X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/2561caa24c84be1f93649a8c5abce0fabe29a5d5..7c91c8bf24e2879751a23232b84077f459ee8789:/armsrc/legicrf.c

diff --git a/armsrc/legicrf.c b/armsrc/legicrf.c
index 86c0c360..5b0cccf0 100644
--- a/armsrc/legicrf.c
+++ b/armsrc/legicrf.c
@@ -1,252 +1,1739 @@
-/*
- * LEGIC RF simulation code
- *  
- * (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
- */
-
-#include <proxmark3.h>
-
-#include "apps.h"
+//-----------------------------------------------------------------------------
+// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// LEGIC RF simulation code
+//-----------------------------------------------------------------------------
 #include "legicrf.h"
-#include "unistd.h"
-#include "stdint.h"
 
 static struct legic_frame {
 	int bits;
-	uint16_t data;
+	uint32_t data;
 } current_frame;
+
+static enum {
+  STATE_DISCON,
+  STATE_IV,
+  STATE_CON,
+} legic_state;
+
+static crc_t    legic_crc;
+static int      legic_read_count;
+static uint32_t legic_prng_bc;
+static uint32_t legic_prng_iv;
+
+static int      legic_phase_drift;
+static int      legic_frame_drift;
+static int      legic_reqresp_drift;
+
 AT91PS_TC timer;
+AT91PS_TC prng_timer;
 
-static void setup_timer(void)
-{
-	/* Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
-	 * this it won't be terribly accurate but should be good enough.
-	 */
+/*
+static void setup_timer(void) {
+	// Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
+	// this it won't be terribly accurate but should be good enough.
+	//
 	AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
 	timer = AT91C_BASE_TC1;
 	timer->TC_CCR = AT91C_TC_CLKDIS;
-	timer->TC_CMR = TC_CMR_TCCLKS_TIMER_CLOCK3;
+	timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
 	timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
 
-/* At TIMER_CLOCK3 (MCK/32) */
-#define	RWD_TIME_1 150     /* RWD_TIME_PAUSE off, 80us on = 100us */
-#define RWD_TIME_0 90      /* RWD_TIME_PAUSE off, 40us on = 60us */
-#define RWD_TIME_PAUSE 30  /* 20us */
-#define RWD_TIME_FUZZ 20   /* rather generous 13us, since the peak detector + hysteresis fuzz quite a bit */
-#define TAG_TIME_BIT 150   /* 100us for every bit */
-#define TAG_TIME_WAIT 490  /* time from RWD frame end to tag frame start, experimentally determined */
-
+	// 
+    // Set up Timer 2 to use for measuring time between frames in 
+    // tag simulation mode. Runs 4x faster as Timer 1
+	//
+    AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
+    prng_timer = AT91C_BASE_TC2;
+    prng_timer->TC_CCR = AT91C_TC_CLKDIS;
+	prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
+    prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
 }
 
+	AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
+	AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
+
+	// fast clock
+	AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
+	AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
+								AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
+								AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
+	AT91C_BASE_TC0->TC_RA = 1;
+	AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
+	
+*/
+
+// At TIMER_CLOCK3 (MCK/32)
+//#define RWD_TIME_1 150     /* RWD_TIME_PAUSE off, 80us on = 100us */
+//#define RWD_TIME_0 90      /* RWD_TIME_PAUSE off, 40us on = 60us */
+//#define RWD_TIME_PAUSE 30  /* 20us */
+
+// testing calculating in (us) microseconds.
+#define	RWD_TIME_1 120		// READER_TIME_PAUSE 20us off, 80us on = 100us  80 * 1.5 == 120ticks
+#define RWD_TIME_0 60		// READER_TIME_PAUSE 20us off, 40us on = 60us   40 * 1.5 == 60ticks 
+#define RWD_TIME_PAUSE 30	// 20us == 20 * 1.5 == 30ticks */
+#define TAG_BIT_PERIOD 150	// 100us == 100 * 1.5 == 150ticks
+#define TAG_FRAME_WAIT 495  // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
+
+#define RWD_TIME_FUZZ 20   // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
+
+#define SIM_DIVISOR  586   /* prng_time/SIM_DIVISOR count prng needs to be forwared */
+#define SIM_SHIFT    900   /* prng_time+SIM_SHIFT shift of delayed start */
+
+#define OFFSET_LOG 1024
+
 #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
 
+#ifndef SHORT_COIL
+# define SHORT_COIL	LOW(GPIO_SSC_DOUT);
+#endif
+#ifndef OPEN_COIL
+# define OPEN_COIL	HIGH(GPIO_SSC_DOUT);
+#endif
+
+uint32_t sendFrameStop = 0;
+
+// Pause pulse,  off in 20us / 30ticks,
+// ONE / ZERO bit pulse,  
+//    one == 80us / 120ticks
+//    zero == 40us / 60ticks
+#ifndef COIL_PULSE
+# define COIL_PULSE(x) \
+	do { \
+		SHORT_COIL; \
+		WaitTicks( (RWD_TIME_PAUSE) ); \
+		OPEN_COIL; \
+		WaitTicks((x)); \
+	} while (0) 
+#endif
+
+// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces. 
+// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
+#define LEGIC_CARD_MEMSIZE 1024
+static uint8_t* cardmem;
+
+static void frame_append_bit(struct legic_frame * const f, uint8_t bit) {
+	// Overflow, won't happen
+   if (f->bits >= 31) return;
+  
+   f->data |= (bit << f->bits);
+   f->bits++;
+}
+
+static void frame_clean(struct legic_frame * const f) {
+	f->data = 0;
+	f->bits = 0;
+}
+
+// Prng works when waiting in 99.1us cycles.
+// and while sending/receiving in bit frames (100, 60)
+/*static void CalibratePrng( uint32_t time){
+	// Calculate Cycles based on timer 100us
+	uint32_t i =  (time - sendFrameStop) / 100 ;
+
+	// substract cycles of finished frames
+	int k =  i - legic_prng_count()+1; 
+
+	// substract current frame length, rewind to beginning
+	if ( k > 0 )
+		legic_prng_forward(k);
+}
+*/
+
+/* Generate Keystream */
+uint32_t get_key_stream(int skip, int count) {
+	uint32_t key = 0;
+	int i;
+
+	// Use int to enlarge timer tc to 32bit
+	legic_prng_bc += prng_timer->TC_CV;
+
+	// reset the prng timer.
+	ResetTimer(prng_timer);
+
+	/* If skip == -1, forward prng time based */
+	if(skip == -1) {
+		i  = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */
+		i -= legic_prng_count(); /* substract cycles of finished frames */
+		i -= count; /* substract current frame length, rewind to beginning */
+		legic_prng_forward(i);
+	} else {
+		legic_prng_forward(skip);
+	}
+
+	i = (count == 6) ? -1 : legic_read_count;
+
+	/* Write Time Data into LOG */
+	// uint8_t *BigBuf = BigBuf_get_addr();
+	// BigBuf[OFFSET_LOG+128+i] = legic_prng_count();
+	// BigBuf[OFFSET_LOG+256+i*4]   = (legic_prng_bc >> 0) & 0xff;
+	// BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff;
+	// BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff;
+	// BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff;
+	// BigBuf[OFFSET_LOG+384+i] = count;
+
+	/* Generate KeyStream */
+	for(i=0; i<count; i++) {
+		key |= legic_prng_get_bit() << i;
+		legic_prng_forward(1);
+	}
+	return key;
+}
+
+/* Send a frame in tag mode, the FPGA must have been set up by
+ * LegicRfSimulate
+ */
+void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) {
+	/* Bitbang the response */
+	LOW(GPIO_SSC_DOUT);
+	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+
+	/* Use time to crypt frame */
+	if(crypt) {
+		legic_prng_forward(2); /* TAG_FRAME_WAIT -> shift by 2 */
+		response ^= legic_prng_get_bits(bits);
+	}
+
+	/* Wait for the frame start */
+	WaitUS( TAG_FRAME_WAIT );
+
+	uint8_t bit = 0;
+	for(int i = 0; i < bits; i++) {
+
+		bit = response & 1;
+		response >>= 1;
+
+		if (bit)
+			HIGH(GPIO_SSC_DOUT);
+		else
+			LOW(GPIO_SSC_DOUT);
+		  
+		WaitUS(100);
+   }
+   LOW(GPIO_SSC_DOUT);
+}
+
 /* Send a frame in reader mode, the FPGA must have been set up by
  * LegicRfReader
  */
-static void frame_send_rwd(uint16_t data, int bits)
-{
-	/* Start clock */
-	timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
-	while(timer->TC_CV > 1) ; /* Wait till the clock has reset */
+void frame_sendAsReader(uint32_t data, uint8_t bits){
+
+	uint32_t starttime = GET_TICKS, send = 0;
+	uint16_t mask = 1;
+	uint8_t prngstart = legic_prng_count() ;
 	
