X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/30f2a7d38fd35b2427a7eb42e1cd75fb1105f927..759c16b31f8dcec37458dd6a5973ce0cfce58015:/armsrc/iso14443a.c

diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c
index 0957d051..8e078140 100644
--- a/armsrc/iso14443a.c
+++ b/armsrc/iso14443a.c
@@ -1,1815 +1,2560 @@
-//-----------------------------------------------------------------------------
-// Routines to support ISO 14443 type A.
-//
-// Gerhard de Koning Gans - May 2008
-//-----------------------------------------------------------------------------
-#include <proxmark3.h>
-#include "apps.h"
-#include "../common/iso14443_crc.c"
-
-typedef enum {
-	SEC_D = 1,
-	SEC_E = 2,
-	SEC_F = 3,
-	SEC_X = 4,
-	SEC_Y = 5,
-	SEC_Z = 6
-} SecType;
-
-//-----------------------------------------------------------------------------
-// The software UART that receives commands from the reader, and its state
-// variables.
-//-----------------------------------------------------------------------------
-static struct {
-    enum {
-        STATE_UNSYNCD,
-        STATE_START_OF_COMMUNICATION,
-		STATE_MILLER_X,
-		STATE_MILLER_Y,
-		STATE_MILLER_Z,
-        STATE_ERROR_WAIT
-    }       state;
-    WORD    shiftReg;
-    int     bitCnt;
-    int     byteCnt;
-    int     byteCntMax;
-    int     posCnt;
-    int     syncBit;
-	int     parityBits;
-	int     samples;
-    int     highCnt;
-    int     bitBuffer;
-	enum {
-		DROP_NONE,
-		DROP_FIRST_HALF,
-		DROP_SECOND_HALF
-	}		drop;
-    BYTE   *output;
-} Uart;
-
-static BOOL MillerDecoding(int bit)
-{
-	int error = 0;
-	int bitright;
-
-	if(!Uart.bitBuffer) {
-		Uart.bitBuffer = bit ^ 0xFF0;
-		return FALSE;
-	}
-	else {
-		Uart.bitBuffer <<= 4;
-		Uart.bitBuffer ^= bit;
-	}
-
-	BOOL EOC = FALSE;
-
-	if(Uart.state != STATE_UNSYNCD) {
-		Uart.posCnt++;
-
-		if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
-			bit = 0x00;
-		}
-		else {
-			bit = 0x01;
-		}
-		if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
-			bitright = 0x00;
-		}
-		else {
-			bitright = 0x01;
-		}
-		if(bit != bitright) { bit = bitright; }
-
-		if(Uart.posCnt == 1) {
-			// measurement first half bitperiod
-			if(!bit) {
-				Uart.drop = DROP_FIRST_HALF;
-			}
-		}
-		else {
-			// measurement second half bitperiod
-			if(!bit & (Uart.drop == DROP_NONE)) {
-				Uart.drop = DROP_SECOND_HALF;
-			}
-			else if(!bit) {
-				// measured a drop in first and second half
-				// which should not be possible
-				Uart.state = STATE_ERROR_WAIT;
-				error = 0x01;
-			}
-
-			Uart.posCnt = 0;
-
-			switch(Uart.state) {
-				case STATE_START_OF_COMMUNICATION:
-					Uart.shiftReg = 0;
-					if(Uart.drop == DROP_SECOND_HALF) {
-						// error, should not happen in SOC
-						Uart.state = STATE_ERROR_WAIT;
-						error = 0x02;
-					}
-					else {
-						// correct SOC
-						Uart.state = STATE_MILLER_Z;
-					}
-					break;
-
-				case STATE_MILLER_Z:
-					Uart.bitCnt++;
-					Uart.shiftReg >>= 1;
-					if(Uart.drop == DROP_NONE) {
-						// logic '0' followed by sequence Y
-						// end of communication
-						Uart.state = STATE_UNSYNCD;
-						EOC = TRUE;
-					}
-					// if(Uart.drop == DROP_FIRST_HALF) {
-					// 	Uart.state = STATE_MILLER_Z; stay the same
-					// 	we see a logic '0' }
-					if(Uart.drop == DROP_SECOND_HALF) {
-						// we see a logic '1'
-						Uart.shiftReg |= 0x100;
-						Uart.state = STATE_MILLER_X;
-					}
-					break;
-
-				case STATE_MILLER_X:
-					Uart.shiftReg >>= 1;
-					if(Uart.drop == DROP_NONE) {
-						// sequence Y, we see a '0'
-						Uart.state = STATE_MILLER_Y;
-						Uart.bitCnt++;
-					}
-					if(Uart.drop == DROP_FIRST_HALF) {
-						// Would be STATE_MILLER_Z
-						// but Z does not follow X, so error
-						Uart.state = STATE_ERROR_WAIT;
-						error = 0x03;
-					}
-					if(Uart.drop == DROP_SECOND_HALF) {
-						// We see a '1' and stay in state X
-						Uart.shiftReg |= 0x100;
-						Uart.bitCnt++;
-					}
-					break;
-
-				case STATE_MILLER_Y:
-					Uart.bitCnt++;
-					Uart.shiftReg >>= 1;
-					if(Uart.drop == DROP_NONE) {
-						// logic '0' followed by sequence Y
-						// end of communication
-						Uart.state = STATE_UNSYNCD;
-						EOC = TRUE;
-					}
-					if(Uart.drop == DROP_FIRST_HALF) {
-						// we see a '0'
-						Uart.state = STATE_MILLER_Z;
-					}
-					if(Uart.drop == DROP_SECOND_HALF) {
-						// We see a '1' and go to state X
-						Uart.shiftReg |= 0x100;
-						Uart.state = STATE_MILLER_X;
-					}
-					break;
-
-				case STATE_ERROR_WAIT:
-					// That went wrong. Now wait for at least two bit periods
-					// and try to sync again
-					if(Uart.drop == DROP_NONE) {
-						Uart.highCnt = 6;
-						Uart.state = STATE_UNSYNCD;
-					}
-					break;
-
-				default:
-					Uart.state = STATE_UNSYNCD;
-					Uart.highCnt = 0;
-					break;
-			}
-
-			Uart.drop = DROP_NONE;
-
-			// should have received at least one whole byte...
-			if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
-				return TRUE;
-			}
-
-			if(Uart.bitCnt == 9) {
-				Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
-				Uart.byteCnt++;
-
-				Uart.parityBits <<= 1;
-				Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
-
-				if(EOC) {
-					// when End of Communication received and
-					// all data bits processed..
-					return TRUE;
-				}
-				Uart.bitCnt = 0;
-			}
-
-			/*if(error) {
-				Uart.output[Uart.byteCnt] = 0xAA;
-				Uart.byteCnt++;
-				Uart.output[Uart.byteCnt] = error & 0xFF;
-				Uart.byteCnt++;
-				Uart.output[Uart.byteCnt] = 0xAA;
-				Uart.byteCnt++;
-				Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
-				Uart.byteCnt++;
-				Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
-				Uart.byteCnt++;
-				Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
-				Uart.byteCnt++;
-				Uart.output[Uart.byteCnt] = 0xAA;
-				Uart.byteCnt++;
-				return TRUE;
-			}*/
-		}
-
-	}
-	else {
-		bit = Uart.bitBuffer & 0xf0;
-		bit >>= 4;
-		bit ^= 0x0F;
-		if(bit) {
-			// should have been high or at least (4 * 128) / fc
-			// according to ISO this should be at least (9 * 128 + 20) / fc
-			if(Uart.highCnt == 8) {
-				// we went low, so this could be start of communication
-				// it turns out to be safer to choose a less significant
-				// syncbit... so we check whether the neighbour also represents the drop
-				Uart.posCnt = 1;   // apparently we are busy with our first half bit period
-				Uart.syncBit = bit & 8;
-				Uart.samples = 3;
-				if(!Uart.syncBit)	{ Uart.syncBit = bit & 4; Uart.samples = 2; }
-				else if(bit & 4)	{ Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
-				if(!Uart.syncBit)	{ Uart.syncBit = bit & 2; Uart.samples = 1; }
-				else if(bit & 2)	{ Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
-				if(!Uart.syncBit)	{ Uart.syncBit = bit & 1; Uart.samples = 0;
-					if(Uart.syncBit & (Uart.bitBuffer & 8)) {
-						Uart.syncBit = 8;
-
-						// the first half bit period is expected in next sample
-						Uart.posCnt = 0;
-						Uart.samples = 3;
-					}
-				}
-				else if(bit & 1)	{ Uart.syncBit = bit & 1; Uart.samples = 0; }
-
-				Uart.syncBit <<= 4;
-				Uart.state = STATE_START_OF_COMMUNICATION;
-				Uart.drop = DROP_FIRST_HALF;
-				Uart.bitCnt = 0;
-				Uart.byteCnt = 0;
-				Uart.parityBits = 0;
-				error = 0;
-			}
-			else {
-				Uart.highCnt = 0;
-			}
-		}
-		else {
-			if(Uart.highCnt < 8) {
-				Uart.highCnt++;
-			}
-		}
-	}
-
-    return FALSE;
-}
-
-//=============================================================================
-// ISO 14443 Type A - Manchester
-//=============================================================================
-
-static struct {
-    enum {
-        DEMOD_UNSYNCD,
-		DEMOD_START_OF_COMMUNICATION,
-		DEMOD_MANCHESTER_D,
-		DEMOD_MANCHESTER_E,
-		DEMOD_MANCHESTER_F,
-        DEMOD_ERROR_WAIT
-    }       state;
-    int     bitCount;
-    int     posCount;
-	int     syncBit;
-	int     parityBits;
-    WORD    shiftReg;
-	int     buffer;
-	int     buff;
-	int     samples;
-    int     len;
-	enum {
-		SUB_NONE,
-		SUB_FIRST_HALF,
-		SUB_SECOND_HALF
-	}		sub;
-    BYTE   *output;
-} Demod;
-
-static BOOL ManchesterDecoding(int v)
-{
-	int bit;
-	int modulation;
-	int error = 0;
-
-	if(!Demod.buff) {
-		Demod.buff = 1;
-		Demod.buffer = v;
-		return FALSE;
-	}
-	else {
-		bit = Demod.buffer;
-		Demod.buffer = v;
-	}
-
-	if(Demod.state==DEMOD_UNSYNCD) {
-		Demod.output[Demod.len] = 0xfa;
-		Demod.syncBit = 0;
-		//Demod.samples = 0;
-		Demod.posCount = 1;		// This is the first half bit period, so after syncing handle the second part
-		if(bit & 0x08) { Demod.syncBit = 0x08; }
-		if(!Demod.syncBit)	{
-			if(bit & 0x04) { Demod.syncBit = 0x04; }
-		}
-		else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; }
-		if(!Demod.syncBit)	{
-			if(bit & 0x02) { Demod.syncBit = 0x02; }
-		}
-		else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; }
-		if(!Demod.syncBit)	{
-			if(bit & 0x01) { Demod.syncBit = 0x01; }
-
-			if(Demod.syncBit & (Demod.buffer & 0x08)) {
-				Demod.syncBit = 0x08;
-
-				// The first half bitperiod is expected in next sample
-				Demod.posCount = 0;
-				Demod.output[Demod.len] = 0xfb;
-			}
-		}
-		else if(bit & 0x01) { Demod.syncBit = 0x01; }
-
-		if(Demod.syncBit) {
-			Demod.len = 0;
-			Demod.state = DEMOD_START_OF_COMMUNICATION;
-			Demod.sub = SUB_FIRST_HALF;
-			Demod.bitCount = 0;
-			Demod.shiftReg = 0;
-			Demod.parityBits = 0;
-			Demod.samples = 0;
-			if(Demod.posCount) {
-				switch(Demod.syncBit) {
-					case 0x08: Demod.samples = 3; break;
-					case 0x04: Demod.samples = 2; break;
-					case 0x02: Demod.samples = 1; break;
-					case 0x01: Demod.samples = 0; break;
-				}
-			}
-			error = 0;
-		}
-	}
-	else {
-		//modulation = bit & Demod.syncBit;
-		modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
-
-		Demod.samples += 4;
-
-		if(Demod.posCount==0) {
-			Demod.posCount = 1;
-			if(modulation) {
-				Demod.sub = SUB_FIRST_HALF;
-			}
-			else {
-				Demod.sub = SUB_NONE;
-			}
-		}
-		else {
-			Demod.posCount = 0;
-			if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
-				if(Demod.state!=DEMOD_ERROR_WAIT) {
-					Demod.state = DEMOD_ERROR_WAIT;
-					Demod.output[Demod.len] = 0xaa;
-					error = 0x01;
-				}
-			}
-			else if(modulation) {
-				Demod.sub = SUB_SECOND_HALF;
-			}
-
-			switch(Demod.state) {
-				case DEMOD_START_OF_COMMUNICATION:
-					if(Demod.sub == SUB_FIRST_HALF) {
-						Demod.state = DEMOD_MANCHESTER_D;
-					}
-					else {
-						Demod.output[Demod.len] = 0xab;
-						Demod.state = DEMOD_ERROR_WAIT;
-						error = 0x02;
-					}
-					break;
-
-				case DEMOD_MANCHESTER_D:
-				case DEMOD_MANCHESTER_E:
-					if(Demod.sub == SUB_FIRST_HALF) {
-						Demod.bitCount++;
-						Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
-						Demod.state = DEMOD_MANCHESTER_D;
-					}
-					else if(Demod.sub == SUB_SECOND_HALF) {
-						Demod.bitCount++;
-						Demod.shiftReg >>= 1;
-						Demod.state = DEMOD_MANCHESTER_E;
-					}
-					else {
-						Demod.state = DEMOD_MANCHESTER_F;
-					}
-					break;
-
-				case DEMOD_MANCHESTER_F:
-					// Tag response does not need to be a complete byte!
