a button so ignore it here with a delay */ + SpinDelay(300); + LEDsoff(); + LED(selected + 1, 0); + } + } +} + +#elif WITH_LF_StandAlone + +// samy's sniff and repeat routine +void SamyRun() { + StandAloneMode(); + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + + int tops[OPTS], high[OPTS], low[OPTS]; int selected = 0; int playing = 0; + int cardRead = 0; // Turn on selected LED LED(selected + 1, 0); - for (;;) - { - UsbPoll(FALSE); + for (;;) { + usb_poll(); WDT_HIT(); // Was our button held down or pressed? @@ -376,8 +667,7 @@ void SamyRun() SpinDelay(300); // Button was held for a second, begin recording - if (button_pressed > 0) - { + if (button_pressed > 0 && cardRead == 0) { LEDsoff(); LED(selected + 1, 0); LED(LED_RED2, 0); @@ -392,8 +682,11 @@ void SamyRun() /* need this delay to prevent catching some weird data */ SpinDelay(500); - CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); - Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]); + CmdHIDdemodFSK(1, &tops[selected], &high[selected], &low[selected], 0); + if (tops[selected] > 0) + Dbprintf("Recorded %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); + else + Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]); LEDsoff(); LED(selected + 1, 0); @@ -402,11 +695,46 @@ void SamyRun() // If we were previously playing, set playing off // so next button push begins playing what we recorded playing = 0; - } - // Change where to record (or begin playing) - else if (button_pressed) - { + cardRead = 1; + + } else if (button_pressed > 0 && cardRead == 1) { + LEDsoff(); + LED(selected + 1, 0); + LED(LED_ORANGE, 0); + + // record + if (tops[selected] > 0) + Dbprintf("Cloning %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); + else + Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]); + + // wait for button to be released + while(BUTTON_PRESS()) + WDT_HIT(); + + /* need this delay to prevent catching some weird data */ + SpinDelay(500); + + CopyHIDtoT55x7(tops[selected] & 0x000FFFFF, high[selected], low[selected], (tops[selected] != 0 && ((high[selected]& 0xFFFFFFC0) != 0)), 0x1D); + if (tops[selected] > 0) + Dbprintf("Cloned %x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); + else + Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]); + + LEDsoff(); + LED(selected + 1, 0); + // Finished recording + + // If we were previously playing, set playing off + // so next button push begins playing what we recorded + playing = 0; + + cardRead = 0; + + } else if (button_pressed) { + + // Change where to record (or begin playing) // Next option if we were previously playing if (playing) selected = (selected + 1) % OPTS; @@ -416,22 +744,24 @@ void SamyRun() LED(selected + 1, 0); // Begin transmitting - if (playing) - { + if (playing) { LED(LED_GREEN, 0); DbpString("Playing"); // wait for button to be released while(BUTTON_PRESS()) WDT_HIT(); - Dbprintf("%x %x %x", selected, high[selected], low[selected]); - CmdHIDsimTAG(high[selected], low[selected], 0); + if (tops[selected] > 0) + Dbprintf("%x %x%08x%08x", selected, tops[selected], high[selected], low[selected]); + else + Dbprintf("%x %x%08x", selected, high[selected], low[selected]); + + CmdHIDsimTAG(tops[selected], high[selected], low[selected], 0); DbpString("Done playing"); - if (BUTTON_HELD(1000) > 0) - { + if (BUTTON_HELD(1000) > 0) { DbpString("Exiting"); LEDsoff(); return; - } + } /* We pressed a button so ignore it here with a delay */ SpinDelay(300); @@ -441,13 +771,13 @@ void SamyRun() playing = !playing; LEDsoff(); LED(selected + 1, 0); - } - else + } else while(BUTTON_PRESS()) WDT_HIT(); } } } + #endif /* @@ -485,36 +815,44 @@ static