-	int i;
-	for(i=0; i<bits; i++) {
-		int starttime = timer->TC_CV;
-		int pause_end = starttime + RWD_TIME_PAUSE, bit_end;
-		int bit = data & 1;
-		data = data >> 1;
-		
-		if(bit) {
-			bit_end = starttime + RWD_TIME_1;
+	// xor lsfr onto data.
+	send = data ^ legic_prng_get_bits(bits);
+				
+	for (; mask < BITMASK(bits); mask <<= 1) {	
+		if (send & mask) {
+			COIL_PULSE(RWD_TIME_1);
 		} else {
-			bit_end = starttime + RWD_TIME_0;
+			COIL_PULSE(RWD_TIME_0);
 		}
-		
-		/* RWD_TIME_PAUSE time off, then some time on, so that the complete bit time is
-		 * RWD_TIME_x, where x is the bit to be transmitted */
-		AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
-		while(timer->TC_CV < pause_end) ;
-		AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT;
-		while(timer->TC_CV < bit_end) ;
-	}
-	
-	{
-		/* One final pause to mark the end of the frame */
-		int pause_end = timer->TC_CV + RWD_TIME_PAUSE;
-		AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
-		while(timer->TC_CV < pause_end) ;
-		AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT;
 	}
+
+	// Final pause to mark the end of the frame
+	COIL_PULSE(0);
 	
-	/* Reset the timer, to measure time until the start of the tag frame */
-	timer->TC_CCR = AT91C_TC_SWTRG;
-	while(timer->TC_CV > 1) ; /* Wait till the clock has reset */
+	sendFrameStop = GET_TICKS;
+	uint8_t cmdbytes[] = {
+		bits,
+		BYTEx(data, 0), 
+		BYTEx(data, 1),
+		0x00, 
+		0x00,
+		prngstart,
+		legic_prng_count()
+	};
+	LogTrace(cmdbytes, sizeof(cmdbytes), starttime, sendFrameStop, NULL, TRUE);
 }
 
 /* Receive a frame from the card in reader emulation mode, the FPGA and
- * timer must have been set up by LegicRfReader and frame_send_rwd.
- * 
+ * timer must have been set up by LegicRfReader and frame_sendAsReader.
+ *
  * The LEGIC RF protocol from card to reader does not include explicit
  * frame start/stop information or length information. The reader must
  * know beforehand how many bits it wants to receive. (Notably: a card
  * sending a stream of 0-bits is indistinguishable from no card present.)
- * 
+ *
  * Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
  * I'm not smart enough to use it. Instead I have patched hi_read_tx to output
  * the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
  * for edges. Count the edges in each bit interval. If they are approximately
  * 0 this was a 0-bit, if they are approximately equal to the number of edges
  * expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
- * timer that's still running from frame_send_rwd in order to get a synchronization
+ * timer that's still running from frame_sendAsReader in order to get a synchronization
  * with the frame that we just sent.
- * 
- * FIXME: Because we're relying on the hysteresis to just do the right thing 
+ *
+ * FIXME: Because we're relying on the hysteresis to just do the right thing
  * the range is severely reduced (and you'll probably also need a good antenna).
- * So this should be fixed some time in the future for a proper receiver. 
+ * So this should be fixed some time in the future for a proper receiver.
  */
-static void frame_receive_rwd(struct legic_frame * const f, int bits)
-{
-	uint16_t the_bit = 1;  /* Use a bitmask to save on shifts */
-	uint16_t data=0;
-	int i, old_level=0, edges=0;
-	int next_bit_at = TAG_TIME_WAIT;
+static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) {
+
+	frame_clean(f);
+	if ( bits > 32 ) return;
 	
+	uint8_t i = bits, edges = 0;	
+	uint16_t lsfr = 0;
+	uint32_t the_bit = 1, next_bit_at = 0, data;
+	
+	int old_level = 0, level = 0;
 	
-	if(bits > 16)
-		bits = 16;
-
 	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
 	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
+	
+	// calibrate the prng.
+	// 
+	legic_prng_forward(2);
+	
+	// precompute the cipher
+	uint8_t prngstart =  legic_prng_count() ;
 
-	while(timer->TC_CV < next_bit_at) ;
-	next_bit_at += TAG_TIME_BIT;
+	data = lsfr = legic_prng_get_bits(bits);
 	
-	for(i=0; i<bits; i++) {
+	//FIXED time between sending frame and now listening frame. 330us
+	// 387 = 0x19  0001 1001
+	// 480 = 0x19
+	// 500 = 0x1C  0001 1100
+	uint32_t starttime = GET_TICKS;
+	//uint16_t mywait =  TAG_FRAME_WAIT - (starttime - sendFrameStop);
+	uint16_t mywait =  495 - (starttime - sendFrameStop);
+	if ( bits == 6)
+		WaitTicks( 495 - 9 );
+	else {
+		//Dbprintf("WAIT %d", mywait );
+		WaitTicks( mywait );
+	}
+
+	next_bit_at =  GET_TICKS + TAG_BIT_PERIOD;
+
+	while ( i-- ){
 		edges = 0;
-		while(timer->TC_CV < next_bit_at) {
-			int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
-			if(level != old_level)
-				edges++;
+		uint8_t adjust = 0;
+		while  ( GET_TICKS < next_bit_at) {
+
+			level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
+			
+			if (level != old_level)
+				++edges;
+			
 			old_level = level;
-		}
-		next_bit_at += TAG_TIME_BIT;
-		
-		if(edges > 20 && edges < 60) { /* expected are 42 edges */
-			data |= the_bit;
-		}
-		
+			
+			if(edges > 20 && adjust == 0) {
+				next_bit_at -= 15;
+				adjust = 1;
+			}
+		}		
+
+		next_bit_at += TAG_BIT_PERIOD;
 		