-					if(Demod.len > 0 || Demod.bitCount > 0) {
-						if(Demod.bitCount > 0) {
-							Demod.shiftReg >>= (9 - Demod.bitCount);
-							Demod.output[Demod.len] = Demod.shiftReg & 0xff;
-							Demod.len++;
-							// No parity bit, so just shift a 0
-							Demod.parityBits <<= 1;
-						}
-
-						Demod.state = DEMOD_UNSYNCD;
-						return TRUE;
-					}
-					else {
-						Demod.output[Demod.len] = 0xad;
-						Demod.state = DEMOD_ERROR_WAIT;
-						error = 0x03;
-					}
-					break;
-
-				case DEMOD_ERROR_WAIT:
-					Demod.state = DEMOD_UNSYNCD;
-					break;
-
-				default:
-					Demod.output[Demod.len] = 0xdd;
-					Demod.state = DEMOD_UNSYNCD;
-					break;
-			}
-
-			if(Demod.bitCount>=9) {
-				Demod.output[Demod.len] = Demod.shiftReg & 0xff;
-				Demod.len++;
-
-				Demod.parityBits <<= 1;
-				Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
-
-				Demod.bitCount = 0;
-				Demod.shiftReg = 0;
-			}
-
-			/*if(error) {
-				Demod.output[Demod.len] = 0xBB;
-				Demod.len++;
-				Demod.output[Demod.len] = error & 0xFF;
-				Demod.len++;
-				Demod.output[Demod.len] = 0xBB;
-				Demod.len++;
-				Demod.output[Demod.len] = bit & 0xFF;
-				Demod.len++;
-				Demod.output[Demod.len] = Demod.buffer & 0xFF;
-				Demod.len++;
-				Demod.output[Demod.len] = Demod.syncBit & 0xFF;
-				Demod.len++;
-				Demod.output[Demod.len] = 0xBB;
-				Demod.len++;
-				return TRUE;
-			}*/
-
-		}
-
-	} // end (state != UNSYNCED)
-
-    return FALSE;
-}
-
-//=============================================================================
-// Finally, a `sniffer' for ISO 14443 Type A
-// Both sides of communication!
-//=============================================================================
-
-//-----------------------------------------------------------------------------
-// Record the sequence of commands sent by the reader to the tag, with
-// triggering so that we start recording at the point that the tag is moved
-// near the reader.
-//-----------------------------------------------------------------------------
-void SnoopIso14443a(void)
-{
-
-	// BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT
-
-	#define RECV_CMD_OFFSET 	3032
-	#define RECV_RES_OFFSET		3096
-	#define DMA_BUFFER_OFFSET	3160
-	#define DMA_BUFFER_SIZE 	4096
-	#define TRACE_LENGTH	 	3000	
-	
-//	#define RECV_CMD_OFFSET 	2032	// original (working as of 21/2/09) values
-//	#define RECV_RES_OFFSET		2096	// original (working as of 21/2/09) values
-//	#define DMA_BUFFER_OFFSET	2160	// original (working as of 21/2/09) values
-//	#define DMA_BUFFER_SIZE 	4096	// original (working as of 21/2/09) values
-//	#define TRACE_LENGTH	 	2000	// original (working as of 21/2/09) values
-
-    // We won't start recording the frames that we acquire until we trigger;
-    // a good trigger condition to get started is probably when we see a
-    // response from the tag.
-    BOOL triggered = TRUE; // FALSE to wait first for card
-
-    // The command (reader -> tag) that we're receiving.
-	// The length of a received command will in most cases be no more than 18 bytes.
-	// So 32 should be enough!
-    BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET);
-    // The response (tag -> reader) that we're receiving.
-    BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET);
-
-    // As we receive stuff, we copy it from receivedCmd or receivedResponse
-    // into trace, along with its length and other annotations.
-    BYTE *trace = (BYTE *)BigBuf;
-    int traceLen = 0;
-
-    // The DMA buffer, used to stream samples from the FPGA
-    SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET;
-    int lastRxCounter;
-    SBYTE *upTo;
-    int smpl;
-    int maxBehindBy = 0;
-
-    // Count of samples received so far, so that we can include timing
-    // information in the trace buffer.
-    int samples = 0;
-	int rsamples = 0;
-
-    memset(trace, 0x44, RECV_CMD_OFFSET);
-
-    // Set up the demodulator for tag -> reader responses.
-    Demod.output = receivedResponse;
-    Demod.len = 0;
-    Demod.state = DEMOD_UNSYNCD;
-
-    // And the reader -> tag commands
-    memset(&Uart, 0, sizeof(Uart));
-    Uart.output = receivedCmd;
-    Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
-    Uart.state = STATE_UNSYNCD;
-
-    // And put the FPGA in the appropriate mode
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
-    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-
-	// Setup for the DMA.
-    FpgaSetupSsc();
-    upTo = dmaBuf;
-    lastRxCounter = DMA_BUFFER_SIZE;
-    FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE);
-
-    LED_A_ON();
-
-    // And now we loop, receiving samples.
-    for(;;) {
-		WDT_HIT();
-        int behindBy = (lastRxCounter - PDC_RX_COUNTER(SSC_BASE)) &
-                                (DMA_BUFFER_SIZE-1);
-        if(behindBy > maxBehindBy) {
-            maxBehindBy = behindBy;
-            if(behindBy > 400) {
-                DbpString("blew circular buffer!");
-                goto done;
-            }
-        }
-        if(behindBy < 1) continue;
-
-        smpl = upTo[0];
-        upTo++;
-        lastRxCounter -= 1;
-        if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
-            upTo -= DMA_BUFFER_SIZE;
-            lastRxCounter += DMA_BUFFER_SIZE;
-            PDC_RX_NEXT_POINTER(SSC_BASE) = (DWORD)upTo;
-            PDC_RX_NEXT_COUNTER(SSC_BASE) = DMA_BUFFER_SIZE;
-        }
-
-        samples += 4;
-#define HANDLE_BIT_IF_BODY \
-            LED_C_ON(); \
-			if(triggered) { \
-				trace[traceLen++] = ((rsamples >>  0) & 0xff); \
-                trace[traceLen++] = ((rsamples >>  8) & 0xff); \
-                trace[traceLen++] = ((rsamples >> 16) & 0xff); \
-                trace[traceLen++] = ((rsamples >> 24) & 0xff); \
-				trace[traceLen++] = ((Uart.parityBits >>  0) & 0xff); \
-				trace[traceLen++] = ((Uart.parityBits >>  8) & 0xff); \
-				trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \
-				trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \
-                trace[traceLen++] = Uart.byteCnt; \
-                memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \
-                traceLen += Uart.byteCnt; \
-                if(traceLen > TRACE_LENGTH) break; \
-            } \
-            /* And ready to receive another command. */ \
-            Uart.state = STATE_UNSYNCD; \
-            /* And also reset the demod code, which might have been */ \
-            /* false-triggered by the commands from the reader. */ \
-            Demod.state = DEMOD_UNSYNCD; \
-			LED_B_OFF(); \
-
-		if(MillerDecoding((smpl & 0xF0) >> 4)) {
-            rsamples = samples - Uart.samples;
-			HANDLE_BIT_IF_BODY
-        }
-		if(ManchesterDecoding(smpl & 0x0F)) {
-			rsamples = samples - Demod.samples;
-			LED_B_ON();
-
-			// timestamp, as a count of samples
-			trace[traceLen++] = ((rsamples >>  0) & 0xff);
-			trace[traceLen++] = ((rsamples >>  8) & 0xff);
-			trace[traceLen++] = ((rsamples >> 16) & 0xff);
-			trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
-			trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);
-			trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);
-			trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
-			trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
-			// length
-			trace[traceLen++] = Demod.len;
-			memcpy(trace+traceLen, receivedResponse, Demod.len);
-			traceLen += Demod.len;
-			if(traceLen > TRACE_LENGTH) break;
-
-           	triggered = TRUE;
-
-            // And ready to receive another response.