const char LIGHT_SCHEME[] = { 0xE, /* -XXX | 86% of maximum current detected */ 0xF, /* XXXX | 100% of maximum current detected */ }; + static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); -void ListenReaderField(int limit) -{ - int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max; - int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max; +void ListenReaderField(int limit) { + int lf_av, lf_av_new=0, lf_baseline= 0, lf_max; + int hf_av, hf_av_new=0, hf_baseline= 0, hf_max; int mode=1, display_val, display_max, i; -#define LF_ONLY 1 -#define HF_ONLY 2 +#define LF_ONLY 1 +#define HF_ONLY 2 +#define REPORT_CHANGE_PERCENT 5 // report new values only if they have changed at least by REPORT_CHANGE_PERCENT +#define MIN_HF_FIELD 300 // in mode 1 signal HF field greater than MIN_HF_FIELD above baseline +#define MIN_LF_FIELD 1200 // in mode 1 signal LF field greater than MIN_LF_FIELD above baseline + + + // switch off FPGA - we don't want to measure our own signal + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); - lf_av=lf_max=ReadAdc(ADC_CHAN_LF); + lf_av = lf_max = AvgAdc_Voltage_LF(); - if(limit != HF_ONLY) { - Dbprintf("LF 125/134 Baseline: %d", lf_av); + if (limit != HF_ONLY) { + Dbprintf("LF 125/134kHz Baseline: %dmV", lf_av); lf_baseline = lf_av; } - hf_av=hf_max=ReadAdc(ADC_CHAN_HF); + hf_av = hf_max = AvgAdc_Voltage_HF(); if (limit != LF_ONLY) { - Dbprintf("HF 13.56 Baseline: %d", hf_av); + Dbprintf("HF 13.56MHz Baseline: %dmV", hf_av); hf_baseline = hf_av; } for(;;) { + SpinDelay(500); if (BUTTON_PRESS()) { - SpinDelay(500); switch (mode) { case 1: mode=2; @@ -527,46 +865,49 @@ void ListenReaderField(int limit) return; break; } + while (BUTTON_PRESS()) + /* wait */; } WDT_HIT(); if (limit != HF_ONLY) { - if(mode==1) { - if (abs(lf_av - lf_baseline) > 10) LED_D_ON(); - else LED_D_OFF(); + if(mode == 1) { + if (lf_av - lf_baseline > MIN_LF_FIELD) + LED_D_ON(); + else + LED_D_OFF(); } - ++lf_count; - lf_av_new= ReadAdc(ADC_CHAN_LF); + lf_av_new = AvgAdc_Voltage_LF(); // see if there's a significant change - if(abs(lf_av - lf_av_new) > 10) { - Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count); + if (ABS((lf_av - lf_av_new) * 100 / (lf_av?lf_av:1)) > REPORT_CHANGE_PERCENT) { + Dbprintf("LF 125/134kHz Field Change: %5dmV", lf_av_new); lf_av = lf_av_new; if (lf_av > lf_max) lf_max = lf_av; - lf_count= 0; } } if (limit != LF_ONLY) { if (mode == 1){ - if (abs(hf_av - hf_baseline) > 10) LED_B_ON(); - else LED_B_OFF(); + if (hf_av - hf_baseline > MIN_HF_FIELD) + LED_B_ON(); + else + LED_B_OFF(); } - ++hf_count; - hf_av_new= ReadAdc(ADC_CHAN_HF); + hf_av_new = AvgAdc_Voltage_HF(); + // see if there's a significant change - if(abs(hf_av - hf_av_new) > 10) { - Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count); + if (ABS((hf_av - hf_av_new) * 100 / (hf_av?hf_av:1)) > REPORT_CHANGE_PERCENT) { + Dbprintf("HF 13.56MHz Field Change: %5dmV", hf_av_new); hf_av = hf_av_new; if (hf_av > hf_max) hf_max = hf_av; - hf_count= 0; } } - if(mode == 2) { + if (mode == 2) { if (limit == LF_ONLY) { display_val = lf_av; display_max = lf_max; @@ -582,8 +923,8 @@ void ListenReaderField(int limit) display_max = lf_max; } } - for (i=0; i= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { + for (i = 0; i < LIGHT_LEN; i++) { + if (display_val >= (display_max / LIGHT_LEN * i) && display_val <= (display_max / LIGHT_LEN * (i+1))) { if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); @@ -595,161 +936,395 @@ void ListenReaderField(int limit) } } -void UsbPacketReceived(uint8_t *packet, int len) -{ - UsbCommand *c = (UsbCommand *)packet; - UsbCommand ack; - ack.cmd = CMD_ACK; + +void UsbPacketReceived(UsbCommand *c) { + +// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]); switch(c->cmd) { #ifdef WITH_LF + case CMD_SET_LF_SAMPLING_CONFIG: + setSamplingConfig(c->d.asBytes); + break; case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: - AcquireRawAdcSamples125k(c->arg[0]); - UsbSendPacket((uint8_t*)&ack, sizeof(ack)); + cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0); break; -#endif - -#ifdef WITH_LF case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); break; + case CMD_LF_SNOOP_RAW_ADC_SAMPLES: + cmd_send(CMD_ACK,SnoopLF(),0,0,0,0); + break; + case CMD_HID_DEMOD_FSK: + CmdHIDdemodFSK(c->arg[0], 0, 0, 0, 1); + break; + case CMD_HID_SIM_TAG: + CmdHIDsimTAG(c->arg[0], c->arg[1], c->arg[2], 1); + break; + case CMD_FSK_SIM_TAG: + CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_ASK_SIM_TAG: + CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_PSK_SIM_TAG: + CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_HID_CLONE_TAG: + CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x1D); + break; + case CMD_PARADOX_CLONE_TAG: + // Paradox cards are the same as HID, with a different preamble, so we can reuse the same function + CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0], 0x0F); + break; + case CMD_IO_DEMOD_FSK: + CmdIOdemodFSK(c->arg[0], 0, 0, 1); + break; + case CMD_IO_CLONE_TAG: + CopyIOtoT55x7(c->arg[0], c->arg[1]); + break; + case CMD_EM410X_DEMOD: + CmdEM410xdemod(c->arg[0], 0, 0, 1); + break; + case CMD_EM410X_WRITE_TAG: + WriteEM410x(c->arg[0], c->arg[1], c->arg[2]); + break; + case CMD_READ_TI_TYPE: + ReadTItag(); + break; + case CMD_WRITE_TI_TYPE: + WriteTItag(c->arg[0],c->arg[1],c->arg[2]); + break; + case CMD_SIMULATE_TAG_125K: + LED_A_ON(); + SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); + LED_A_OFF(); + break; + case CMD_LF_SIMULATE_BIDIR: + SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); + break; + case CMD_INDALA_CLONE_TAG: + CopyIndala64toT55x7(c->arg[0], c->arg[1]); + break; + case CMD_INDALA_CLONE_TAG_L: + CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); + break; + case CMD_T55XX_READ_BLOCK: + T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]); + break; + case CMD_T55XX_WRITE_BLOCK: + T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); + break; + case CMD_T55XX_WAKEUP: + T55xxWakeUp(c->arg[0]); + break; + case CMD_T55XX_RESET_READ: + T55xxResetRead(); + break; + case CMD_PCF7931_READ: + ReadPCF7931(); + break; + case CMD_PCF7931_WRITE: + WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]); + break; + case CMD_PCF7931_BRUTEFORCE: + BruteForcePCF7931(c->arg[0], (c->arg[1] & 0xFF), c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128); + break; + case CMD_EM4X_READ_WORD: + EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]); + break; + case CMD_EM4X_WRITE_WORD: + EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]); + break; + case CMD_EM4X_PROTECT: + EM4xProtect(c->arg[0], c->arg[1], c->arg[2]); + break; + case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation + CmdAWIDdemodFSK(c->arg[0], 0, 0, 1); + break; + case CMD_VIKING_CLONE_TAG: + CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]); + break; + case CMD_COTAG: + Cotag(c->arg[0]); + break; +#endif + +#ifdef WITH_HITAG + case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type + SnoopHitag(c->arg[0]); + break; + case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content + SimulateHitagTag((bool)c->arg[0], (uint8_t*)c->d.asBytes); + break; + case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function + ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); + break; + case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content + SimulateHitagSTag((bool)c->arg[0],(uint8_t*)c->d.asBytes); + break; + case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file + check_challenges_cmd((bool)c->arg[0], (uint8_t*)c->d.asBytes, (uint8_t)c->arg[1]); + break; + case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge + ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], false); + break; + case CMD_READ_HITAG_S_BLK: + ReadHitagSCmd((hitag_function)c->arg[0], (hitag_data*)c->d.asBytes, (uint8_t)c->arg[1], (uint8_t)c->arg[2], true); + break; + case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge + if ((hitag_function)c->arg[0] < 10) { + WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]); + } + else if ((hitag_function)c->arg[0] >= 10) { + WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]); + } + break; #endif #ifdef WITH_ISO15693 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: AcquireRawAdcSamplesIso15693(); break; -#endif -#ifdef WITH_ISO15693 - case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693: - RecordRawAdcSamplesIso15693(); + case CMD_SNOOP_ISO_15693: + SnoopIso15693(0, NULL); break; - + case CMD_ISO_15693_COMMAND: DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); break; - + case CMD_ISO_15693_FIND_AFI: BruteforceIso15693Afi(c->arg[0]); - break; - + break; + case CMD_ISO_15693_DEBUG: SetDebugIso15693(c->arg[0]); break; - -#endif - case CMD_BUFF_CLEAR: - BufferClear(); - break; -#ifdef WITH_ISO15693 case CMD_READER_ISO_15693: ReaderIso15693(c->arg[0]); break; -#endif - case CMD_SIMULATE_TAG_LEGIC_RF: - LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]); - break; + case CMD_SIMTAG_ISO_15693: + SimTagIso15693(c->arg[0], c->d.asBytes); + break; - case CMD_WRITER_LEGIC_RF: - LegicRfWriter(c->arg[1], c->arg[0]); - break; + case CMD_CSETUID_ISO_15693: + SetTag15693Uid(c->d.asBytes); + break; +#endif - case CMD_READER_LEGIC_RF: - LegicRfReader(c->arg[0], c->arg[1]); +#ifdef WITH_LEGICRF + case CMD_SIMULATE_TAG_LEGIC_RF: + LegicRfSimulate(c->arg[0]); break; -#ifdef WITH_ISO15693 - case CMD_SIMTAG_ISO_15693: - SimTagIso15693(c->arg[0]); + case CMD_WRITER_LEGIC_RF: + LegicRfWriter(c->arg[1], c->arg[0]); break; -#endif -#ifdef WITH_ISO14443b - case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: - AcquireRawAdcSamplesIso14443(c->arg[0]); + case CMD_READER_LEGIC_RF: + LegicRfReader(c->arg[0], c->arg[1]); break; #endif #ifdef WITH_ISO14443b case CMD_READ_SRI512_TAG: - ReadSRI512Iso14443(c->arg[0]); + ReadSTMemoryIso14443b(0x0F); + break; + case CMD_READ_SRIX4K_TAG: + ReadSTMemoryIso14443b(0x7F); + break; + case CMD_SNOOP_ISO_14443B: + SnoopIso14443b(); + break; + case CMD_SIMULATE_TAG_ISO_14443B: + SimulateIso14443bTag(); + break; + case CMD_ISO_14443B_COMMAND: + SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); break; - case CMD_READ_SRIX4K_TAG: - ReadSRIX4KIso14443(c->arg[0]); - break; #endif #ifdef WITH_ISO14443a + case CMD_SNOOP_ISO_14443a: + SnoopIso14443a(c->arg[0]); + break; case CMD_READER_ISO_14443a: - ReaderIso14443a(c, &ack); + ReaderIso14443a(c); + break; + case CMD_SIMULATE_TAG_ISO_14443a: + SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID + break; + + case CMD_EPA_PACE_COLLECT_NONCE: + EPA_PACE_Collect_Nonce(c); + break; + case CMD_EPA_PACE_REPLAY: + EPA_PACE_Replay(c); break; -#endif -#ifdef WITH_ISO14443a case CMD_READER_MIFARE: ReaderMifare(c->arg[0]); break; -#endif - -#ifdef WITH_ISO14443a case CMD_MIFARE_READBL: MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; + case CMD_MIFAREU_READBL: + MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes); + break; + case