-		the_bit <<= 1;
+		// We expect 42 edges  == ONE
+		//if (edges > 20 && edges < 64)
+		if ( edges > 20 )
+			data ^= the_bit;
+
+		the_bit <<= 1;	
 	}
-	
+
+	// output
 	f->data = data;
 	f->bits = bits;
 	
-	/* Reset the timer, to synchronize the next frame */
-	timer->TC_CCR = AT91C_TC_SWTRG;
-	while(timer->TC_CV > 1) ; /* Wait till the clock has reset */
-}
-
-static void frame_clean(struct legic_frame * const f)
-{
-	f->data = 0;
-	f->bits = 0;
+	uint8_t cmdbytes[] = {
+		bits,
+		BYTEx(data,0),
+		BYTEx(data,1),
+		BYTEx(data, 0) ^ BYTEx(lsfr,0),
+		BYTEx(data, 1) ^ BYTEx(lsfr,1),
+		prngstart,
+		legic_prng_count()
+	};
+	LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
 }
 
-static uint16_t perform_setup_phase_rwd(void)
-{
+// Setup pm3 as a Legic Reader
+static uint32_t setup_phase_reader(uint8_t iv) {
 	
-	/* Switch on carrier and let the tag charge for 1ms */
-	AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT;
-	SpinDelay(1);
+	// Switch on carrier and let the tag charge for 1ms
+	HIGH(GPIO_SSC_DOUT);
+	WaitUS(1000);	
 	
-	frame_send_rwd(0x55, 7);
-	frame_clean(&current_frame);
-	frame_receive_rwd(&current_frame, 6);
-	while(timer->TC_CV < 387) ; /* ~ 258us */
-	frame_send_rwd(0x019, 6);
+	ResetTicks();
 	
-	return current_frame.data ^ 0x26;
-}
+	// no keystream yet
+	legic_prng_init(0);
+	
+	// send IV handshake
+	frame_sendAsReader(iv, 7);
 
-static void switch_off_tag_rwd(void)
-{
-	/* Switch off carrier, make sure tag is reset */
-	AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
-	SpinDelay(10);
+	// Now both tag and reader has same IV. Prng can start.
+	legic_prng_init(iv);
+
+	frame_receiveAsReader(&current_frame, 6);
+
+	// fixed delay before sending ack.
+	WaitTicks(366);  // 244us
+	legic_prng_forward(1);  //240us / 100 == 2.4 iterations
 	
-	WDT_HIT();
+	// Send obsfuscated acknowledgment frame.
+	// 0x19 = 0x18 MIM22, 0x01 LSB READCMD 
+	// 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD 
+	switch ( current_frame.data  ) {
+		case 0x0D: frame_sendAsReader(0x19, 6); break;
+		case 0x1D: 
+		case 0x3D: frame_sendAsReader(0x39, 6); break;
+		default: break;
+	}
+	return current_frame.data;
 }
 
-void LegicRfReader(void)
-{
-	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-	FpgaSetupSsc();
+static void LegicCommonInit(void) {
+
+	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
-	
+	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
 	/* Bitbang the transmitter */
-	AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT;
+	LOW(GPIO_SSC_DOUT);
 	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
 	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
+
+	// reserve a cardmem,  meaning we can use the tracelog function in bigbuff easier.
+	cardmem = BigBuf_malloc(LEGIC_CARD_MEMSIZE);
+	memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE);
+
+	clear_trace();
+	set_tracing(TRUE);
+	crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
 	
-	setup_timer();
+	StartTicks();
+}
+
+// Switch off carrier, make sure tag is reset
+static void switch_off_tag_rwd(void) {
+	LOW(GPIO_SSC_DOUT);
+	WaitUS(200);
+	WDT_HIT();
+	Dbprintf("Exit Switch_off_tag_rwd");
+}
+
+// calculate crc4 for a legic READ command 
+// 5,8,10 address size.
+static uint32_t legic4Crc(uint8_t legicCmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) {
+	crc_clear(&legic_crc);	
+	//uint32_t temp =  (value << cmd_sz) | (byte_index << 1) | legicCmd;
+	//crc_update(&legic_crc, temp, cmd_sz + 8 );
+	crc_update(&legic_crc, 1, 1); /* CMD_READ */
+	crc_update(&legic_crc, byte_index, cmd_sz-1);
+	crc_update(&legic_crc, value, 8);
+	return crc_finish(&legic_crc);
+}
+
+int legic_read_byte(int byte_index, int cmd_sz) {
+
+	// (us)| ticks
+	// -------------
+	// 330 | 495
+	// 460 | 690
+	// 258 | 387
+	// 244 | 366
+	WaitTicks(387); 
+	legic_prng_forward(4); // 460 / 100 = 4.6  iterations
+
+	uint8_t byte = 0, crc = 0, calcCrc = 0;
+	uint32_t cmd = (byte_index << 1) | LEGIC_READ;
+
+	frame_sendAsReader(cmd, cmd_sz);
+	frame_receiveAsReader(&current_frame, 12);
+
+	byte = BYTEx(current_frame.data, 0);
+	calcCrc = legic4Crc(LEGIC_READ, byte_index, byte, cmd_sz);
+	crc = BYTEx(current_frame.data, 1);
+
+	if( calcCrc != crc ) {
+		Dbprintf("!!! crc mismatch: expected %x but got %x !!!",  calcCrc, crc);
+		return -1;
+	}
+	return byte;
+}
+
+/* 
+ * - assemble a write_cmd_frame with crc and send it
+ * - wait until the tag sends back an ACK ('1' bit unencrypted)
+ * - forward the prng based on the timing
+ */
+//int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) {
+int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) {
+
+    //do not write UID, CRC at offset 0-4.
+	if (addr <= 4) return 0;
+
+	// crc
+	crc_clear(&legic_crc);
+	crc_update(&legic_crc, 0, 1); /* CMD_WRITE */
+	crc_update(&legic_crc, addr, addr_sz);
+	crc_update(&legic_crc, byte, 8);
+	uint32_t crc = crc_finish(&legic_crc);
+
+	uint32_t crc2 = legic4Crc(LEGIC_WRITE, addr, byte, addr_sz+1);
+	if ( crc != crc2 ) 
+		Dbprintf("crc is missmatch");
+	
+	// send write command
+	uint32_t cmd = ((crc     <<(addr_sz+1+8)) //CRC
+                   |(byte    <<(addr_sz+1))   //Data
+                   |(addr    <<1)             //Address
+                   | LEGIC_WRITE);             //CMD = Write
+				   
+    uint32_t cmd_sz = addr_sz+1+8+4;          //crc+data+cmd
+
+    legic_prng_forward(2); /* we wait anyways */
+	
+	WaitUS(TAG_FRAME_WAIT);
+	
+	frame_sendAsReader(cmd, cmd_sz);
+  
+	// wllm-rbnt doesnt have these
+	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
+
+	// wait for ack
+    int t, old_level = 0, edges = 0;
+    int next_bit_at = 0;
+
+	WaitUS(TAG_FRAME_WAIT);
+
+    for( t = 0; t < 80; ++t) {
+        edges = 0;
+		next_bit_at += TAG_BIT_PERIOD;
+        while(timer->TC_CV < next_bit_at) {
+            int level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
+            if(level != old_level)
+                edges++;
+
+            old_level = level;
+        }
+        if(edges > 20 && edges < 60) { /* expected are 42 edges */
+			int t = timer->TC_CV;
+			int c = t / TAG_BIT_PERIOD;
+			
+			ResetTimer(timer);
+			legic_prng_forward(c);
+        	return 0;
+        }
+    }
+
+	ResetTimer(timer);
+	return -1;
+}
+
+int LegicRfReader(int offset, int bytes, int iv) {
 	