-            memset(&Demod, 0, sizeof(Demod));
-            Demod.output = receivedResponse;
-            Demod.state = DEMOD_UNSYNCD;
-			LED_C_OFF();
-		}
-
-        if(BUTTON_PRESS()) {
-            DbpString("cancelled_a");
-            goto done;
-        }
-    }
-
-    DbpString("COMMAND FINISHED");
-
-    DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);
-    DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);
-
-done:
-    PDC_CONTROL(SSC_BASE) = PDC_RX_DISABLE;
-    DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);
-    DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);
-    LED_A_OFF();
-    LED_B_OFF();
-	LED_C_OFF();
-	LED_D_OFF();
-}
-
-// Prepare communication bits to send to FPGA
-void Sequence(SecType seq)
-{
-	ToSendMax++;
-	switch(seq) {
-	// CARD TO READER
-	case SEC_D:
-		// Sequence D: 11110000
-		// modulation with subcarrier during first half
-        ToSend[ToSendMax] = 0xf0;
-		break;
-	case SEC_E:
-		// Sequence E: 00001111
-		// modulation with subcarrier during second half
-        ToSend[ToSendMax] = 0x0f;
-		break;
-	case SEC_F:
-		// Sequence F: 00000000
-		// no modulation with subcarrier
-        ToSend[ToSendMax] = 0x00;
-		break;
-	// READER TO CARD
-	case SEC_X:
-		// Sequence X: 00001100
-		// drop after half a period
-        ToSend[ToSendMax] = 0x0c;
-		break;
-	case SEC_Y:
-	default:
-		// Sequence Y: 00000000
-		// no drop
-        ToSend[ToSendMax] = 0x00;
-		break;
-	case SEC_Z:
-		// Sequence Z: 11000000
-		// drop at start
-        ToSend[ToSendMax] = 0xc0;
-		break;
-	}
-}
-
-//-----------------------------------------------------------------------------
-// Prepare tag messages
-//-----------------------------------------------------------------------------
-static void CodeIso14443aAsTag(const BYTE *cmd, int len)
-{
-    int i;
-	int oddparity;
-
-    ToSendReset();
-
-	// Correction bit, might be removed when not needed
-	ToSendStuffBit(0);
-	ToSendStuffBit(0);
-	ToSendStuffBit(0);
-	ToSendStuffBit(0);
-	ToSendStuffBit(1);  // 1
-	ToSendStuffBit(0);
-	ToSendStuffBit(0);
-	ToSendStuffBit(0);
-
-	// Send startbit
-	Sequence(SEC_D);
-
-    for(i = 0; i < len; i++) {
-        int j;
-        BYTE b = cmd[i];
-
-		// Data bits
-        oddparity = 0x01;
-		for(j = 0; j < 8; j++) {
-            oddparity ^= (b & 1);
-			if(b & 1) {
-				Sequence(SEC_D);
-			} else {
-				Sequence(SEC_E);
-            }
-            b >>= 1;
-        }
-
-        // Parity bit
-        if(oddparity) {
-			Sequence(SEC_D);
-		} else {
-			Sequence(SEC_E);
-		}
-    }
-
-    // Send stopbit
-	Sequence(SEC_F);
-
-	// Flush the buffer in FPGA!!
-	for(i = 0; i < 5; i++) {
-		Sequence(SEC_F);
-	}
-
-    // Convert from last byte pos to length
-    ToSendMax++;
-
-    // Add a few more for slop
-    ToSend[ToSendMax++] = 0x00;
-	ToSend[ToSendMax++] = 0x00;
-    //ToSendMax += 2;
-}
-
-//-----------------------------------------------------------------------------
-// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
-//-----------------------------------------------------------------------------
-static void CodeStrangeAnswer()
-{
-	int i;
-
-    ToSendReset();
-
-	// Correction bit, might be removed when not needed
-	ToSendStuffBit(0);
-	ToSendStuffBit(0);
-	ToSendStuffBit(0);
-	ToSendStuffBit(0);
-	ToSendStuffBit(1);  // 1
-	ToSendStuffBit(0);
-	ToSendStuffBit(0);
-	ToSendStuffBit(0);
-
-	// Send startbit
-	Sequence(SEC_D);
-
-	// 0
-	Sequence(SEC_E);
-
-	// 0
-	Sequence(SEC_E);
-
-	// 1
-	Sequence(SEC_D);
-
-    // Send stopbit
-	Sequence(SEC_F);
-
-	// Flush the buffer in FPGA!!
-	for(i = 0; i < 5; i++) {
-		Sequence(SEC_F);
-	}
-
-    // Convert from last byte pos to length
-    ToSendMax++;
-
-    // Add a few more for slop
-    ToSend[ToSendMax++] = 0x00;
-	ToSend[ToSendMax++] = 0x00;
-    //ToSendMax += 2;
-}
-
-//-----------------------------------------------------------------------------
-// Wait for commands from reader
-// Stop when button is pressed
-// Or return TRUE when command is captured
-//-----------------------------------------------------------------------------
-static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen)
-{
-    // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
-    // only, since we are receiving, not transmitting).
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
-
-    // Now run a `software UART' on the stream of incoming samples.
-    Uart.output = received;
-    Uart.byteCntMax = maxLen;
-    Uart.state = STATE_UNSYNCD;
-
-    for(;;) {
-        WDT_HIT();
-
-        if(BUTTON_PRESS()) return FALSE;
-
-        if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-            SSC_TRANSMIT_HOLDING = 0x00;
-        }
-        if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-            BYTE b = (BYTE)SSC_RECEIVE_HOLDING;
-			if(MillerDecoding((b & 0xf0) >> 4)) {
-				*len = Uart.byteCnt;
-				return TRUE;
-			}
-			if(MillerDecoding(b & 0x0f)) {
-				*len = Uart.byteCnt;
-				return TRUE;
-			}
-        }
-    }
-}
-
-//-----------------------------------------------------------------------------
-// Main loop of simulated tag: receive commands from reader, decide what
-// response to send, and send it.
-//-----------------------------------------------------------------------------
-void SimulateIso14443aTag(int tagType, int TagUid)
-{
-	// This function contains the tag emulation
-
-	// Prepare protocol messages
-    // static const BYTE cmd1[] = { 0x26 };
-//     static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
-//
-	static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
-//	static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
-
-	// UID response
-    // static const BYTE cmd2[] = { 0x93, 0x20 };
-    //static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
-
-
-
-// my desfire
-    static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
-   
-	
-// When reader selects us during cascade1 it will send cmd3
-//BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
-BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
-ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
-
-// send cascade2 2nd half of UID
-static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; //  uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
-// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
-
-
-// When reader selects us during cascade2 it will send cmd3a
-//BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
-BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
-ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
-    
-// When reader tries to authenticate
-	// static const BYTE cmd5[] = { 0x60, 0x00, 0xf5, 0x7b };
-    static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
-
-    BYTE *resp;
-    int respLen;
-
-    // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
-	// This will need
-	//    144        data bits (18 * 8)
-	//     18        parity bits
-	//      2        Start and stop
-	//      1        Correction bit (Answer in 1172 or 1236 periods, see FPGA)
-	//      1        just for the case
-	// ----------- +
-	//    166
-	//
-	// 166 bytes, since every bit that needs to be send costs us a byte
-	//
-
-
-    // Respond with card type
-    BYTE *resp1 = (((BYTE *)BigBuf) + 800);
-    int resp1Len;
-
-    // Anticollision cascade1 - respond with uid
-    BYTE *resp2 = (((BYTE *)BigBuf) + 970);
-    int resp2Len;
-
-    // Anticollision cascade2 - respond with 2nd half of uid if asked
-    // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
-    BYTE *resp2a = (((BYTE *)BigBuf) + 1140);
-    int resp2aLen;
-
-    // Acknowledge select - cascade 1
-    BYTE *resp3 = (((BYTE *)BigBuf) + 1310);
-    int resp3Len;
-
-    // Acknowledge select - cascade 2
-    BYTE *resp3a = (((BYTE *)BigBuf) + 1480);
-    int resp3aLen;
-
-    // Response to a read request - not implemented atm
-    BYTE *resp4 = (((BYTE *)BigBuf) + 1550);
-    int resp4Len;
-
-    // Authenticate response - nonce
-    BYTE *resp5 = (((BYTE *)BigBuf) + 1720);
-    int resp5Len;
-
-    BYTE *receivedCmd = (BYTE *)BigBuf;
-    int len;
-
-    int i;
-	int u;
-	BYTE b;
-
-	// To control where we are in the protocol
-	int order = 0;
-	int lastorder;
-
-	// Just to allow some checks
-	int happened = 0;
-	int happened2 = 0;
-
-    int cmdsRecvd = 0;
-
-	BOOL fdt_indicator;
-
-    memset(receivedCmd, 0x44, 400);
-
-	// Prepare the responses of the anticollision phase
-	// there will be not enough time to do this at the moment the reader sends it REQA
-
-	// Answer to request
-	CodeIso14443aAsTag(response1, sizeof(response1));
-    memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
-
-	// Send our UID (cascade 1)
-	CodeIso14443aAsTag(response2, sizeof(response2));
-    memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
-
-	// Answer to select (cascade1)
-	CodeIso14443aAsTag(response3, sizeof(response3));
-    memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
-
-	// Send the cascade 2 2nd part of the uid
-	CodeIso14443aAsTag(response2a, sizeof(response2a));
-    memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
-
-	// Answer to select (cascade 2)
-	CodeIso14443aAsTag(response3a, sizeof(response3a));
-    memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
-
-	// Strange answer is an example of rare message size (3 bits)
-	CodeStrangeAnswer();
-	memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
-
-	// Authentication answer (random nonce)
-	CodeIso14443aAsTag(response5, sizeof(response5));
-    memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
-
-    // We need to listen to the high-frequency, peak-detected path.
-    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-    FpgaSetupSsc();
-
-    cmdsRecvd = 0;
-
-    LED_A_ON();
-	for(;;) {
-
-		if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {
-            DbpString("button press");
-            break;
-        }
-	// doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
-        // Okay, look at the command now.
