X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/28093ebc109b52c8615ede29dcec3945ef8fe0cc..9d590832a18fd34abd2c7966f14a30f58e87e1a1:/client/cmdhfmfhard.c diff --git a/client/cmdhfmfhard.c b/client/cmdhfmfhard.c index 02a1dda4..2cec9b7c 100644 --- a/client/cmdhfmfhard.c +++ b/client/cmdhfmfhard.c @@ -1,6 +1,6 @@ //----------------------------------------------------------------------------- // Copyright (C) 2015 piwi -// +// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp) // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. @@ -14,26 +14,27 @@ // Computer and Communications Security, 2015 //----------------------------------------------------------------------------- -#include #include +#include #include #include #include #include -#include #include "proxmark3.h" #include "cmdmain.h" #include "ui.h" #include "util.h" #include "nonce2key/crapto1.h" +#include "nonce2key/crypto1_bs.h" #include "parity.h" - -// uint32_t test_state_odd = 0; -// uint32_t test_state_even = 0; +#ifdef __WIN32 + #include +#endif +#include +#include #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull -#define GOOD_BYTES_REQUIRED 30 - +#define GOOD_BYTES_REQUIRED 28 static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, @@ -69,7 +70,6 @@ static const float p_K[257] = { // the probability that a random nonce has a Su 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0290 }; - typedef struct noncelistentry { uint32_t nonce_enc; @@ -88,8 +88,9 @@ typedef struct noncelist { float score1, score2; } noncelist_t; - -static uint32_t cuid; +static size_t nonces_to_bruteforce = 0; +static noncelistentry_t *brute_force_nonces[256]; +static uint32_t cuid = 0; static noncelist_t nonces[256]; static uint8_t best_first_bytes[256]; static uint16_t first_byte_Sum = 0; @@ -124,10 +125,8 @@ typedef struct { static partial_indexed_statelist_t partial_statelist[17]; static partial_indexed_statelist_t statelist_bitflip; - static statelist_t *candidates = NULL; - static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) { uint8_t first_byte = nonce_enc >> 24; @@ -170,6 +169,11 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) p2->nonce_enc = nonce_enc; p2->par_enc = par_enc; + if(nonces_to_bruteforce < 256){ + brute_force_nonces[nonces_to_bruteforce] = p2; + nonces_to_bruteforce++; + } + nonces[first_byte].num++; nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04)); nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte @@ -177,7 +181,6 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) return (1); // new nonce added } - static void init_nonce_memory(void) { for (uint16_t i = 0; i < 256; i++) { @@ -204,7 +207,6 @@ static void free_nonce_list(noncelistentry_t *p) } } - static void free_nonces_memory(void) { for (uint16_t i = 0; i < 256; i++) { @@ -212,7 +214,6 @@ static void free_nonces_memory(void) } } - static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) { uint16_t sum = 0; @@ -236,7 +237,6 @@ static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) return sum; } - // static uint16_t SumProperty(struct Crypto1State *s) // { // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); @@ -244,7 +244,6 @@ static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); // } - static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) { // for efficient computation we are using the recursive definition @@ -282,8 +281,7 @@ static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) } } } - - + static float sum_probability(uint16_t K, uint16_t n, uint16_t k) { const uint16_t N = 256; @@ -301,8 +299,6 @@ static float sum_probability(uint16_t K, uint16_t n, uint16_t k) return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); } - - static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff) { @@ -328,7 +324,6 @@ static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff) return common_bits_LUT[bytes_diff]; } - static void Tests() { // printf("Tests: Partial Statelist sizes\n"); @@ -446,32 +441,31 @@ static void Tests() // crypto1_destroy(pcs); - // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20)); - printf("\nTests: Actual BitFlipProperties odd/even:\n"); - for (uint16_t i = 0; i < 256; i++) { - printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' '); - if (i % 8 == 7) { - printf("\n"); - } - } + // printf("\nTests: Actual BitFlipProperties odd/even:\n"); + // for (uint16_t i = 0; i < 256; i++) { + // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' '); + // if (i % 8 == 7) { + // printf("\n"); + // } + // } - printf("\nTests: Sorted First Bytes:\n"); - for (uint16_t i = 0; i < 256; i++) { - uint8_t best_byte = best_first_bytes[i]; - printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n", - //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n", - i, best_byte, - nonces[best_byte].num, - nonces[best_byte].Sum, - nonces[best_byte].Sum8_guess, - nonces[best_byte].Sum8_prob * 100, - nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' ' - //nonces[best_byte].score1, - //nonces[best_byte].score2 - ); - } + // printf("\nTests: Sorted First Bytes:\n"); + // for (uint16_t i = 0; i < 256; i++) { + // uint8_t best_byte = best_first_bytes[i]; + // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n", + // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n", + // i, best_byte, + // nonces[best_byte].num, + // nonces[best_byte].Sum, + // nonces[best_byte].Sum8_guess, + // nonces[best_byte].Sum8_prob * 100, + // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' ' + // //nonces[best_byte].score1, + // //nonces[best_byte].score2 + // ); + // } // printf("\nTests: parity performance\n"); // time_t time1p = clock(); @@ -491,7 +485,6 @@ static void Tests() } - static void sort_best_first_bytes(void) { // sort based on probability for correct guess @@ -577,7 +570,6 @@ static void sort_best_first_bytes(void) } - static uint16_t estimate_second_byte_sum(void) { @@ -610,7 +602,6 @@ static uint16_t estimate_second_byte_sum(void) return num_good_nonces; } - static int read_nonce_file(void) { FILE *fnonces = NULL; @@ -627,7 +618,8 @@ static int read_nonce_file(void) } PrintAndLog("Reading nonces from file nonces.bin..."); - if (fread(read_buf, 1, 6, fnonces) == 0) { + size_t bytes_read = fread(read_buf, 1, 6, fnonces); + if ( bytes_read == 0) { PrintAndLog("File reading error."); fclose(fnonces); return 1; @@ -652,7 +644,6 @@ static int read_nonce_file(void) return 0; } - static void Check_for_FilterFlipProperties(void) { printf("Checking for Filter Flip Properties...\n"); @@ -683,11 +674,9 @@ static void Check_for_FilterFlipProperties(void) } } - static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc) { - struct Crypto1State sim_cs; - + struct Crypto1State sim_cs = {0, 0}; // init cryptostate with key: for(int8_t i = 47; i > 0; i -= 2) { sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7); @@ -707,7 +696,6 @@ static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t } - static void simulate_acquire_nonces() { clock_t time1 = clock(); @@ -750,16 +738,17 @@ static void simulate_acquire_nonces() } while (num_good_first_bytes < GOOD_BYTES_REQUIRED); + time1 = clock() - time1; + if ( time1 > 0 ) { PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", total_num_nonces, - ((float)clock()-time1)/CLOCKS_PER_SEC, - total_num_nonces*60.0*CLOCKS_PER_SEC/((float)clock()-time1)); - + ((float)time1)/CLOCKS_PER_SEC, + total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1); + } fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD); } - static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow) { clock_t time1 = clock(); @@ -825,7 +814,6 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f); - if (nonce_file_write) { fwrite(bufp, 1, 9, fnonces); } @@ -857,8 +845,14 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ } if (!initialize) { - if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; - if (resp.arg[0]) return resp.arg[0]; // error during nested_hard + if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { + fclose(fnonces); + return 1; + } + if (resp.arg[0]) { + fclose(fnonces); + return resp.arg[0]; // error during nested_hard + } } initialize = false; @@ -870,15 +864,17 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_ fclose(fnonces); } + time1 = clock() - time1; + if ( time1 > 0 ) { PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", total_num_nonces, - ((float)clock()-time1)/CLOCKS_PER_SEC, - total_num_nonces*60.0*CLOCKS_PER_SEC/((float)clock()-time1)); - + ((float)time1)/CLOCKS_PER_SEC, + total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1 + ); + } return 0; } - static int init_partial_statelists(void) { const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 }; @@ -928,7 +924,6 @@ static int init_partial_statelists(void) return 0; } - static void init_BitFlip_statelist(void) { @@ -952,7 +947,6 @@ static void init_BitFlip_statelist(void) *p = 0xffffffff; statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1)); } - static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even) { @@ -965,7 +959,6 @@ static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_ return NULL; // no match } - static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) { uint_fast8_t j_1_bit_mask = 0x01 << (bit-1); @@ -977,7 +970,6 @@ static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8 return !all_diff; } - static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) { uint_fast8_t j_bit_mask = 0x01 << bit; @@ -988,7 +980,6 @@ static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t return all_diff; } - static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even) { if (odd_even) { @@ -1019,7 +1010,6 @@ static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8 return true; // valid state } - static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even) { for (uint16_t i = 1; i < num_good_first_bytes; i++) { @@ -1083,7 +1073,6 @@ static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even) return true; } - static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even) { for (uint16_t i = 0; i < 256; i++) { @@ -1140,13 +1129,11 @@ static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even) return true; } - static struct sl_cache_entry { uint32_t *sl; uint32_t len; } sl_cache[17][17][2]; - static void init_statelist_cache(void) { for (uint16_t i = 0; i < 17; i+=2) { @@ -1159,7 +1146,6 @@ static void init_statelist_cache(void) } } - static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even) { uint32_t worstcase_size = 1<<20; @@ -1207,7 +1193,6 @@ static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, ui return 0; } - static statelist_t *add_more_candidates(statelist_t *current_candidates) { statelist_t *new_candidates = NULL; @@ -1227,7 +1212,6 @@ static statelist_t *add_more_candidates(statelist_t *current_candidates) return new_candidates; } - static void TestIfKeyExists(uint64_t key) { struct Crypto1State *pcs; @@ -1278,7 +1262,6 @@ static void TestIfKeyExists(uint64_t key) crypto1_destroy(pcs); } - static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) { printf("Generating crypto1 state candidates... \n"); @@ -1328,8 +1311,8 @@ static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) *p = 0xffffffff; } } - printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2)); - printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2)); + //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2)); + //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2)); } } } @@ -1352,7 +1335,6 @@ static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) } } - static void free_candidates_memory(statelist_t *sl) { if (sl == NULL) { @@ -1363,7 +1345,6 @@ static void free_candidates_memory(statelist_t *sl) } } - static void free_statelist_cache(void) { for (uint16_t i = 0; i < 17; i+=2) { @@ -1375,6 +1356,274 @@ static void free_statelist_cache(void) } } +uint64_t foundkey = 0; +size_t keys_found = 0; +size_t bucket_count = 0; +statelist_t* buckets[128]; +size_t total_states_tested = 0; +size_t thread_count = 4; + +// these bitsliced states will hold identical states in all slices +bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE]; + +// arrays of bitsliced states with identical values in all slices +bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE]; +bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE]; + +#define EXACT_COUNT + +static const uint64_t crack_states_bitsliced(statelist_t *p){ + // the idea to roll back the half-states before combining them was suggested/explained to me by bla + // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop + uint64_t key = -1; + uint8_t bSize = sizeof(bitslice_t); + +#ifdef EXACT_COUNT + size_t bucket_states_tested = 0; + size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES]; +#else + const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]); +#endif + + bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES]; + size_t bitsliced_blocks = 0; + uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE]; + + // bitslice all the even states + for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){ + +#ifdef __WIN32 + #ifdef __MINGW32__ + bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize); + #else + bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize); + #endif +#else + #ifdef defined(__APPLE__) + bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize); + #else + bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize); + #endif +#endif + + if ( !lstate_p ) { + __sync_fetch_and_add(&total_states_tested, bucket_states_tested); + return key; + } + + memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits + + // bitslice even half-states + const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES; +#ifdef EXACT_COUNT + bucket_size[bitsliced_blocks] = max_slices; +#endif + for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){ + uint32_t e = *(p_even+slice_idx); + for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){ + // set even bits + if(e&1){ + lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63); + } + } + } + // compute the rollback bits + for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){ + // inlined crypto1_bs_lfsr_rollback + const bitslice_value_t feedout = lstate_p[0].value; + ++lstate_p; + const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p); + const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^ + lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^ + lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^ + lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^ + lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^ + lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value); + lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value; + } + bitsliced_even_states[bitsliced_blocks++] = lstate_p; + } + + // bitslice every odd state to every block of even half-states with half-finished rollback + for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){ + // early abort + if(keys_found){ + goto out; + } + + // set the odd bits and compute rollback + uint64_t o = (uint64_t) *p_odd; + lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1); + // pre-compute