-	memset(BigBuf, 0, 1024);
+	uint16_t byte_index = 0;
+	uint8_t cmd_sz = 0, isOK = 1;
+	int card_sz = 0;
+
+	LegicCommonInit();
+
+	uint32_t tag_type = setup_phase_reader(iv);
 	
-	int byte_index = 0, card_size = 0, command_size = 0;
-	uint16_t command_obfuscation = 0x57, response_obfuscation = 0;
-	uint16_t tag_type = perform_setup_phase_rwd();
 	switch_off_tag_rwd();
 	
-	int error = 0;
 	switch(tag_type) {
-	case 0x1d:
-		DbpString("MIM 256 card found, reading card ...");
-		command_size = 9;
-		card_size = 256;
-		response_obfuscation = 0x52;
-		break;
-	case 0x3d:
-		DbpString("MIM 1024 card found, reading card ...");
-		command_size = 11;
-		card_size = 1024;
-		response_obfuscation = 0xd4;
-		break;
-	default:
-		DbpString("No or unknown card found, aborting");
-		error = 1;
-		break;
+		case 0x0d:
+			if ( MF_DBGLEVEL >= 2) DbpString("MIM22 card found, reading card");
+            cmd_sz = 6;
+			card_sz = 22;
+			break;
+		case 0x1d:
+			if ( MF_DBGLEVEL >= 2) DbpString("MIM256 card found, reading card");
+            cmd_sz = 9;
+			card_sz = 256;
+			break;
+		case 0x3d:
+			if ( MF_DBGLEVEL >= 2) DbpString("MIM1024 card found, reading card");
+            cmd_sz = 11;
+			card_sz = 1024;
+			break;
+		default:
+			if ( MF_DBGLEVEL >= 1) Dbprintf("Unknown card format: %x", tag_type);
+			isOK = 0;
+			goto OUT;
+			break;
 	}
+	if (bytes == -1)
+		bytes = card_sz;
+
+	if (bytes + offset >= card_sz)
+		bytes = card_sz - offset;
+
+	// Start setup and read bytes.
+	setup_phase_reader(iv);
 	
 	LED_B_ON();
-	while(!BUTTON_PRESS() && (byte_index<card_size)) {
-		if(perform_setup_phase_rwd() != tag_type) {
-			DbpString("Card removed, aborting");
-			switch_off_tag_rwd();
-			error=1;
+	while (byte_index < bytes) {
+		int r = legic_read_byte(byte_index + offset, cmd_sz);
+		
+		if (r == -1 || BUTTON_PRESS()) {			
+	        if ( MF_DBGLEVEL >= 3) DbpString("operation aborted");
+			isOK = 0;
+			goto OUT;
+		}
+		cardmem[++byte_index] = r;
+        WDT_HIT();
+	}
+
+OUT:	
+	WDT_HIT();
+	switch_off_tag_rwd();
+	LEDsoff();
+	uint8_t len = (bytes & 0x3FF);
+	cmd_send(CMD_ACK,isOK,len,0,cardmem,len);
+    return 0;
+}
+
+/*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) {
+	int byte_index=0;
+
+    LED_B_ON();
+	setup_phase_reader(iv);
+    //legic_prng_forward(2);
+	while(byte_index < bytes) {
+		int r;
+
+		//check if the DCF should be changed
+		if ( (offset == 0x05) && (bytes == 0x02) ) {
+			//write DCF in reverse order (addr 0x06 before 0x05)
+			r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
+			//legic_prng_forward(1);
+			if(r == 0) {
+				byte_index++;
+				r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
+			}
+			//legic_prng_forward(1);
+		}
+		else {
+			r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue);
+		}
+		if((r != 0) || BUTTON_PRESS()) {
+			Dbprintf("operation aborted @ 0x%03.3x", byte_index);
+	switch_off_tag_rwd();
+			LED_B_OFF();
+			LED_C_OFF();
+			return -1;
+		}
+
+        WDT_HIT();
+		byte_index++;
+        if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
+	}
+    LED_B_OFF();
+    LED_C_OFF();
+    DbpString("write successful");
+    return 0;
+}*/
+
+void LegicRfWriter(int offset, int bytes, int iv) {
+
+	int byte_index = 0, addr_sz = 0;								  
+
+	LegicCommonInit();
+	
+	if ( MF_DBGLEVEL >= 2) 	DbpString("setting up legic card");
+	
+	uint32_t tag_type = setup_phase_reader(iv);
+	
+	switch_off_tag_rwd();
+	
+	switch(tag_type) {
+		case 0x0d:
+			if(offset+bytes > 22) {
+				Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset + bytes);
+				return;
+			}
+			addr_sz = 5;
+			if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes);
+			break;
+		case 0x1d:
+			if(offset+bytes > 0x100) {
+				Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset + bytes);
+				return;
+			}
+			addr_sz = 8;
+			if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes);
+			break;
+		case 0x3d:
+			if(offset+bytes > 0x400) {
+          		Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset + bytes);
+           		return;
+          	}
+			addr_sz = 10;
+			if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset + bytes);
 			break;
+		default:
+			Dbprintf("No or unknown card found, aborting");
+            return;
+	}
+
+    LED_B_ON();
+	setup_phase_reader(iv);
+	int r = 0;
+	while(byte_index < bytes) {
+
+		//check if the DCF should be changed
+		if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) {
+			//write DCF in reverse order (addr 0x06 before 0x05)
+			r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz);
+
+			// write second byte on success...
+			if(r == 0) {
+				byte_index++;
+				r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), addr_sz);
+			}
+		}
+		else {
+			r = legic_write_byte(cardmem[byte_index+offset], byte_index+offset, addr_sz);
 		}
 		