-        lastorder = order;
-		i = 1; // first byte transmitted
-        if(receivedCmd[0] == 0x26) {
-			// Received a REQUEST
-			resp = resp1; respLen = resp1Len; order = 1;
-			//DbpString("Hello request from reader:");
-		} else if(receivedCmd[0] == 0x52) {
-			// Received a WAKEUP
-			resp = resp1; respLen = resp1Len; order = 6;
-//			//DbpString("Wakeup request from reader:");
-
-		} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) {	// greg - cascade 1 anti-collision
-			// Received request for UID (cascade 1)
-			resp = resp2; respLen = resp2Len; order = 2;
-//			DbpString("UID (cascade 1) request from reader:");
-//			DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-
-
-		} else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) {	// greg - cascade 2 anti-collision
-			// Received request for UID (cascade 2)
-			resp = resp2a; respLen = resp2aLen; order = 20;
-//			DbpString("UID (cascade 2) request from reader:");
-//			DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-
-
-		} else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) {	// greg - cascade 1 select
-			// Received a SELECT
-			resp = resp3; respLen = resp3Len; order = 3;
-//			DbpString("Select (cascade 1) request from reader:");
-//			DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-
-
-		} else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) {	// greg - cascade 2 select
-			// Received a SELECT
-			resp = resp3a; respLen = resp3aLen; order = 30;
-//			DbpString("Select (cascade 2) request from reader:");
-//			DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-
-
-		} else if(receivedCmd[0] == 0x30) {
-			// Received a READ
-			resp = resp4; respLen = resp4Len; order = 4; // Do nothing
-			DbpString("Read request from reader:");
-			DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-
-
-		} else if(receivedCmd[0] == 0x50) {
-			// Received a HALT
-			resp = resp1; respLen = 0; order = 5; // Do nothing
-			DbpString("Reader requested we HALT!:");
-
-		} else if(receivedCmd[0] == 0x60) {
-			// Received an authentication request
-			resp = resp5; respLen = resp5Len; order = 7;
-			DbpString("Authenticate request from reader:");
-			DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-
-		} else if(receivedCmd[0] == 0xE0) {
-			// Received a RATS request
-			resp = resp1; respLen = 0;order = 70;
-			DbpString("RATS request from reader:");
-			DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-        } else {
-            // Never seen this command before
-			DbpString("Unknown command received from reader:");
-			DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
-			DbpIntegers(receivedCmd[3], receivedCmd[4], receivedCmd[5]);
-			DbpIntegers(receivedCmd[6], receivedCmd[7], receivedCmd[8]);
-
-			// Do not respond
-			resp = resp1; respLen = 0; order = 0;
-        }
-
-		// Count number of wakeups received after a halt
-		if(order == 6 && lastorder == 5) { happened++; }
-
-		// Count number of other messages after a halt
-		if(order != 6 && lastorder == 5) { happened2++; }
-
-		// Look at last parity bit to determine timing of answer
-		if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
-			// 1236, so correction bit needed
-			i = 0;
-		}
-
-        memset(receivedCmd, 0x44, 32);
-
-		if(cmdsRecvd > 999) {
-			DbpString("1000 commands later...");
-            break;
-        }
-		else {
-			cmdsRecvd++;
-		}
-
-        if(respLen <= 0) continue;
-
-        // Modulate Manchester
-		FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
-        SSC_TRANSMIT_HOLDING = 0x00;
-        FpgaSetupSsc();
-
-		// ### Transmit the response ###
-		u = 0;
-		b = 0x00;
-		fdt_indicator = FALSE;
-        for(;;) {
-            if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-				volatile BYTE b = (BYTE)SSC_RECEIVE_HOLDING;
-                (void)b;
-            }
-            if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-				if(i > respLen) {
-					b = 0x00;
-					u++;
-				} else {
-					b = resp[i];
-					i++;
-				}
-				SSC_TRANSMIT_HOLDING = b;
-
-                if(u > 4) {
-                    break;
-                }
-            }
-			if(BUTTON_PRESS()) {
-			    break;
-			}
-        }
-
-    }
-
-	DbpIntegers(happened, happened2, cmdsRecvd);
-	LED_A_OFF();
-}
-
-//-----------------------------------------------------------------------------
-// Transmit the command (to the tag) that was placed in ToSend[].
-//-----------------------------------------------------------------------------
-static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait)
-{
-    int c;
-
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
-
-	if(*wait < 10) { *wait = 10; }
-
-    for(c = 0; c < *wait;) {
-        if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-            SSC_TRANSMIT_HOLDING = 0x00;		// For exact timing!
-            c++;
-        }
-        if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-            volatile DWORD r = SSC_RECEIVE_HOLDING;
-            (void)r;
-        }
-        WDT_HIT();
-    }
-
-    c = 0;
-    for(;;) {
-        if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-            SSC_TRANSMIT_HOLDING = cmd[c];
-            c++;
-            if(c >= len) {
-                break;
-            }
-        }
-        if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-            volatile DWORD r = SSC_RECEIVE_HOLDING;
-            (void)r;
-        }
-        WDT_HIT();
-    }
-	*samples = (c + *wait) << 3;
-}
-
-//-----------------------------------------------------------------------------
-// To generate an arbitrary stream from reader
-//
-//-----------------------------------------------------------------------------
-void ArbitraryFromReader(const BYTE *cmd, int parity, int len)
-{
-	int i;
-	int j;
-	int last;
-    BYTE b;
-
-	ToSendReset();
-
-	// Start of Communication (Seq. Z)
-	Sequence(SEC_Z);
-	last = 0;
-
-	for(i = 0; i < len; i++) {
-        // Data bits
-        b = cmd[i];
-		for(j = 0; j < 8; j++) {
-			if(b & 1) {
-				// Sequence X
-				Sequence(SEC_X);
-				last = 1;
-			} else {
-				if(last == 0) {
-					// Sequence Z
-					Sequence(SEC_Z);
-				}
-				else {
-					// Sequence Y
-					Sequence(SEC_Y);
-					last = 0;
-				}
-			}
-			b >>= 1;
-
-		}
-
-		// Predefined parity bit, the flipper flips when needed, because of flips in byte sent
-		if(((parity >> (len - i - 1)) & 1)) {
-			// Sequence X
-			Sequence(SEC_X);
-			last = 1;
-		} else {
-			if(last == 0) {
-				// Sequence Z
-				Sequence(SEC_Z);
-			}
-			else {
-				// Sequence Y
-				Sequence(SEC_Y);
-				last = 0;
-			}
-		}
-	}
-
-	// End of Communication
-	if(last == 0) {
-		// Sequence Z
-		Sequence(SEC_Z);
-	}
-	else {
-		// Sequence Y
-		Sequence(SEC_Y);
-		last = 0;
-	}
-	// Sequence Y
-	Sequence(SEC_Y);
-
-	// Just to be sure!
-	Sequence(SEC_Y);
-	Sequence(SEC_Y);
-	Sequence(SEC_Y);
-
-    // Convert from last character reference to length
-    ToSendMax++;
-}
-
-//-----------------------------------------------------------------------------
-// Code a 7-bit command without parity bit
-// This is especially for 0x26 and 0x52 (REQA and WUPA)
-//-----------------------------------------------------------------------------
-void ShortFrameFromReader(const BYTE *cmd)
-{
-	int j;
-	int last;
-    BYTE b;
-
-	ToSendReset();
-
-	// Start of Communication (Seq. Z)
-	Sequence(SEC_Z);
-	last = 0;
-
-	b = cmd[0];
-	for(j = 0; j < 7; j++) {
-		if(b & 1) {
-			// Sequence X
-			Sequence(SEC_X);
-			last = 1;
-		} else {
-			if(last == 0) {
-				// Sequence Z
-				Sequence(SEC_Z);
-			}
-			else {
-				// Sequence Y
-				Sequence(SEC_Y);
-				last = 0;
-			}
-		}
-		b >>= 1;
-	}
-
-	// End of Communication
-	if(last == 0) {
-		// Sequence Z
-		Sequence(SEC_Z);
-	}
-	else {
-		// Sequence Y
-		Sequence(SEC_Y);
-		last = 0;
-	}
-	// Sequence Y
-	Sequence(SEC_Y);
-
-	// Just to be sure!
-	Sequence(SEC_Y);
-	Sequence(SEC_Y);
-	Sequence(SEC_Y);
-
-    // Convert from last character reference to length
-    ToSendMax++;
-}
-
-//-----------------------------------------------------------------------------
-// Prepare reader command to send to FPGA
-//
-//-----------------------------------------------------------------------------
-void CodeIso14443aAsReader(const BYTE *cmd, int len)
-{
-    int i, j;
-	int last;
-	int oddparity;
-    BYTE b;
-
-    ToSendReset();
-
-	// Start of Communication (Seq. Z)
-	Sequence(SEC_Z);
-	last = 0;
-
-	for(i = 0; i < len; i++) {
-        // Data bits
-        b = cmd[i];
-        oddparity = 0x01;
-        for(j = 0; j < 8; j++) {
-            oddparity ^= (b & 1);
-            if(b & 1) {
-				// Sequence X
-				Sequence(SEC_X);
-				last = 1;
-            } else {
-                if(last == 0) {
-					// Sequence Z
-					Sequence(SEC_Z);
-				}
-				else {
-					// Sequence Y
-					Sequence(SEC_Y);
-					last = 0;
-				}
-            }
-            b >>= 1;
-        }
-
-		// Parity bit
-		if(oddparity) {
-			// Sequence X
-			Sequence(SEC_X);
-			last = 1;
-		} else {
-			if(last == 0) {
-				// Sequence Z
-				Sequence(SEC_Z);
-			}
-			else {
-				// Sequence Y
-				Sequence(SEC_Y);
-				last = 0;
-			}
-		}
-    }
-
-	// End of Communication
-	if(last == 0) {
-		// Sequence Z
-		Sequence(SEC_Z);
-	}
-	else {
-		// Sequence Y
-		Sequence(SEC_Y);
-		last = 0;
-	}
-	// Sequence Y
-	Sequence(SEC_Y);
-
-	// Just to be sure!
-	Sequence(SEC_Y);
-	Sequence(SEC_Y);
-	Sequence(SEC_Y);
-
-    // Convert from last character reference to length
-    ToSendMax++;
-}
-
-
-//-----------------------------------------------------------------------------
-// Wait a certain time for tag response
-//  If a response is captured return TRUE
-//  If it takes to long return FALSE
-//-----------------------------------------------------------------------------
-static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer
-{
-	// buffer needs to be 512 bytes
-	int c;
-
-	// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
-    // only, since we are receiving, not transmitting).
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
-
-    // Now get the answer from the card
-    Demod.output = receivedResponse;
-    Demod.len = 0;
-    Demod.state = DEMOD_UNSYNCD;
-
-	BYTE b;
-	*elapsed = 0;
-
-	c = 0;
-	for(;;) {
-        WDT_HIT();
-
-        if(SSC_STATUS & (SSC_STATUS_TX_READY)) {
-            SSC_TRANSMIT_HOLDING = 0x00;  // To make use of exact timing of next command from reader!!
-			(*elapsed)++;
-        }
-        if(SSC_STATUS & (SSC_STATUS_RX_READY)) {
-			if(c < 512) { c++; } else { return FALSE; }
-            b = (BYTE)SSC_RECEIVE_HOLDING;
-			if(ManchesterDecoding((b & 0xf0) >> 4)) {
-				*samples = ((c - 1) << 3) + 4;
-				return TRUE;
-			}
-			if(ManchesterDecoding(b & 0x0f)) {
-				*samples = c << 3;
-				return TRUE;
-			}
-        }
-    }
-}
-
-//-----------------------------------------------------------------------------
-// Read an ISO 14443a tag. Send out commands and store answers.