part of the odd feedback bits (minus rollback) + bool odd_feedback_bit = parity(o&0x9ce5c); + + crypto1_bs_rewind_a0(); + // set odd bits + for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){ + if(o & 1){ + state_p[state_idx] = bs_ones; + } else { + state_p[state_idx] = bs_zeroes; + } + } + const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value; + + for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){ + const bitslice_t const * restrict bitsliced_even_state = bitsliced_even_states[block_idx]; + size_t state_idx; + // set even bits + for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){ + state_p[1+state_idx] = bitsliced_even_state[1+state_idx]; + } + // set rollback bits + uint64_t lo = o; + for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){ + // set the odd bits and take in the odd rollback bits from the even states + if(lo & 1){ + state_p[state_idx].value = ~bitsliced_even_state[state_idx].value; + } else { + state_p[state_idx] = bitsliced_even_state[state_idx]; + } + + // set the even bits and take in the even rollback bits from the odd states + if((lo >> 32) & 1){ + state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value; + } else { + state_p[1+state_idx] = bitsliced_even_state[1+state_idx]; + } + } + +#ifdef EXACT_COUNT + bucket_states_tested += bucket_size[block_idx]; +#endif + // pre-compute first keystream and feedback bit vectors + const bitslice_value_t ksb = crypto1_bs_f20(state_p); + const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits + state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^ + state_p[47-24].value ^ state_p[47-42].value); + + // vector to contain test results (1 = passed, 0 = failed) + bitslice_t results = bs_ones; + + for(size_t tests = 0; tests < NONCE_TESTS; ++tests){ + size_t parity_bit_idx = 0; + bitslice_value_t fb_bits = fbb; + bitslice_value_t ks_bits = ksb; + state_p = &states[KEYSTREAM_SIZE-1]; + bitslice_value_t parity_bit_vector = bs_zeroes.value; + + // highest bit is transmitted/received first + for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){ + // decrypt nonce bits + const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value; + const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits); + + // compute real parity bits on the fly + parity_bit_vector ^= decrypted_nonce_bit_vector; + + // update state + state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector); + + // compute next keystream bit + ks_bits = crypto1_bs_f20(state_p); + + // for each byte: + if((ks_idx&7) == 0){ + // get encrypted parity bits + const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value; + + // decrypt parity bits + const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits); + + // compare actual parity bits with decrypted parity bits and take count in results vector + results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector); + + // make sure we still have a match in our set + // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){ + + // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ??? + // the short-circuiting also helps + if(results.bytes64[0] == 0 +#if MAX_BITSLICES > 64 + && results.bytes64[1] == 0 +#endif +#if MAX_BITSLICES > 128 + && results.bytes64[2] == 0 + && results.bytes64[3] == 0 +#endif + ){ + goto stop_tests; + } + // this is about as fast but less portable (requires -std=gnu99) + // asm goto ("ptest %1, %0\n\t" + // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests); + parity_bit_vector = bs_zeroes.value; + } + // compute next feedback bit vector + fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^ + state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^ + state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^ + state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^ + state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^ + state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value); + } + } + // all nonce tests were successful: we've found the key in this block! + state_t keys[MAX_BITSLICES]; + crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys); + for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){ + if(get_vector_bit(results_idx, results)){ + key = keys[results_idx].value; + goto out; + } + } +stop_tests: + // prepare to set new states + crypto1_bs_rewind_a0(); + continue; + } + } + +out: + for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){ + +#ifdef __WIN32 + #ifdef __MINGW32__ + __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); + #else + _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); + #endif +#else + free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); +#endif + + } + __sync_fetch_and_add(&total_states_tested, bucket_states_tested); + return key; +} + +static void* crack_states_thread(void* x){ + const size_t thread_id = (size_t)x; + size_t current_bucket = thread_id; + while(current_bucket < bucket_count){ + statelist_t * bucket = buckets[current_bucket]; + if(bucket){ + const uint64_t key = crack_states_bitsliced(bucket); + if(key != -1){ + __sync_fetch_and_add(&keys_found, 1); + __sync_fetch_and_add(&foundkey, key); + break; + } else if(keys_found){ + break; + } else { + printf("."); + fflush(stdout); + } + } + current_bucket += thread_count; + } + return NULL; +} static void brute_force(void) { @@ -1382,12 +1631,67 @@ static void brute_force(void) PrintAndLog("Looking for known target key in remaining key space..."); TestIfKeyExists(known_target_key); } else { - PrintAndLog("Brute Force phase is not implemented."); + PrintAndLog("Brute force phase starting."); + time_t start, end; + time(&start); + keys_found = 0; + + crypto1_bs_init(); + + PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES); + PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24)); + // convert to 32 bit little-endian + crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8); + + PrintAndLog("Bitslicing nonces..."); + for(size_t tests = 0; tests < NONCE_TESTS; tests++){ + uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc; + uint8_t test_parity = brute_force_nonces[tests]->par_enc; + // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine + crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32); + // convert to 32 bit little-endian + crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4); + } + total_states_tested = 0; + + // count number of states to go + bucket_count = 0; + for (statelist_t *p = candidates; p != NULL; p = p->next) { + buckets[bucket_count] = p; + bucket_count++; + } + +#ifndef __WIN32 + thread_count = sysconf(_SC_NPROCESSORS_CONF); + if ( thread_count < 1) + thread_count = 1; +#endif /* _WIN32 */ + + pthread_t threads[thread_count]; + + // enumerate states using all hardware threads, each thread handles one bucket + PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu32" states...", thread_count, bucket_count, maximum_states); + + for(size_t i = 0; i < thread_count; i++){ + pthread_create(&threads[i], NULL, crack_states_thread, (void*) i); + } + for(size_t i = 0; i < thread_count; i++){ + pthread_join(threads[i], 0); + } + + time(&end); + unsigned long elapsed_time = difftime(end, start); + if(keys_found){ + PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %u seconds", total_states_tested, keys_found, elapsed_time); + PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey); + } else { + PrintAndLog("Fail! Tested %"PRIu32" states, in %u seconds", total_states_tested, elapsed_time); + } + // reset this counter for the next call + nonces_to_bruteforce = 0; } - } - int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) { // initialize Random number generator @@ -1428,47 +1732,48 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc fclose(fstats); } else { init_nonce_memory(); - if (nonce_file_read) { // use pre-acquired data from file nonces.bin - if (read_nonce_file() != 0) { - return 3; - } - Check_for_FilterFlipProperties(); - num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED); - } else { // acquire nonces. - uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); - if (is_OK != 0) { - return is_OK; + if (nonce_file_read) { // use pre-acquired data from file nonces.bin + if (read_nonce_file() != 0) { + return 3; + } + Check_for_FilterFlipProperties(); + num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED); + } else { // acquire nonces. + uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); + if (is_OK != 0) { + return is_OK; + } } - } - Tests(); - - PrintAndLog(""); - PrintAndLog("Sum(a0) = %d", first_byte_Sum); - // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x", - // best_first_bytes[0], - // best_first_bytes[1], - // best_first_bytes[2], - // best_first_bytes[3], - // best_first_bytes[4], - // best_first_bytes[5], - // best_first_bytes[6], - // best_first_bytes[7], - // best_first_bytes[8], - // best_first_bytes[9] ); - PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); - - time_t start_time = clock(); - generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); - PrintAndLog("Time for generating key candidates list: %1.0f seconds", (float)(clock() - start_time)/CLOCKS_PER_SEC); - - brute_force(); - free_nonces_memory(); - free_statelist_cache(); - free_candidates_memory(candidates); - candidates = NULL; - } + //Tests(); + + //PrintAndLog(""); + //PrintAndLog("Sum(a0) = %d", first_byte_Sum); + // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x", + // best_first_bytes[0], + // best_first_bytes[1], + // best_first_bytes[2], + // best_first_bytes[3], + // best_first_bytes[4], + // best_first_bytes[5], + // best_first_bytes[6], + // best_first_bytes[7], + // best_first_bytes[8], + // best_first_bytes[9] ); + PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); + + clock_t time1 = clock(); + generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); + time1 = clock() - time1; + if ( time1 > 0 ) + PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC); + brute_force(); + free_nonces_memory(); + free_statelist_cache(); + free_candidates_memory(candidates); + candidates = NULL; + } return 0; }