-		while(timer->TC_CV < 387) ; /* ~ 258us */
-		frame_send_rwd(command_obfuscation ^ (byte_index<<1), command_size);
-		frame_clean(&current_frame);
-		frame_receive_rwd(&current_frame, 8);
-		((uint8_t*)BigBuf)[byte_index] = (current_frame.data ^ response_obfuscation) & 0xff;
+		if ((r != 0) || BUTTON_PRESS()) {
+			Dbprintf("operation aborted @ 0x%03.3x", byte_index);
+			switch_off_tag_rwd();
+			LEDsoff();
+			return;
+		}
+
+        WDT_HIT();
+		byte_index++;
+	}
+	LEDsoff();
+    if ( MF_DBGLEVEL >= 1) DbpString("write successful");
+}
+
+void LegicRfRawWriter(int address, int byte, int iv) {
+
+	int byte_index = 0, addr_sz = 0;
+	
+	LegicCommonInit();
+	
+	if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card");
+	
+	uint32_t tag_type = setup_phase_reader(iv);
+	
+	switch_off_tag_rwd();
+	
+	switch(tag_type) {
+		case 0x0d:
+			if(address > 22) {
+				Dbprintf("Error: can not write to 0x%03.3x on MIM22", address);
+				return;
+			}
+			addr_sz = 5;
+			if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
+			break;
+		case 0x1d:
+			if(address > 0x100) {
+				Dbprintf("Error: can not write to 0x%03.3x on MIM256", address);
+				return;
+			}
+			addr_sz = 8;
+			if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
+			break;
+		case 0x3d:
+			if(address > 0x400) {
+          		Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address);
+           		return;
+          	}
+			addr_sz = 10;
+			if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address, byte);
+			break;
+		default:
+			Dbprintf("No or unknown card found, aborting");
+            return;
+	}
+	
+	Dbprintf("integer value: %d address: %d  addr_sz: %d", byte, address, addr_sz);
+    LED_B_ON();
+	
+	setup_phase_reader(iv);
+    		
+	int r = legic_write_byte(byte, address, addr_sz);
 		
+	if((r != 0) || BUTTON_PRESS()) {
+		Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r);
 		switch_off_tag_rwd();
+		LEDsoff();
+		return;
+	}
+
+    LEDsoff();
+    if ( MF_DBGLEVEL >= 1) DbpString("write successful");
+}
+
+/* Handle (whether to respond) a frame in tag mode
+ * Only called when simulating a tag.
+ */
+static void frame_handle_tag(struct legic_frame const * const f)
+{
+	uint8_t *BigBuf = BigBuf_get_addr();
+
+   /* First Part of Handshake (IV) */
+   if(f->bits == 7) {
+
+        LED_C_ON();
+        
+		// Reset prng timer
+		ResetTimer(prng_timer);
 		