-//
-//-----------------------------------------------------------------------------
-void ReaderIso14443a(DWORD parameter)
-{
-	// Anticollision
-	static const BYTE cmd1[]       = { 0x52 }; // or 0x26
-	static const BYTE cmd2[]       = { 0x93,0x20 };
-	// UID = 0x2a,0x69,0x8d,0x43,0x8d, last two bytes are CRC bytes
-	BYTE cmd3[] = { 0x93,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };
-
-	// For Ultralight add an extra anticollission layer -> 95 20 and then 95 70
-
-	// greg - here we will add our cascade level 2 anticolission and select functions to deal with ultralight 		// and 7-byte UIDs in generall...
-	BYTE cmd4[] = {0x95,0x20};	// ask for cascade 2 select
-	// 95 20
-	//BYTE cmd3a[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };
-	// 95 70
-
-	// cascade 2 select
-	BYTE cmd5[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };
-
-
-	// RATS (request for answer to select)
-	//BYTE cmd6[] = { 0xe0,0x50,0xbc,0xa5 };  // original RATS
-	BYTE cmd6[] = { 0xe0,0x21,0xb2,0xc7 };  // Desfire RATS
-
-	int reqaddr = 2024;					// was 2024 - tied to other size changes
-	int reqsize = 60;
-
-	BYTE *req1 = (((BYTE *)BigBuf) + reqaddr);
-    int req1Len;
-
-    BYTE *req2 = (((BYTE *)BigBuf) + reqaddr + reqsize);
-    int req2Len;
-
-    BYTE *req3 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 2));
-    int req3Len;
-
-// greg added req 4 & 5 to deal with cascade 2 section
-    BYTE *req4 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 3));
-    int req4Len;
-
-    BYTE *req5 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 4));
-    int req5Len;
-
-    BYTE *req6 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 5));
-    int req6Len;
-
-	//BYTE *req7 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 6));
-	//int req7Len;
-
-	BYTE *receivedAnswer = (((BYTE *)BigBuf) + 3560);	// was 3560 - tied to other size changes
-
-	BYTE *trace = (BYTE *)BigBuf;
-	int traceLen = 0;
-	int rsamples = 0;
-
-	memset(trace, 0x44, 2000);				// was 2000 - tied to oter size chnages 
-	// setting it to 3000 causes no tag responses to be detected (2900 is ok)
-	// setting it to 1000 causes no tag responses to be detected
-
-	// Prepare some commands!
-    ShortFrameFromReader(cmd1);
-    memcpy(req1, ToSend, ToSendMax); req1Len = ToSendMax;
-
-	CodeIso14443aAsReader(cmd2, sizeof(cmd2));
-    memcpy(req2, ToSend, ToSendMax); req2Len = ToSendMax;
-
-	CodeIso14443aAsReader(cmd3, sizeof(cmd3));
-    memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;
-
-
-	CodeIso14443aAsReader(cmd4, sizeof(cmd4));		// 4 is cascade 2 request
-    memcpy(req4, ToSend, ToSendMax); req4Len = ToSendMax;
-
-
-	CodeIso14443aAsReader(cmd5, sizeof(cmd5));	// 5 is cascade 2 select
-    memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;
-
-
-	CodeIso14443aAsReader(cmd6, sizeof(cmd6));
-    memcpy(req6, ToSend, ToSendMax); req6Len = ToSendMax;
-
-	// Setup SSC
-	FpgaSetupSsc();
-
-	// Start from off (no field generated)
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
-    SpinDelay(200);
-
-    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
-    FpgaSetupSsc();
-
-	// Now give it time to spin up.
-    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
-	SpinDelay(200);
-
-	LED_A_ON();
-	LED_B_OFF();
-	LED_C_OFF();
-	LED_D_OFF();
-
-	int samples = 0;
-	int tsamples = 0;
-	int wait = 0;
-	int elapsed = 0;
-
-	for(;;) {
-		// Send WUPA (or REQA)
-		TransmitFor14443a(req1, req1Len, &tsamples, &wait);
-		// Store answer in buffer
-		trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-		trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-		trace[traceLen++] = 1;
-		memcpy(trace+traceLen, cmd1, 1);
-		traceLen += 1;
-		if(traceLen > TRACE_LENGTH) goto done;
-
-		while(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {
-			if(BUTTON_PRESS()) goto done;
-
-			// No answer, just continue polling
-			TransmitFor14443a(req1, req1Len, &tsamples, &wait);
-			// Store answer in buffer
-			trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-			trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-			trace[traceLen++] = 1;
-			memcpy(trace+traceLen, cmd1, 1);
-			traceLen += 1;
-			if(traceLen > TRACE_LENGTH) goto done;
-		}
-
-		// Store answer in buffer
-		rsamples = rsamples + (samples - Demod.samples);
-		trace[traceLen++] = ((rsamples >>  0) & 0xff);
-		trace[traceLen++] = ((rsamples >>  8) & 0xff);
-		trace[traceLen++] = ((rsamples >> 16) & 0xff);
-		trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
-		trace[traceLen++] = Demod.len;
-		memcpy(trace+traceLen, receivedAnswer, Demod.len);
-		traceLen += Demod.len;
-		if(traceLen > TRACE_LENGTH) goto done;
-
-		// Ask for card UID
-		TransmitFor14443a(req2, req2Len, &tsamples, &wait);
-		// Store answer in buffer
-		trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-		trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-		trace[traceLen++] = 2;
-		memcpy(trace+traceLen, cmd2, 2);
-		traceLen += 2;
-		if(traceLen > TRACE_LENGTH) goto done;
-
-		if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {
-			continue;
-		}
-
-		// Store answer in buffer
-		rsamples = rsamples + (samples - Demod.samples);
-		trace[traceLen++] = ((rsamples >>  0) & 0xff);
-		trace[traceLen++] = ((rsamples >>  8) & 0xff);
-		trace[traceLen++] = ((rsamples >> 16) & 0xff);
-		trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
-		trace[traceLen++] = Demod.len;
-		memcpy(trace+traceLen, receivedAnswer, Demod.len);
-		traceLen += Demod.len;
-		if(traceLen > TRACE_LENGTH) goto done;
-
-		// Construct SELECT UID command
-		// First copy the 5 bytes (Mifare Classic) after the 93 70
-		memcpy(cmd3+2,receivedAnswer,5);
-		// Secondly compute the two CRC bytes at the end
-		ComputeCrc14443(CRC_14443_A, cmd3, 7, &cmd3[7], &cmd3[8]);
-		// Prepare the bit sequence to modulate the subcarrier
-		// Store answer in buffer
-		trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-		trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-		trace[traceLen++] = 9;
-		memcpy(trace+traceLen, cmd3, 9);
-		traceLen += 9;
-		if(traceLen > TRACE_LENGTH) goto done;
-		CodeIso14443aAsReader(cmd3, sizeof(cmd3));
-		memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;
-
-		// Select the card
-		TransmitFor14443a(req3, req3Len, &samples, &wait);
-		if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {
-			continue;
-		}
-
-		// Store answer in buffer
-		rsamples = rsamples + (samples - Demod.samples);
-		trace[traceLen++] = ((rsamples >>  0) & 0xff);
-		trace[traceLen++] = ((rsamples >>  8) & 0xff);
-		trace[traceLen++] = ((rsamples >> 16) & 0xff);
-		trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
-		trace[traceLen++] = Demod.len;
-		memcpy(trace+traceLen, receivedAnswer, Demod.len);
-		traceLen += Demod.len;
-		if(traceLen > TRACE_LENGTH) goto done;
-
-// OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in 
-// which case we need to make a cascade 2 request and select - this is a long UID
-		if (receivedAnswer[0] == 0x88)
-		{
-		// Do cascade level 2 stuff
-		///////////////////////////////////////////////////////////////////
-		// First issue a '95 20' identify request
-		// Ask for card UID (part 2)
-		TransmitFor14443a(req4, req4Len, &tsamples, &wait);
-		// Store answer in buffer
-		trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-		trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-		trace[traceLen++] = 2;
-		memcpy(trace+traceLen, cmd4, 2);
-		traceLen += 2;
-		if(traceLen > TRACE_LENGTH) {
-		DbpString("Bugging out, just popped tracelength");
-		goto done;}
-
-		if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {
-			continue;
-		}
-		// Store answer in buffer
-		rsamples = rsamples + (samples - Demod.samples);
-		trace[traceLen++] = ((rsamples >>  0) & 0xff);
-		trace[traceLen++] = ((rsamples >>  8) & 0xff);
-		trace[traceLen++] = ((rsamples >> 16) & 0xff);
-		trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
-		trace[traceLen++] = Demod.len;
-		memcpy(trace+traceLen, receivedAnswer, Demod.len);
-		traceLen += Demod.len;
-		if(traceLen > TRACE_LENGTH) goto done;
-		//////////////////////////////////////////////////////////////////
-		// Then Construct SELECT UID (cascasde 2) command
-		DbpString("Just about to copy the UID out of the cascade 2 id req");
-		// First copy the 5 bytes (Mifare Classic) after the 95 70
-		memcpy(cmd5+2,receivedAnswer,5);
-		// Secondly compute the two CRC bytes at the end
-		ComputeCrc14443(CRC_14443_A, cmd4, 7, &cmd5[7], &cmd5[8]);
-		// Prepare the bit sequence to modulate the subcarrier
-		// Store answer in buffer
-		trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-		trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-		trace[traceLen++] = 9;
-		memcpy(trace+traceLen, cmd5, 9);
-		traceLen += 9;
-		if(traceLen > TRACE_LENGTH) goto done;
-		CodeIso14443aAsReader(cmd5, sizeof(cmd5));
-		memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;
-
-		// Select the card
-		TransmitFor14443a(req4, req4Len, &samples, &wait);
-		if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {
-			continue;
-		}
-
-		// Store answer in buffer
-		rsamples = rsamples + (samples - Demod.samples);
-		trace[traceLen++] = ((rsamples >>  0) & 0xff);
-		trace[traceLen++] = ((rsamples >>  8) & 0xff);
-		trace[traceLen++] = ((rsamples >> 16) & 0xff);
-		trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
-		trace[traceLen++] = Demod.len;
-		memcpy(trace+traceLen, receivedAnswer, Demod.len);
-		traceLen += Demod.len;
-		if(traceLen > TRACE_LENGTH) goto done;
-
-
-
-
-
-
-		}	
-
-		
-
-		// Secondly compute the two CRC bytes at the end
-		ComputeCrc14443(CRC_14443_A, cmd5, 2, &cmd5[2], &cmd5[3]);
-		// Send authentication request (Mifare Classic)
-		TransmitFor14443a(req5, req5Len, &samples, &wait);
-		trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-		trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
-		trace[traceLen++] = 4;
-		memcpy(trace+traceLen, cmd5, 4);
-		traceLen += 4;
-		if(traceLen > TRACE_LENGTH) goto done;
-		if(GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {
-			rsamples++;
-			// We received probably a random, continue and trace!