CMD_MIFAREUC_AUTH: + MifareUC_Auth(c->arg[0],c->d.asBytes); + break; + case CMD_MIFAREU_READCARD: + MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFAREUC_SETPWD: + MifareUSetPwd(c->arg[0], c->d.asBytes); + break; case CMD_MIFARE_READSC: MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; case CMD_MIFARE_WRITEBL: MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; + case CMD_MIFARE_PERSONALIZE_UID: + MifarePersonalizeUID(c->arg[0], c->arg[1], c->d.asBytes); + break; + //case CMD_MIFAREU_WRITEBL_COMPAT: + //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes); + //break; + case CMD_MIFAREU_WRITEBL: + MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes); + break; + case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES: + MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; case CMD_MIFARE_NESTED: MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; + case CMD_MIFARE_CHKKEYS: + MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; case CMD_SIMULATE_MIFARE_CARD: - Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + MifareSim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; - -#endif -#ifdef WITH_ISO14443b - case CMD_SNOOP_ISO_14443: - SnoopIso14443(); + // emulator + case CMD_MIFARE_SET_DBGMODE: + MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_EML_MEMCLR: + MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_EML_MEMSET: + MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_EML_MEMGET: + MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_EML_CARDLOAD: + MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; -#endif -#ifdef WITH_ISO14443a - case CMD_SNOOP_ISO_14443a: - SnoopIso14443a(); + // Work with "magic Chinese" card + case CMD_MIFARE_CWIPE: + MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_CSETBLOCK: + MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_CGETBLOCK: + MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; + case CMD_MIFARE_CIDENT: + MifareCIdent(); + break; + + // mifare sniffer + case CMD_MIFARE_SNIFFER: + SniffMifare(c->arg[0]); + break; + #endif -#ifdef WITH_ISO14443a +#ifdef WITH_ICLASS // Makes use of ISO14443a FPGA Firmware case CMD_SNOOP_ICLASS: - SnoopIClass(); + SnoopIClass(c->arg[0], c->d.asBytes); + break; + case CMD_SIMULATE_TAG_ICLASS: + SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_READER_ICLASS: + ReaderIClass(c->arg[0]); + break; + case CMD_ICLASS_EML_MEMSET: + emlSet(c->d.asBytes,c->arg[0], c->arg[1]); + break; + case CMD_ICLASS_WRITEBLOCK: + iClass_WriteBlock(c->arg[0], c->d.asBytes); + break; + case CMD_ICLASS_READBLOCK: + iClass_ReadBlk(c->arg[0]); + break; + case CMD_ICLASS_CHECK: + iClass_Check(c->d.asBytes); + break; + case CMD_ICLASS_READCHECK: + iClass_Readcheck(c->arg[0], c->arg[1]); + break; + case CMD_ICLASS_DUMP: + iClass_Dump(c->arg[0], c->arg[1]); + break; + case CMD_ICLASS_CLONE: + iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes); break; #endif - case CMD_SIMULATE_TAG_HF_LISTEN: - SimulateTagHfListen(); +#ifdef WITH_HFSNOOP + case CMD_HF_SNIFFER: + HfSnoop(c->arg[0], c->arg[1]); break; - -#ifdef WITH_ISO14443b - case CMD_SIMULATE_TAG_ISO_14443: - SimulateIso14443Tag(); + case CMD_HF_PLOT: + HfPlot(); break; #endif -#ifdef WITH_ISO14443a - case CMD_SIMULATE_TAG_ISO_14443a: - SimulateIso14443aTag(c->arg[0], c->arg[1]); // ## Simulate iso14443a tag - pass tag type & UID +#ifdef WITH_SMARTCARD + case CMD_SMART_ATR: { + SmartCardAtr(); + break; + } + case CMD_SMART_SETCLOCK:{ + SmartCardSetClock(c->arg[0]); + break; + } + case CMD_SMART_RAW: { + SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes); + break; + } + case