+        legic_prng_init(f->data);
+        frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */
+        legic_state = STATE_IV;
+        legic_read_count = 0;
+        legic_prng_bc = 0;
+        legic_prng_iv = f->data;
+ 
+ 
+		ResetTimer(timer);
+		WaitUS(280);
+        return;
+   }
+
+   /* 0x19==??? */
+   if(legic_state == STATE_IV) {
+      int local_key = get_key_stream(3, 6);
+      int xored = 0x39 ^ local_key;
+      if((f->bits == 6) && (f->data == xored)) {
+         legic_state = STATE_CON;
+
+		 ResetTimer(timer);
+		 WaitUS(200);
+         return;
+
+	 } else {
+         legic_state = STATE_DISCON;
+         LED_C_OFF();
+         Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored);
+         return;
+      }
+   }
+
+   /* Read */
+   if(f->bits == 11) {
+      if(legic_state == STATE_CON) {
+         int key   = get_key_stream(2, 11); //legic_phase_drift, 11);
+         int addr  = f->data ^ key; addr = addr >> 1;
+         int data = BigBuf[addr];
+         int hash = legic4Crc(LEGIC_READ, addr, data, 11) << 8;
+         BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr;
+         legic_read_count++;
+
+         //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c);
+         legic_prng_forward(legic_reqresp_drift);
+
+         frame_send_tag(hash | data, 12, 1);
+
+		 ResetTimer(timer);
+         legic_prng_forward(2);
+		 WaitUS(180);
+         return;
+      }
+   }
+
+   /* Write */
+   if(f->bits == 23) {
+      int key   = get_key_stream(-1, 23); //legic_frame_drift, 23);
+      int addr  = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff;
+      int data  = f->data ^ key; data = data >> 11; data = data & 0xff;
+
+      /* write command */
+      legic_state = STATE_DISCON;
+      LED_C_OFF();
+      Dbprintf("write - addr: %x, data: %x", addr, data);
+      return;
+   }
+
+   if(legic_state != STATE_DISCON) {
+      Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count);
+      int i;
+      Dbprintf("IV: %03.3x", legic_prng_iv);
+      for(i = 0; i<legic_read_count; i++) {
+         Dbprintf("Read Nb: %u, Addr: %u", i, BigBuf[OFFSET_LOG+i]);
+      }
+
+      for(i = -1; i<legic_read_count; i++) {
+         uint32_t t;
+         t  = BigBuf[OFFSET_LOG+256+i*4];
+         t |= BigBuf[OFFSET_LOG+256+i*4+1] << 8;
+         t |= BigBuf[OFFSET_LOG+256+i*4+2] <<16;
+         t |= BigBuf[OFFSET_LOG+256+i*4+3] <<24;
+
+         Dbprintf("Cycles: %u, Frame Length: %u, Time: %u", 
+            BigBuf[OFFSET_LOG+128+i],
+            BigBuf[OFFSET_LOG+384+i],
+            t);
+      }
+   }
+   legic_state = STATE_DISCON; 
+   legic_read_count = 0;
+   SpinDelay(10);
+   LED_C_OFF();
+   return; 
+}
+
+/* Read bit by bit untill full frame is received
+ * Call to process frame end answer
+ */
+static void emit(int bit) {
+
+	switch (bit) {
+		case 1:
+			frame_append_bit(&current_frame, 1);
+			break;			
+		case 0:
+			frame_append_bit(&current_frame, 0);
+			break;
+		default: 
+			if(current_frame.bits <= 4) {
+				frame_clean(&current_frame);
+			} else {
+				frame_handle_tag(&current_frame);
+				frame_clean(&current_frame);
+			}
+			WDT_HIT();
+			break;
+	} 
+}
+
+void LegicRfSimulate(int phase, int frame, int reqresp)
+{
+  /* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode, 
+   * modulation mode set to 212kHz subcarrier. We are getting the incoming raw
+   * envelope waveform on DIN and should send our response on DOUT.
+   *
+   * The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
+   * measure the time between two rising edges on DIN, and no encoding on the
+   * subcarrier from card to reader, so we'll just shift out our verbatim data
+   * on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
+   * seems to be 300us-ish.
+   */
+
+	legic_phase_drift = phase;
+	legic_frame_drift = frame;
+	legic_reqresp_drift = reqresp;
+
+	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+	FpgaSetupSsc();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K);
+
+	/* Bitbang the receiver */
+	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
+
+	//setup_timer();
+	crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
+
+	int old_level = 0;
+	int active = 0;
+	legic_state = STATE_DISCON;
+
+	LED_B_ON();
+	DbpString("Starting Legic emulator, press button to end");
+   
+	while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
+		int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
+		int time = timer->TC_CV;
+
+		if(level != old_level) {
+			if(level == 1) {
+				timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
+				
+				if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) {
+					/* 1 bit */
+					emit(1);
+					active = 1;
+					LED_A_ON();
+				} else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) {
+					/* 0 bit */
+					emit(0);
+					active = 1;
+					LED_A_ON();
+				} else if (active) {
+					/* invalid */
+					emit(-1);
+					active = 0;
+					LED_A_OFF();
+				}
+			}
+		}
+
+		/* Frame end */
+		if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) {
+			emit(-1);
+			active = 0;
+			LED_A_OFF();
+		}
+
+		if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) {
+			timer->TC_CCR = AT91C_TC_CLKDIS;
+		}
+
+		old_level = level;
 		WDT_HIT();
-		byte_index++;
-		if(byte_index & 0x04) LED_C_ON(); else LED_C_OFF();
 	}
-	LED_B_OFF();
-	LED_C_OFF();
+	if ( MF_DBGLEVEL >= 1) DbpString("Stopped");
+	LEDsoff();
+}
+
+//-----------------------------------------------------------------------------
+// Code up a string of octets at layer 2 (including CRC, we don't generate
+// that here) so that they can be transmitted to the reader. Doesn't transmit
+// them yet, just leaves them ready to send in ToSend[].
+//-----------------------------------------------------------------------------
+// static void CodeLegicAsTag(const uint8_t *cmd, int len)
+// {
+	// int i;
+
+	// ToSendReset();
+
+	// // Transmit a burst of ones, as the initial thing that lets the
+	// // reader get phase sync. This (TR1) must be > 80/fs, per spec,
+	// // but tag that I've tried (a Paypass) exceeds that by a fair bit,
+	// // so I will too.
+	// for(i = 0; i < 20; i++) {
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+	// }
+
+	// // Send SOF.
+	// for(i = 0; i < 10; i++) {
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+	// }
+	// for(i = 0; i < 2; i++) {
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+	// }
+
+	// for(i = 0; i < len; i++) {
+		// int j;
+		// uint8_t b = cmd[i];
+
+		// // Start bit
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+
+		// // Data bits
+		// for(j = 0; j < 8; j++) {
+			// if(b & 1) {
+				// ToSendStuffBit(1);
+				// ToSendStuffBit(1);
+				// ToSendStuffBit(1);
+				// ToSendStuffBit(1);
+			// } else {
+				// ToSendStuffBit(0);
+				// ToSendStuffBit(0);
+				// ToSendStuffBit(0);
+				// ToSendStuffBit(0);
+			// }
+			// b >>= 1;
+		// }
+
+		// // Stop bit
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+	// }
+
+	// // Send EOF.
+	// for(i = 0; i < 10; i++) {
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+		// ToSendStuffBit(0);
+	// }
+	// for(i = 0; i < 2; i++) {
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+		// ToSendStuffBit(1);
+	// }
+
+	// // Convert from last byte pos to length
+	// ToSendMax++;
+// }
+
+//-----------------------------------------------------------------------------
+// The software UART that receives commands from the reader, and its state
+// variables.
+//-----------------------------------------------------------------------------
+static struct {
+	enum {
+		STATE_UNSYNCD,
+		STATE_GOT_FALLING_EDGE_OF_SOF,
+		STATE_AWAITING_START_BIT,
+		STATE_RECEIVING_DATA
+	}       state;
+	uint16_t shiftReg;
+	int     bitCnt;
+	int     byteCnt;
+	int     byteCntMax;
+	int     posCnt;
+	uint8_t *output;
+} Uart;
+
+/* Receive & handle a bit coming from the reader.
+ *
+ * This function is called 4 times per bit (every 2 subcarrier cycles).
+ * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
+ *
+ * LED handling:
+ * LED A -> ON once we have received the SOF and are expecting the rest.
+ * LED A -> OFF once we have received EOF or are in error state or unsynced
+ *
+ * Returns: true if we received a EOF
+ *          false if we are still waiting for some more
+ */
+// static RAMFUNC int HandleLegicUartBit(uint8_t bit)
+// {
+	// switch(Uart.state) {
+		// case STATE_UNSYNCD:
+			// if(!bit) {
+				// // we went low, so this could be the beginning of an SOF
+				// Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
+				// Uart.posCnt = 0;
+				// Uart.bitCnt = 0;
+			// }
+			// break;
+
+		// case STATE_GOT_FALLING_EDGE_OF_SOF:
+			// Uart.posCnt++;
+			// if(Uart.posCnt == 2) {	// sample every 4 1/fs in the middle of a bit
+				// if(bit) {
+					// if(Uart.bitCnt > 9) {
+						// // we've seen enough consecutive
+						// // zeros that it's a valid SOF
+						// Uart.posCnt = 0;
+						// Uart.byteCnt = 0;
+						// Uart.state = STATE_AWAITING_START_BIT;
+						// LED_A_ON(); // Indicate we got a valid SOF
+					// } else {
+						// // didn't stay down long enough
+						// // before going high, error
+						// Uart.state = STATE_UNSYNCD;
+					// }
+				// } else {
+					// // do nothing, keep waiting
+				// }
+				// Uart.bitCnt++;
+			// }
+			// if(Uart.posCnt >= 4) Uart.posCnt = 0;
+			// if(Uart.bitCnt > 12) {
+				// // Give up if we see too many zeros without
+				// // a one, too.
+				// LED_A_OFF();
+				// Uart.state = STATE_UNSYNCD;
+			// }
+			// break;
+
+		// case STATE_AWAITING_START_BIT:
+			// Uart.posCnt++;
+			// if(bit) {
+				// if(Uart.posCnt > 50/2) {	// max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
+					// // stayed high for too long between
+					// // characters, error
+					// Uart.state = STATE_UNSYNCD;
+				// }
+			// } else {
+				// // falling edge, this starts the data byte