-		}
-		else {
-			// Received nothing
-			continue;
-		}
-
-		// Trace the random, i'm curious
-		rsamples = rsamples + (samples - Demod.samples);
-		trace[traceLen++] = ((rsamples >>  0) & 0xff);
-		trace[traceLen++] = ((rsamples >>  8) & 0xff);
-		trace[traceLen++] = ((rsamples >> 16) & 0xff);
-		trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >>  0) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >>  8) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
-		trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
-		trace[traceLen++] = Demod.len;
-		memcpy(trace+traceLen, receivedAnswer, Demod.len);
-		traceLen += Demod.len;
-		if(traceLen > TRACE_LENGTH) goto done;
-
-		// Thats it...
-	}
-
-done:
-	LED_A_OFF();
-	LED_B_OFF();
-	LED_C_OFF();
-	LED_D_OFF();
-	DbpIntegers(rsamples, 0xCC, 0xCC);
-	DbpString("ready..");
-}
+//-----------------------------------------------------------------------------
+// Merlok - June 2011, 2012
+// Gerhard de Koning Gans - May 2008
+// Hagen Fritsch - June 2010
+//
+// This code is licensed to you under the terms of the GNU GPL, version 2 or,
+// at your option, any later version. See the LICENSE.txt file for the text of
+// the license.
+//-----------------------------------------------------------------------------
+// Routines to support ISO 14443 type A.
+//-----------------------------------------------------------------------------
+
+#include "proxmark3.h"
+#include "apps.h"
+#include "util.h"
+#include "string.h"
+#include "cmd.h"
+
+#include "iso14443crc.h"
+#include "iso14443a.h"
+#include "crapto1.h"
+#include "mifareutil.h"
+
+static uint32_t iso14a_timeout;
+uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET;
+int traceLen = 0;
+int rsamples = 0;
+int tracing = TRUE;
+uint8_t trigger = 0;
+// the block number for the ISO14443-4 PCB
+static uint8_t iso14_pcb_blocknum = 0;
+
+// CARD TO READER - manchester
+// Sequence D: 11110000 modulation with subcarrier during first half
+// Sequence E: 00001111 modulation with subcarrier during second half
+// Sequence F: 00000000 no modulation with subcarrier
+// READER TO CARD - miller
+// Sequence X: 00001100 drop after half a period
+// Sequence Y: 00000000 no drop
+// Sequence Z: 11000000 drop at start
+#define	SEC_D 0xf0
+#define	SEC_E 0x0f
+#define	SEC_F 0x00
+#define	SEC_X 0x0c
+#define	SEC_Y 0x00
+#define	SEC_Z 0xc0
+
+const uint8_t OddByteParity[256] = {
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
+  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
+};
+
+
+void iso14a_set_trigger(bool enable) {
+	trigger = enable;
+}
+
+void iso14a_clear_trace() {
+  memset(trace, 0x44, TRACE_SIZE);
+	traceLen = 0;
+}
+
+void iso14a_set_tracing(bool enable) {
+	tracing = enable;
+}
+
+void iso14a_set_timeout(uint32_t timeout) {
+	iso14a_timeout = timeout;
+}
+
+//-----------------------------------------------------------------------------
+// Generate the parity value for a byte sequence
+//
+//-----------------------------------------------------------------------------
+byte_t oddparity (const byte_t bt)
+{
+  return OddByteParity[bt];
+}
+
+uint32_t GetParity(const uint8_t * pbtCmd, int iLen)
+{
+  int i;
+  uint32_t dwPar = 0;
+
+  // Generate the encrypted data
+  for (i = 0; i < iLen; i++) {
+    // Save the encrypted parity bit
+    dwPar |= ((OddByteParity[pbtCmd[i]]) << i);
+  }
+  return dwPar;
+}
+
+void AppendCrc14443a(uint8_t* data, int len)
+{
+  ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
+}
+
+// The function LogTrace() is also used by the iClass implementation in iClass.c
+int RAMFUNC LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader)
+{
+  // Return when trace is full
+  if (traceLen >= TRACE_SIZE) return FALSE;
+
+  // Trace the random, i'm curious
+  rsamples += iSamples;
+  trace[traceLen++] = ((rsamples >> 0) & 0xff);
+  trace[traceLen++] = ((rsamples >> 8) & 0xff);
+  trace[traceLen++] = ((rsamples >> 16) & 0xff);
+  trace[traceLen++] = ((rsamples >> 24) & 0xff);
+  if (!bReader) {
+    trace[traceLen - 1] |= 0x80;
+  }
+  trace[traceLen++] = ((dwParity >> 0) & 0xff);
+  trace[traceLen++] = ((dwParity >> 8) & 0xff);
+  trace[traceLen++] = ((dwParity >> 16) & 0xff);
+  trace[traceLen++] = ((dwParity >> 24) & 0xff);
+  trace[traceLen++] = iLen;
+  memcpy(trace + traceLen, btBytes, iLen);
+  traceLen += iLen;
+  return TRUE;
+}
+
+//-----------------------------------------------------------------------------
+// The software UART that receives commands from the reader, and its state
+// variables.
+//-----------------------------------------------------------------------------
+static tUart Uart;
+
+static RAMFUNC int MillerDecoding(int bit)
+{
+	//int error = 0;
+	int bitright;
+
+	if(!Uart.bitBuffer) {
+		Uart.bitBuffer = bit ^ 0xFF0;
+		return FALSE;
+	}
+	else {
+		Uart.bitBuffer <<= 4;
+		Uart.bitBuffer ^= bit;
+	}
+
+	int EOC = FALSE;
+
+	if(Uart.state != STATE_UNSYNCD) {
+		Uart.posCnt++;
+
+		if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
+			bit = 0x00;
+		}
+		else {
+			bit = 0x01;
+		}
+		if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
+			bitright = 0x00;
+		}
+		else {
+			bitright = 0x01;
+		}
+		if(bit != bitright) { bit = bitright; }
+
+		if(Uart.posCnt == 1) {
+			// measurement first half bitperiod
+			if(!bit) {
+				Uart.drop = DROP_FIRST_HALF;
+			}
+		}
+		else {
+			// measurement second half bitperiod
+			if(!bit & (Uart.drop == DROP_NONE)) {
+				Uart.drop = DROP_SECOND_HALF;
+			}
+			else if(!bit) {
+				// measured a drop in first and second half
+				// which should not be possible
+				Uart.state = STATE_ERROR_WAIT;
+				//error = 0x01;
+			}
+
+			Uart.posCnt = 0;
+
+			switch(Uart.state) {
+				case STATE_START_OF_COMMUNICATION:
+					Uart.shiftReg = 0;
+					if(Uart.drop == DROP_SECOND_HALF) {
+						// error, should not happen in SOC
+						Uart.state = STATE_ERROR_WAIT;
+						//error = 0x02;
+					}
+					else {
+						// correct SOC
+						Uart.state = STATE_MILLER_Z;
+					}
+					break;
+
+				case STATE_MILLER_Z:
+					Uart.bitCnt++;
+					Uart.shiftReg >>= 1;
+					if(Uart.drop == DROP_NONE) {
+						// logic '0' followed by sequence Y
+						// end of communication
+						Uart.state = STATE_UNSYNCD;
+						EOC = TRUE;
+					}
+					// if(Uart.drop == DROP_FIRST_HALF) {
+					// 	Uart.state = STATE_MILLER_Z; stay the same
+					// 	we see a logic '0' }
+					if(Uart.drop == DROP_SECOND_HALF) {
+						// we see a logic '1'
+						Uart.shiftReg |= 0x100;
+						Uart.state = STATE_MILLER_X;
+					}
+					break;
+
+				case STATE_MILLER_X:
+					Uart.shiftReg >>= 1;
+					if(Uart.drop == DROP_NONE) {
+						// sequence Y, we see a '0'
+						Uart.state = STATE_MILLER_Y;
+						Uart.bitCnt++;
+					}
+					if(Uart.drop == DROP_FIRST_HALF) {
+						// Would be STATE_MILLER_Z
+						// but Z does not follow X, so error
+						Uart.state = STATE_ERROR_WAIT;
+						//error = 0x03;
+					}
+					if(Uart.drop == DROP_SECOND_HALF) {
+						// We see a '1' and stay in state X
+						Uart.shiftReg |= 0x100;
+						Uart.bitCnt++;
+					}
+					break;
+
+				case STATE_MILLER_Y:
+					Uart.bitCnt++;
+					Uart.shiftReg >>= 1;
+					if(Uart.drop == DROP_NONE) {
+						// logic '0' followed by sequence Y
+						// end of communication
+						Uart.state = STATE_UNSYNCD;
+						EOC = TRUE;
+					}
+					if(Uart.drop == DROP_FIRST_HALF) {
+						// we see a '0'
+						Uart.state = STATE_MILLER_Z;
+					}
+					if(Uart.drop == DROP_SECOND_HALF) {
+						// We see a '1' and go to state X
+						Uart.shiftReg |= 0x100;
+						Uart.state = STATE_MILLER_X;
+					}
+					break;
+
+				case STATE_ERROR_WAIT:
+					// That went wrong. Now wait for at least two bit periods
+					// and try to sync again
+					if(Uart.drop == DROP_NONE) {
+						Uart.highCnt = 6;
+						Uart.state = STATE_UNSYNCD;
+					}
+					break;
+
+				default:
+					Uart.state = STATE_UNSYNCD;
+					Uart.highCnt = 0;
+					break;
+			}
+
+			Uart.drop = DROP_NONE;
+
+			// should have received at least one whole byte...
+			if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
+				return TRUE;
+			}
+
+			if(Uart.bitCnt == 9) {
+				Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
+				Uart.byteCnt++;
+
+				Uart.parityBits <<= 1;
+				Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
+
+				if(EOC) {
+					// when End of Communication received and
+					// all data bits processed..