CMD_SMART_UPLOAD: { + // upload file from client + uint8_t *mem = BigBuf_get_addr(); + memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); + cmd_send(CMD_ACK,1,0,0,0,0); + break; + } + case CMD_SMART_UPGRADE: { + SmartCardUpgrade(c->arg[0]); break; + } #endif + case CMD_BUFF_CLEAR: + BigBuf_Clear(); + break; + case CMD_MEASURE_ANTENNA_TUNING: - MeasureAntennaTuning(); + MeasureAntennaTuning(c->arg[0]); break; case CMD_MEASURE_ANTENNA_TUNING_HF: @@ -760,72 +1335,47 @@ void UsbPacketReceived(uint8_t *packet, int len) ListenReaderField(c->arg[0]); break; -#ifdef WITH_LF - case CMD_HID_DEMOD_FSK: - CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag - break; -#endif - -#ifdef WITH_LF - case CMD_HID_SIM_TAG: - CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID - break; -#endif - - case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control + case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control + LED_A_ON(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); LED_D_OFF(); // LED D indicates field ON or OFF + LED_A_OFF(); break; -#ifdef WITH_LF - case CMD_READ_TI_TYPE: - ReadTItag(); - break; -#endif - -#ifdef WITH_LF - case CMD_WRITE_TI_TYPE: - WriteTItag(c->arg[0],c->arg[1],c->arg[2]); - break; -#endif - - case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: { - UsbCommand n; - if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { - n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; - } else { - n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; - } - n.arg[0] = c->arg[0]; - memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(uint32_t)); + case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: LED_B_ON(); - UsbSendPacket((uint8_t *)&n, sizeof(n)); + uint8_t *BigBuf = BigBuf_get_addr(); + for(size_t i=0; iarg[1]; i += USB_CMD_DATA_SIZE) { + size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE); + cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len); + } + // Trigger a finish downloading signal with an ACK frame + cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config)); LED_B_OFF(); break; - } case CMD_DOWNLOADED_SIM_SAMPLES_125K: { - uint8_t *b = (uint8_t *)BigBuf; - memcpy(b+c->arg[0], c->d.asBytes, 48); - //Dbprintf("copied 48 bytes to %i",b+c->arg[0]); - UsbSendPacket((uint8_t*)&ack, sizeof(ack)); - break; - } + // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before. + // to be able to use this one for uploading data to device + // arg1 = 0 upload for LF usage + // 1 upload for HF usage + if (c->arg[1] == 0) + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + else + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); -#ifdef WITH_LF - case CMD_SIMULATE_TAG_125K: - LED_A_ON(); - SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); - LED_A_OFF(); + uint8_t *b = BigBuf_get_addr(); + memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); + cmd_send(CMD_ACK,0,0,0,0,0); break; -#endif - + } case CMD_READ_MEM: ReadMem(c->arg[0]); break; case CMD_SET_LF_DIVISOR: + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); break; @@ -841,13 +1391,12 @@ void UsbPacketReceived(uint8_t *packet, int len) case CMD_VERSION: SendVersion(); break; - -#ifdef WITH_LF - case CMD_LF_SIMULATE_BIDIR: - SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); + case CMD_STATUS: + SendStatus(); + break; + case CMD_PING: + cmd_send(CMD_ACK,0,0,0,0,0); break; -#endif - #ifdef WITH_LCD case CMD_LCD_RESET: LCDReset(); @@ -859,7 +1408,7 @@ void UsbPacketReceived(uint8_t *packet, int len) case CMD_SETUP_WRITE: case CMD_FINISH_WRITE: case CMD_HARDWARE_RESET: - USB_D_PLUS_PULLUP_OFF(); + usb_disable(); SpinDelay(1000); SpinDelay(1000); AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; @@ -872,29 +1421,28 @@ void UsbPacketReceived(uint8_t *packet, int len) if(common_area.flags.bootrom_present) { common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; } - USB_D_PLUS_PULLUP_OFF(); + usb_disable(); AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; for(;;); break; case CMD_DEVICE_INFO: { - UsbCommand c; - c.cmd = CMD_DEVICE_INFO; - c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; - if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; - UsbSendPacket((uint8_t*)&c, sizeof(c)); - } + uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; + if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; + cmd_send_old(CMD_DEVICE_INFO,dev_info,0,0,0,0); break; + } default: Dbprintf("%s: 0x%04x","unknown command:",c->cmd); break; } } -void __attribute__((noreturn)) AppMain(void) -{ - SpinDelay(100); +void __attribute__((noreturn)) AppMain(void) { + + SpinDelay(100); + clear_trace(); if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { /* Initialize common area */ memset(&common_area, 0, sizeof(common_area)); @@ -903,12 +1451,10 @@ void __attribute__((noreturn)) AppMain(void) } common_area.flags.osimage_present = 1; - LED_D_OFF(); - LED_C_OFF(); - LED_B_OFF(); - LED_A_OFF(); + LEDsoff(); - UsbStart(); + // Init USB device + usb_enable(); // The FPGA gets its clock from us from PCK0 output, so set that up. AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; @@ -916,50 +1462,39 @@ void __attribute__((noreturn)) AppMain(void) AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | - AT91C_PMC_PRES_CLK_4; + AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; // Reset SPI AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; + AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; // required twice on some AT91SAM Revisions (see Errata in AT91SAM datasheet) // Reset SSC AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; - // Load the FPGA image, which we have stored in our flash. - FpgaDownloadAndGo(); + // Load the FPGA image, which we have stored in our flash (HF version by default) + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + + StartTickCount(); #ifdef WITH_LCD - LCDInit(); - - // test text on different colored backgrounds - LCDString(" The quick brown fox ", (char *)&FONT6x8,1,1+8*0,WHITE ,BLACK ); - LCDString(" jumped over the ", (char *)&FONT6x8,1,1+8*1,BLACK ,WHITE ); - LCDString(" lazy dog. ", (char *)&FONT6x8,1,1+8*2,YELLOW ,RED ); - LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8,1,1+8*3,RED ,GREEN ); - LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE ); - LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8,1,1+8*5,BLUE ,YELLOW); - LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8,1,1+8*6,BLACK ,CYAN ); - LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8,1,1+8*7,BLUE ,MAGENTA); - - // color bands - LCDFill(0, 1+8* 8, 132, 8, BLACK); - LCDFill(0, 1+8* 9, 132, 8, WHITE); - LCDFill(0, 1+8*10, 132, 8, RED); - LCDFill(0, 1+8*11, 132, 8, GREEN); - LCDFill(0, 1+8*12, 132, 8, BLUE); - LCDFill(0, 1+8*13, 132, 8, YELLOW); - LCDFill(0, 1+8*14, 132, 8, CYAN); - LCDFill(0, 1+8*15, 132, 8, MAGENTA); - #endif + UsbCommand rx; + for(;;) { - UsbPoll(FALSE); WDT_HIT(); - -#ifdef WITH_LF - if (BUTTON_HELD(1000) > 0) - SamyRun(); + if (cmd_receive(&rx)) { + UsbPacketReceived(&rx); + } else { +#if defined(WITH_LF_StandAlone) && !defined(WITH_ISO14443a_StandAlone) + if (BUTTON_HELD(1000) > 0) + SamyRun(); +#endif +#if defined(WITH_ISO14443a) && defined(WITH_ISO14443a_StandAlone) + if (BUTTON_HELD(1000) > 0) + StandAloneMode14a(); #endif + } } }