+				// Uart.posCnt = 0;
+				// Uart.bitCnt = 0;
+				// Uart.shiftReg = 0;
+				// Uart.state = STATE_RECEIVING_DATA;
+			// }
+			// break;
+
+		// case STATE_RECEIVING_DATA:
+			// Uart.posCnt++;
+			// if(Uart.posCnt == 2) {
+				// // time to sample a bit
+				// Uart.shiftReg >>= 1;
+				// if(bit) {
+					// Uart.shiftReg |= 0x200;
+				// }
+				// Uart.bitCnt++;
+			// }
+			// if(Uart.posCnt >= 4) {
+				// Uart.posCnt = 0;
+			// }
+			// if(Uart.bitCnt == 10) {
+				// if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
+				// {
+					// // this is a data byte, with correct
+					// // start and stop bits
+					// Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
+					// Uart.byteCnt++;
+
+					// if(Uart.byteCnt >= Uart.byteCntMax) {
+						// // Buffer overflowed, give up
+						// LED_A_OFF();
+						// Uart.state = STATE_UNSYNCD;
+					// } else {
+						// // so get the next byte now
+						// Uart.posCnt = 0;
+						// Uart.state = STATE_AWAITING_START_BIT;
+					// }
+				// } else if (Uart.shiftReg == 0x000) {
+					// // this is an EOF byte
+					// LED_A_OFF(); // Finished receiving
+					// Uart.state = STATE_UNSYNCD;
+					// if (Uart.byteCnt != 0) {
+					// return TRUE;
+					// }
+				// } else {
+					// // this is an error
+					// LED_A_OFF();
+					// Uart.state = STATE_UNSYNCD;
+				// }
+			// }
+			// break;
+
+		// default:
+			// LED_A_OFF();
+			// Uart.state = STATE_UNSYNCD;
+			// break;
+	// }
+
+	// return FALSE;
+// }
+
+
+static void UartReset() {
+	Uart.byteCntMax = 3;
+	Uart.state = STATE_UNSYNCD;
+	Uart.byteCnt = 0;
+	Uart.bitCnt = 0;
+	Uart.posCnt = 0;
+	memset(Uart.output, 0x00, 3);
+}
+
+// static void UartInit(uint8_t *data) {
+	// Uart.output = data;
+	// UartReset();
+// }
+
+//=============================================================================
+// An LEGIC reader. We take layer two commands, code them
+// appropriately, and then send them to the tag. We then listen for the
+// tag's response, which we leave in the buffer to be demodulated on the
+// PC side.
+//=============================================================================
+
+static struct {
+	enum {
+		DEMOD_UNSYNCD,
+		DEMOD_PHASE_REF_TRAINING,
+		DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
+		DEMOD_GOT_FALLING_EDGE_OF_SOF,
+		DEMOD_AWAITING_START_BIT,
+		DEMOD_RECEIVING_DATA
+	}       state;
+	int     bitCount;
+	int     posCount;
+	int     thisBit;
+	uint16_t  shiftReg;
+	uint8_t   *output;
+	int     len;
+	int     sumI;
+	int     sumQ;
+} Demod;
+
+/*
+ * Handles reception of a bit from the tag
+ *
+ * This function is called 2 times per bit (every 4 subcarrier cycles).
+ * Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
+ *
+ * LED handling:
+ * LED C -> ON once we have received the SOF and are expecting the rest.
+ * LED C -> OFF once we have received EOF or are unsynced
+ *
+ * Returns: true if we received a EOF
+ *          false if we are still waiting for some more
+ *
+ */
+
+ #ifndef SUBCARRIER_DETECT_THRESHOLD
+ # define SUBCARRIER_DETECT_THRESHOLD	8
+ #endif
+ 
+ // Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
+#ifndef CHECK_FOR_SUBCARRIER
+# define CHECK_FOR_SUBCARRIER() { v = MAX(ai, aq) + MIN(halfci, halfcq); }
+#endif
+
+// The soft decision on the bit uses an estimate of just the
+// quadrant of the reference angle, not the exact angle.
+// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
+#define MAKE_SOFT_DECISION() { \
+		if(Demod.sumI > 0) \
+			v = ci; \
+		else \
+			v = -ci; \
+		\
+		if(Demod.sumQ > 0) \
+			v += cq; \
+		else \
+			v -= cq; \
+		\
+	}
+
+static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
+{
+	int v = 0;
+	int ai = ABS(ci);
+	int aq = ABS(cq);
+	int halfci = (ai >> 1);
+	int halfcq = (aq >> 1);
+
+	switch(Demod.state) {
+		case DEMOD_UNSYNCD:
+			
+			CHECK_FOR_SUBCARRIER()
+			
+			if(v > SUBCARRIER_DETECT_THRESHOLD) {	// subcarrier detected
+				Demod.state = DEMOD_PHASE_REF_TRAINING;
+				Demod.sumI = ci;
+				Demod.sumQ = cq;
+				Demod.posCount = 1;
+			}
+			break;
+
+		case DEMOD_PHASE_REF_TRAINING:
+			if(Demod.posCount < 8) {
+			
+				CHECK_FOR_SUBCARRIER()
+				
+				if (v > SUBCARRIER_DETECT_THRESHOLD) {
+					// set the reference phase (will code a logic '1') by averaging over 32 1/fs.
+					// note: synchronization time > 80 1/fs
+					Demod.sumI += ci;
+					Demod.sumQ += cq;
+					++Demod.posCount;
+				} else {
+					// subcarrier lost
+					Demod.state = DEMOD_UNSYNCD;
+				}
+			} else {
+				Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
+			}
+			break;
+
+		case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
+
+			MAKE_SOFT_DECISION()
+
+			//Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
+			// logic '0' detected
+			if (v <= 0) {
+				
+				Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
+			
+				// start of SOF sequence
+				Demod.posCount = 0;
+			} else {
+				// maximum length of TR1 = 200 1/fs
+				if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
+			}
+			++Demod.posCount;
+			break;
+
+		case DEMOD_GOT_FALLING_EDGE_OF_SOF:
+			++Demod.posCount;
+
+			MAKE_SOFT_DECISION()
+
+			if(v > 0) {
+				// low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
+				if(Demod.posCount < 10*2) { 
+					Demod.state = DEMOD_UNSYNCD;
+				} else {
+					LED_C_ON(); // Got SOF
+					Demod.state = DEMOD_AWAITING_START_BIT;
+					Demod.posCount = 0;
+					Demod.len = 0;
+				}
+			} else {
+				// low phase of SOF too long (> 12 etu)
+				if(Demod.posCount > 13*2) { 
+					Demod.state = DEMOD_UNSYNCD;
+					LED_C_OFF();
+				}
+			}
+			break;
+
+		case DEMOD_AWAITING_START_BIT:
+			++Demod.posCount;
+			
+			MAKE_SOFT_DECISION()
+			
+			if(v > 0) {
+				// max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
+				if(Demod.posCount > 3*2) { 
+					Demod.state = DEMOD_UNSYNCD;
+					LED_C_OFF();
+				}
+			} else {
+				// start bit detected
+				Demod.bitCount = 0;
+				Demod.posCount = 1;				// this was the first half
+				Demod.thisBit = v;
+				Demod.shiftReg = 0;
+				Demod.state = DEMOD_RECEIVING_DATA;
+			}
+			break;
+
+		case DEMOD_RECEIVING_DATA:
+		
+			MAKE_SOFT_DECISION()
+			
+			if(Demod.posCount == 0) {
+				// first half of bit
+				Demod.thisBit = v;
+				Demod.posCount = 1;
+			} else {
+				// second half of bit
+				Demod.thisBit += v;
+				Demod.shiftReg >>= 1;
+				// logic '1'
+				if(Demod.thisBit > 0) 
+					Demod.shiftReg |= 0x200;
+				
+				++Demod.bitCount;
+				
+				if(Demod.bitCount == 10) {
+					
+					uint16_t s = Demod.shiftReg;
+					
+					if((s & 0x200) && !(s & 0x001)) { 
+						// stop bit == '1', start bit == '0'
+						uint8_t b = (s >> 1);
+						Demod.output[Demod.len] = b;
+						++Demod.len;
+						Demod.state = DEMOD_AWAITING_START_BIT;
+					} else {
+						Demod.state = DEMOD_UNSYNCD;
+						LED_C_OFF();
+						
+						if(s == 0x000) {
+							// This is EOF (start, stop and all data bits == '0'
+							return TRUE;
+						}
+					}
+				}
+				Demod.posCount = 0;
+			}
+			break;
+
+		default:
+			Demod.state = DEMOD_UNSYNCD;
+			LED_C_OFF();
+			break;
+	}
+	return FALSE;
+}
+
+// Clear out the state of the "UART" that receives from the tag.
+static void DemodReset() {
+	Demod.len = 0;
+	Demod.state = DEMOD_UNSYNCD;
+	Demod.posCount = 0;
+	Demod.sumI = 0;
+	Demod.sumQ = 0;
+	Demod.bitCount = 0;
+	Demod.thisBit = 0;
+	Demod.shiftReg = 0;
+	memset(Demod.output, 0x00, 3);
+}
+
+static void DemodInit(uint8_t *data) {
+	Demod.output = data;
+	DemodReset();
+}
+
+/*
+ *  Demodulate the samples we received from the tag, also log to tracebuffer
+ *  quiet: set to 'TRUE' to disable debug output
+ */
+ #define LEGIC_DMA_BUFFER_SIZE 256
+static void GetSamplesForLegicDemod(int n, bool quiet)
+{
+	int max = 0;
+	bool gotFrame = FALSE;
+	int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
+	int	ci, cq, samples = 0;
+
+	BigBuf_free();
+
+	// And put the FPGA in the appropriate mode
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
+
+	// The response (tag -> reader) that we're receiving.
+	// Set up the demodulator for tag -> reader responses.
+	DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
+	
+	// The DMA buffer, used to stream samples from the FPGA
+	int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
+	int8_t *upTo = dmaBuf;
+
+	// Setup and start DMA.
+	if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
+		if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); 
+		return;
+	}	
+
+	// Signal field is ON with the appropriate LED:
+	LED_D_ON();
+	for(;;) {
+		int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
+		if(behindBy > max) max = behindBy;
+
+		while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
+			ci = upTo[0];
+			cq = upTo[1];
+			upTo += 2;
+			if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
+				upTo = dmaBuf;
+				AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
+				AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
+			}
+			lastRxCounter -= 2;
+			if(lastRxCounter <= 0)
+				lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
+
+			samples += 2;
+
+			gotFrame = HandleLegicSamplesDemod(ci , cq );
+			if ( gotFrame )
+				break;
+		}
+
+		if(samples > n || gotFrame)
+			break;
+	}
+
+	FpgaDisableSscDma();
+
+	if (!quiet && Demod.len == 0) {
+		Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
+			max,
+			samples, 
+			gotFrame, 
+			Demod.len, 
+			Demod.sumI, 
+			Demod.sumQ
+		);
+	}
+
+	//Tracing
+	if (Demod.len > 0) {
+		uint8_t parity[MAX_PARITY_SIZE] = {0x00};
+		LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
+	}
+}
+//-----------------------------------------------------------------------------
+// Transmit the command (to the tag) that was placed in ToSend[].
+//-----------------------------------------------------------------------------
+static void TransmitForLegic(void)
+{
+	int c;
+
+	FpgaSetupSsc();
 	