+					return TRUE;
+				}
+				Uart.bitCnt = 0;
+			}
+
+			/*if(error) {
+				Uart.output[Uart.byteCnt] = 0xAA;
+				Uart.byteCnt++;
+				Uart.output[Uart.byteCnt] = error & 0xFF;
+				Uart.byteCnt++;
+				Uart.output[Uart.byteCnt] = 0xAA;
+				Uart.byteCnt++;
+				Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
+				Uart.byteCnt++;
+				Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
+				Uart.byteCnt++;
+				Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
+				Uart.byteCnt++;
+				Uart.output[Uart.byteCnt] = 0xAA;
+				Uart.byteCnt++;
+				return TRUE;
+			}*/
+		}
+
+	}
+	else {
+		bit = Uart.bitBuffer & 0xf0;
+		bit >>= 4;
+		bit ^= 0x0F;
+		if(bit) {
+			// should have been high or at least (4 * 128) / fc
+			// according to ISO this should be at least (9 * 128 + 20) / fc
+			if(Uart.highCnt == 8) {
+				// we went low, so this could be start of communication
+				// it turns out to be safer to choose a less significant
+				// syncbit... so we check whether the neighbour also represents the drop
+				Uart.posCnt = 1;   // apparently we are busy with our first half bit period
+				Uart.syncBit = bit & 8;
+				Uart.samples = 3;
+				if(!Uart.syncBit)	{ Uart.syncBit = bit & 4; Uart.samples = 2; }
+				else if(bit & 4)	{ Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
+				if(!Uart.syncBit)	{ Uart.syncBit = bit & 2; Uart.samples = 1; }
+				else if(bit & 2)	{ Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
+				if(!Uart.syncBit)	{ Uart.syncBit = bit & 1; Uart.samples = 0;
+					if(Uart.syncBit && (Uart.bitBuffer & 8)) {
+						Uart.syncBit = 8;
+
+						// the first half bit period is expected in next sample
+						Uart.posCnt = 0;
+						Uart.samples = 3;
+					}
+				}
+				else if(bit & 1)	{ Uart.syncBit = bit & 1; Uart.samples = 0; }
+
+				Uart.syncBit <<= 4;
+				Uart.state = STATE_START_OF_COMMUNICATION;
+				Uart.drop = DROP_FIRST_HALF;
+				Uart.bitCnt = 0;
+				Uart.byteCnt = 0;
+				Uart.parityBits = 0;
+				//error = 0;
+			}
+			else {
+				Uart.highCnt = 0;
+			}
+		}
+		else {
+			if(Uart.highCnt < 8) {
+				Uart.highCnt++;
+			}
+		}
+	}
+
+    return FALSE;
+}
+
+//=============================================================================
+// ISO 14443 Type A - Manchester
+//=============================================================================
+static tDemod Demod;
+
+static RAMFUNC int ManchesterDecoding(int v)
+{
+	int bit;
+	int modulation;
+	//int error = 0;
+
+	if(!Demod.buff) {
+		Demod.buff = 1;
+		Demod.buffer = v;
+		return FALSE;
+	}
+	else {
+		bit = Demod.buffer;
+		Demod.buffer = v;
+	}
+
+	if(Demod.state==DEMOD_UNSYNCD) {
+		Demod.output[Demod.len] = 0xfa;
+		Demod.syncBit = 0;
+		//Demod.samples = 0;
+		Demod.posCount = 1;		// This is the first half bit period, so after syncing handle the second part
+
+		if(bit & 0x08) {
+			Demod.syncBit = 0x08;
+		}
+
+		if(bit & 0x04) {
+			if(Demod.syncBit) {
+				bit <<= 4;
+			}
+			Demod.syncBit = 0x04;
+		}
+
+		if(bit & 0x02) {
+			if(Demod.syncBit) {
+				bit <<= 2;
+			}
+			Demod.syncBit = 0x02;
+		}
+
+		if(bit & 0x01 && Demod.syncBit) {
+			Demod.syncBit = 0x01;
+		}
+		
+		if(Demod.syncBit) {
+			Demod.len = 0;
+			Demod.state = DEMOD_START_OF_COMMUNICATION;
+			Demod.sub = SUB_FIRST_HALF;
+			Demod.bitCount = 0;
+			Demod.shiftReg = 0;
+			Demod.parityBits = 0;
+			Demod.samples = 0;
+			if(Demod.posCount) {
+				if(trigger) LED_A_OFF();
+				switch(Demod.syncBit) {
+					case 0x08: Demod.samples = 3; break;
+					case 0x04: Demod.samples = 2; break;
+					case 0x02: Demod.samples = 1; break;
+					case 0x01: Demod.samples = 0; break;
+				}
+			}
+			//error = 0;
+		}
+	}
+	else {
+		//modulation = bit & Demod.syncBit;
+		modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
+
+		Demod.samples += 4;
+
+		if(Demod.posCount==0) {
+			Demod.posCount = 1;
+			if(modulation) {
+				Demod.sub = SUB_FIRST_HALF;
+			}
+			else {
+				Demod.sub = SUB_NONE;
+			}
+		}
+		else {
+			Demod.posCount = 0;
+			if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
+				if(Demod.state!=DEMOD_ERROR_WAIT) {
+					Demod.state = DEMOD_ERROR_WAIT;
+					Demod.output[Demod.len] = 0xaa;
+					//error = 0x01;
+				}
+			}
+			else if(modulation) {
+				Demod.sub = SUB_SECOND_HALF;
+			}
+
+			switch(Demod.state) {
+				case DEMOD_START_OF_COMMUNICATION:
+					if(Demod.sub == SUB_FIRST_HALF) {
+						Demod.state = DEMOD_MANCHESTER_D;
+					}
+					else {
+						Demod.output[Demod.len] = 0xab;
+						Demod.state = DEMOD_ERROR_WAIT;
+						//error = 0x02;
+					}
+					break;
+
+				case DEMOD_MANCHESTER_D:
+				case DEMOD_MANCHESTER_E:
+					if(Demod.sub == SUB_FIRST_HALF) {
+						Demod.bitCount++;
+						Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
+						Demod.state = DEMOD_MANCHESTER_D;
+					}
+					else if(Demod.sub == SUB_SECOND_HALF) {
+						Demod.bitCount++;
+						Demod.shiftReg >>= 1;
+						Demod.state = DEMOD_MANCHESTER_E;
+					}
+					else {
+						Demod.state = DEMOD_MANCHESTER_F;
+					}
+					break;
+
+				case DEMOD_MANCHESTER_F:
+					// Tag response does not need to be a complete byte!
+					if(Demod.len > 0 || Demod.bitCount > 0) {
+						if(Demod.bitCount > 0) {
+							Demod.shiftReg >>= (9 - Demod.bitCount);
+							Demod.output[Demod.len] = Demod.shiftReg & 0xff;
+							Demod.len++;
+							// No parity bit, so just shift a 0
+							Demod.parityBits <<= 1;
+						}
+
+						Demod.state = DEMOD_UNSYNCD;
+						return TRUE;
+					}
+					else {
+						Demod.output[Demod.len] = 0xad;
+						Demod.state = DEMOD_ERROR_WAIT;
+						//error = 0x03;
+					}
+					break;
+
+				case DEMOD_ERROR_WAIT:
+					Demod.state = DEMOD_UNSYNCD;
+					break;
+
+				default:
+					Demod.output[Demod.len] = 0xdd;
+					Demod.state = DEMOD_UNSYNCD;
+					break;
+			}
+
+			if(Demod.bitCount>=9) {
+				Demod.output[Demod.len] = Demod.shiftReg & 0xff;
+				Demod.len++;
+
+				Demod.parityBits <<= 1;
+				Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
+
+				Demod.bitCount = 0;
+				Demod.shiftReg = 0;
+			}
+
+			/*if(error) {
+				Demod.output[Demod.len] = 0xBB;
+				Demod.len++;
+				Demod.output[Demod.len] = error & 0xFF;
+				Demod.len++;
+				Demod.output[Demod.len] = 0xBB;
+				Demod.len++;
+				Demod.output[Demod.len] = bit & 0xFF;
+				Demod.len++;
+				Demod.output[Demod.len] = Demod.buffer & 0xFF;
+				Demod.len++;
+				Demod.output[Demod.len] = Demod.syncBit & 0xFF;
+				Demod.len++;
+				Demod.output[Demod.len] = 0xBB;
+				Demod.len++;
+				return TRUE;
+			}*/
+
+		}
+
+	} // end (state != UNSYNCED)
+
+    return FALSE;
+}
+
+//=============================================================================
+// Finally, a `sniffer' for ISO 14443 Type A
+// Both sides of communication!
+//=============================================================================
+
+//-----------------------------------------------------------------------------
+// Record the sequence of commands sent by the reader to the tag, with
+// triggering so that we start recording at the point that the tag is moved
+// near the reader.
+//-----------------------------------------------------------------------------
+void RAMFUNC SnoopIso14443a(uint8_t param) {
+	// param:
+	// bit 0 - trigger from first card answer
+	// bit 1 - trigger from first reader 7-bit request
+	
+	LEDsoff();
+	// init trace buffer
+    iso14a_clear_trace();
+
+	// We won't start recording the frames that we acquire until we trigger;
+	// a good trigger condition to get started is probably when we see a
+	// response from the tag.
+	// triggered == FALSE -- to wait first for card
+	int triggered = !(param & 0x03); 
+
+	// The command (reader -> tag) that we're receiving.
+	// The length of a received command will in most cases be no more than 18 bytes.
+	// So 32 should be enough!
+	uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+	// The response (tag -> reader) that we're receiving.
+	uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
+
+	// As we receive stuff, we copy it from receivedCmd or receivedResponse
+	// into trace, along with its length and other annotations.
+	//uint8_t *trace = (uint8_t *)BigBuf;
+	
+	// The DMA buffer, used to stream samples from the FPGA
+	int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+	int8_t *data = dmaBuf;
+	int maxDataLen = 0;
+	int dataLen = 0;
+
+	// Set up the demodulator for tag -> reader responses.
+	Demod.output = receivedResponse;
+	Demod.len = 0;
+	Demod.state = DEMOD_UNSYNCD;
+
+	// Set up the demodulator for the reader -> tag commands
+	memset(&Uart, 0, sizeof(Uart));
+	Uart.output = receivedCmd;
+	Uart.byteCntMax = 32;                        // was 100 (greg)//////////////////
+	Uart.state = STATE_UNSYNCD;
+
+	// Setup for the DMA.
+	FpgaSetupSsc();
+	FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+
+	// And put the FPGA in the appropriate mode
+	// Signal field is off with the appropriate LED
+	LED_D_OFF();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
+	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+	// Count of samples received so far, so that we can include timing
+	// information in the trace buffer.
+	rsamples = 0;
+	// And now we loop, receiving samples.
+	while(true) {
+		if(BUTTON_PRESS()) {
+			DbpString("cancelled by button");
+			goto done;
+		}
+
+		LED_A_ON();
+		WDT_HIT();
+
+		int register readBufDataP = data - dmaBuf;
+		int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
+		if (readBufDataP <= dmaBufDataP){
+			dataLen = dmaBufDataP - readBufDataP;
+		} else {
+			dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1;
+		}
+		// test for length of buffer
+		if(dataLen > maxDataLen) {
+			maxDataLen = dataLen;
+			if(dataLen > 400) {
+				Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
+				goto done;
+			}
+		}
+		if(dataLen < 1) continue;
+
+		// primary buffer was stopped( <-- we lost data!
+		if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
+			AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
+			AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
+		}
+		// secondary buffer sets as primary, secondary buffer was stopped
+		if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
+			AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
+			AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+		}
+
+		LED_A_OFF();
+		
+		rsamples += 4;
+		if(MillerDecoding((data[0] & 0xF0) >> 4)) {
+			LED_C_ON();
+
+			// check - if there is a short 7bit request from reader
+			if ((!triggered) && (param & 0x02) && (Uart.byteCnt == 1) && (Uart.bitCnt = 9)) triggered = TRUE;
+
+			if(triggered) {
+				if (!LogTrace(receivedCmd, Uart.byteCnt, 0 - Uart.samples, Uart.parityBits, TRUE)) break;
+			}
+			/* And ready to receive another command. */
+			Uart.state = STATE_UNSYNCD;
+			/* And also reset the demod code, which might have been */
+			/* false-triggered by the commands from the reader. */
+			Demod.state = DEMOD_UNSYNCD;
+			LED_B_OFF();
+		}
+
+		if(ManchesterDecoding(data[0] & 0x0F)) {
+			LED_B_ON();
+
+			if (!LogTrace(receivedResponse, Demod.len, 0 - Demod.samples, Demod.parityBits, FALSE)) break;
+
+			if ((!triggered) && (param & 0x01)) triggered = TRUE;
+
+			// And ready to receive another response.