-	if(!error) {
-		if(card_size == 256) {
-			DbpString("Card read, use hexsamples 256 to view results");
-		} else if(card_size == 1024) {
-			DbpString("Card read, use hexsamples 1024 to view results");
+	while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
+		AT91C_BASE_SSC->SSC_THR = 0xff;
+
+	// Signal field is ON with the appropriate Red LED
+	LED_D_ON();
+
+	// Signal we are transmitting with the Green LED
+	LED_B_ON();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
+	
+	for(c = 0; c < 10;) {
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+			AT91C_BASE_SSC->SSC_THR = 0xff;
+			c++;
+		}
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+			volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+			(void)r;
+		}
+		WDT_HIT();
+	}
+
+	c = 0;
+	for(;;) {
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+			AT91C_BASE_SSC->SSC_THR = ToSend[c];
+			legic_prng_forward(1); // forward the lfsr 
+			c++;
+			if(c >= ToSendMax) {
+				break;
+			}
+		}
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+			volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+			(void)r;
+		}
+		WDT_HIT();
+	}
+	LED_B_OFF();
+}
+
+
+//-----------------------------------------------------------------------------
+// Code a layer 2 command (string of octets, including CRC) into ToSend[],
+// so that it is ready to transmit to the tag using TransmitForLegic().
+//-----------------------------------------------------------------------------
+static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
+{
+	int i, j;
+	uint8_t b;
+
+	ToSendReset();
+
+	// Send SOF
+	for(i = 0; i < 7; i++)
+		ToSendStuffBit(1);
+
+
+	for(i = 0; i < cmdlen; i++) {
+		// Start bit
+		ToSendStuffBit(0);
+
+		// Data bits
+		b = cmd[i];
+		for(j = 0; j < bits; j++) {
+			if(b & 1) {
+				ToSendStuffBit(1);
+			} else {
+				ToSendStuffBit(0);
+			}
+			b >>= 1;
 		}
 	}
+	
+	// Convert from last character reference to length
+	++ToSendMax;
+}
+
+/**
+  Convenience function to encode, transmit and trace Legic comms
+  **/
+static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
+{
+	CodeLegicBitsAsReader(cmd, cmdlen, bits);
+	TransmitForLegic();
+	if (tracing) {
+		uint8_t parity[1] = {0x00};
+		LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
+	}
+}
+
+int ice_legic_select_card()
+{
+	//int cmd_size=0, card_size=0;
+	uint8_t wakeup[] = { 0x7F };
+	uint8_t getid[] = {0x19};
+
+	//legic_prng_init(SESSION_IV);
+
+	// first, wake up the tag, 7bits
+	CodeAndTransmitLegicAsReader(wakeup, sizeof(wakeup), 7);
+
+	GetSamplesForLegicDemod(1000, TRUE);
+
+	//frame_receiveAsReader(&current_frame, 6, 1);
+
+	legic_prng_forward(1); /* we wait anyways */
+	
+	//while(timer->TC_CV < 387) ; /* ~ 258us */
+	//frame_sendAsReader(0x19, 6);
+	CodeAndTransmitLegicAsReader(getid, sizeof(getid), 8);
+	GetSamplesForLegicDemod(1000, TRUE);
+
+	//if (Demod.len < 14) return 2; 
+	Dbprintf("CARD TYPE: %02x  LEN: %d", Demod.output[0], Demod.len);
+
+	switch(Demod.output[0]) {
+		case 0x1d:
+			DbpString("MIM 256 card found");
+            // cmd_size = 9;
+			// card_size = 256;
+			break;
+		case 0x3d:
+			DbpString("MIM 1024 card found");
+            // cmd_size = 11;
+			// card_size = 1024;
+			break;
+		default:
+			return -1;
+	}
+	
+	// if(bytes == -1)
+		// bytes = card_size;
+
+	// if(bytes + offset >= card_size)
+		// bytes = card_size - offset;	
+	
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	set_tracing(FALSE);
+	return 1;
 }
+
+// Set up LEGIC communication
+void ice_legic_setup() {
+
+	// standard things.
+	FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
+	BigBuf_free(); BigBuf_Clear_ext(false);
+	clear_trace();
+	set_tracing(TRUE);
+	DemodReset();
+	UartReset();
+	
+	// Set up the synchronous serial port
+	FpgaSetupSsc();
+
+	// connect Demodulated Signal to ADC:
+	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+	// Signal field is on with the appropriate LED
+    LED_D_ON();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
+	SpinDelay(20);
+	// Start the timer
+	//StartCountSspClk();
+	
+	// initalize CRC 
+	crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
+
+	// initalize prng
+	legic_prng_init(0);
+}
\ No newline at end of file