+			memset(&Demod, 0, sizeof(Demod));
+			Demod.output = receivedResponse;
+			Demod.state = DEMOD_UNSYNCD;
+			LED_C_OFF();
+		}
+
+		data++;
+		if(data > dmaBuf + DMA_BUFFER_SIZE) {
+			data = dmaBuf;
+		}
+	} // main cycle
+
+	DbpString("COMMAND FINISHED");
+
+done:
+	AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
+	Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen, Uart.state, Uart.byteCnt);
+	Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%08x", Uart.byteCntMax, traceLen, (int)Uart.output[0]);
+	LEDsoff();
+}
+
+//-----------------------------------------------------------------------------
+// Prepare tag messages
+//-----------------------------------------------------------------------------
+static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity)
+{
+	int i;
+
+	ToSendReset();
+
+	// Correction bit, might be removed when not needed
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+	ToSendStuffBit(1);  // 1
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+	
+	// Send startbit
+	ToSend[++ToSendMax] = SEC_D;
+
+	for(i = 0; i < len; i++) {
+		int j;
+		uint8_t b = cmd[i];
+
+		// Data bits
+		for(j = 0; j < 8; j++) {
+			if(b & 1) {
+				ToSend[++ToSendMax] = SEC_D;
+			} else {
+				ToSend[++ToSendMax] = SEC_E;
+			}
+			b >>= 1;
+		}
+
+		// Get the parity bit
+		if ((dwParity >> i) & 0x01) {
+			ToSend[++ToSendMax] = SEC_D;
+		} else {
+			ToSend[++ToSendMax] = SEC_E;
+		}
+	}
+
+	// Send stopbit
+	ToSend[++ToSendMax] = SEC_F;
+
+	// Convert from last byte pos to length
+	ToSendMax++;
+}
+
+static void CodeIso14443aAsTag(const uint8_t *cmd, int len){
+	CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len));
+}
+
+//-----------------------------------------------------------------------------
+// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
+//-----------------------------------------------------------------------------
+static void CodeStrangeAnswerAsTag()
+{
+	int i;
+
+    ToSendReset();
+
+	// Correction bit, might be removed when not needed
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+	ToSendStuffBit(1);  // 1
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+
+	// Send startbit
+	ToSend[++ToSendMax] = SEC_D;
+
+	// 0
+	ToSend[++ToSendMax] = SEC_E;
+
+	// 0
+	ToSend[++ToSendMax] = SEC_E;
+
+	// 1
+	ToSend[++ToSendMax] = SEC_D;
+
+    // Send stopbit
+	ToSend[++ToSendMax] = SEC_F;
+
+	// Flush the buffer in FPGA!!
+	for(i = 0; i < 5; i++) {
+		ToSend[++ToSendMax] = SEC_F;
+	}
+
+    // Convert from last byte pos to length
+    ToSendMax++;
+}
+
+static void Code4bitAnswerAsTag(uint8_t cmd)
+{
+	int i;
+
+    ToSendReset();
+
+	// Correction bit, might be removed when not needed
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+	ToSendStuffBit(1);  // 1
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+	ToSendStuffBit(0);
+
+	// Send startbit
+	ToSend[++ToSendMax] = SEC_D;
+
+	uint8_t b = cmd;
+	for(i = 0; i < 4; i++) {
+		if(b & 1) {
+			ToSend[++ToSendMax] = SEC_D;
+		} else {
+			ToSend[++ToSendMax] = SEC_E;
+		}
+		b >>= 1;
+	}
+
+	// Send stopbit
+	ToSend[++ToSendMax] = SEC_F;
+
+	// Flush the buffer in FPGA!!
+	for(i = 0; i < 5; i++) {
+		ToSend[++ToSendMax] = SEC_F;
+	}
+
+    // Convert from last byte pos to length
+    ToSendMax++;
+}
+
+//-----------------------------------------------------------------------------
+// Wait for commands from reader
+// Stop when button is pressed
+// Or return TRUE when command is captured
+//-----------------------------------------------------------------------------
+static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen)
+{
+    // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+    // only, since we are receiving, not transmitting).
+    // Signal field is off with the appropriate LED
+    LED_D_OFF();
+    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+    // Now run a `software UART' on the stream of incoming samples.
+    Uart.output = received;
+    Uart.byteCntMax = maxLen;
+    Uart.state = STATE_UNSYNCD;
+
+    for(;;) {
+        WDT_HIT();
+
+        if(BUTTON_PRESS()) return FALSE;
+
+        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+            AT91C_BASE_SSC->SSC_THR = 0x00;
+        }
+        if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+            uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+			if(MillerDecoding((b & 0xf0) >> 4)) {
+				*len = Uart.byteCnt;
+				return TRUE;
+			}
+			if(MillerDecoding(b & 0x0f)) {
+				*len = Uart.byteCnt;
+				return TRUE;
+			}
+        }
+    }
+}
+static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded);
+
+//-----------------------------------------------------------------------------
+// Main loop of simulated tag: receive commands from reader, decide what
+// response to send, and send it.
+//-----------------------------------------------------------------------------
+void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd)
+{
+  // Enable and clear the trace
+	tracing = TRUE;
+  iso14a_clear_trace();
+
+	// This function contains the tag emulation
+	uint8_t sak;
+
+	// The first response contains the ATQA (note: bytes are transmitted in reverse order).
+	uint8_t response1[2];
+	
+	switch (tagType) {
+		case 1: { // MIFARE Classic
+			// Says: I am Mifare 1k - original line
+			response1[0] = 0x04;
+			response1[1] = 0x00;
+			sak = 0x08;
+		} break;
+		case 2: { // MIFARE Ultralight
+			// Says: I am a stupid memory tag, no crypto
+			response1[0] = 0x04;
+			response1[1] = 0x00;
+			sak = 0x00;
+		} break;
+		case 3: { // MIFARE DESFire
+			// Says: I am a DESFire tag, ph33r me
+			response1[0] = 0x04;
+			response1[1] = 0x03;
+			sak = 0x20;
+		} break;
+		case 4: { // ISO/IEC 14443-4
+			// Says: I am a javacard (JCOP)
+			response1[0] = 0x04;
+			response1[1] = 0x00;
+			sak = 0x28;
+		} break;
+		default: {
+			Dbprintf("Error: unkown tagtype (%d)",tagType);
+			return;
+		} break;
+	}
+	
+	// The second response contains the (mandatory) first 24 bits of the UID
+	uint8_t response2[5];
+
+	// Check if the uid uses the (optional) part
+	uint8_t response2a[5];
+	if (uid_2nd) {
+		response2[0] = 0x88;
+		num_to_bytes(uid_1st,3,response2+1);
+		num_to_bytes(uid_2nd,4,response2a);
+		response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
+
+		// Configure the ATQA and SAK accordingly
+		response1[0] |= 0x40;
+		sak |= 0x04;
+	} else {
+		num_to_bytes(uid_1st,4,response2);
+		// Configure the ATQA and SAK accordingly
+		response1[0] &= 0xBF;
+		sak &= 0xFB;
+	}
+
+	// Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
+	response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3];
+
+	// Prepare the mandatory SAK (for 4 and 7 byte UID)
+	uint8_t response3[3];
+	response3[0] = sak;
+	ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
+
+	// Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
+	uint8_t response3a[3];
+	response3a[0] = sak & 0xFB;
+	ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
+
+	uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
+	uint8_t response6[] = { 0x03, 0x3B, 0x00, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS
+	ComputeCrc14443(CRC_14443_A, response6, 3, &response6[3], &response6[4]);
+
+	uint8_t *resp;
+	int respLen;
+
+  // Longest possible response will be 16 bytes + 2 CRC = 18 bytes
+	// This will need
+	//    144        data bits (18 * 8)
+	//     18        parity bits
+	//      2        Start and stop
+	//      1        Correction bit (Answer in 1172 or 1236 periods, see FPGA)
+	//      1        just for the case
+	// ----------- +
+	//    166
+	//
+	// 166 bytes, since every bit that needs to be send costs us a byte
+	//
+
+	// Respond with card type
+	uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);
+	int resp1Len;
+
+	// Anticollision cascade1 - respond with uid
+	uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 166);
+	int resp2Len;
+
+	// Anticollision cascade2 - respond with 2nd half of uid if asked
+	// we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
+	uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140);
+	int resp2aLen;
+
+	// Acknowledge select - cascade 1
+	uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*2));
+	int resp3Len;
+
+	// Acknowledge select - cascade 2
+	uint8_t *resp3a = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*3));
+	int resp3aLen;
+
+	// Response to a read request - not implemented atm
+	uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*4));
+	int resp4Len;
+
+	// Authenticate response - nonce
+	uint8_t *resp5 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*5));
+	int resp5Len;
+
+	// Authenticate response - nonce
+	uint8_t *resp6 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*6));
+	int resp6Len;
+
+	uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+	int len;
+
+	// To control where we are in the protocol
+	int order = 0;
+	int lastorder;
+
+	// Just to allow some checks
+	int happened = 0;
+	int happened2 = 0;
+
+	int cmdsRecvd = 0;
+	uint8_t* respdata = NULL;
+	int respsize = 0;
+	uint8_t nack = 0x04;
+
+	memset(receivedCmd, 0x44, RECV_CMD_SIZE);
+
+	// Prepare the responses of the anticollision phase
+	// there will be not enough time to do this at the moment the reader sends it REQA
+
+	// Answer to request
+	CodeIso14443aAsTag(response1, sizeof(response1));
+	memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
+
+	// Send our UID (cascade 1)
+	CodeIso14443aAsTag(response2, sizeof(response2));
+	memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
+
+	// Answer to select (cascade1)
+	CodeIso14443aAsTag(response3, sizeof(response3));
+	memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
+
+	// Send the cascade 2 2nd part of the uid
+	CodeIso14443aAsTag(response2a, sizeof(response2a));
+	memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
+
+	// Answer to select (cascade 2)
+	CodeIso14443aAsTag(response3a, sizeof(response3a));
+	memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
+
+	// Strange answer is an example of rare message size (3 bits)
+	CodeStrangeAnswerAsTag();
+	memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
+
+	// Authentication answer (random nonce)
+	CodeIso14443aAsTag(response5, sizeof(response5));
+	memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
+
+	// dummy ATS (pseudo-ATR), answer to RATS
+	CodeIso14443aAsTag(response6, sizeof(response6));
+	memcpy(resp6, ToSend, ToSendMax); resp6Len = ToSendMax;
+
+	// We need to listen to the high-frequency, peak-detected path.
+	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+	FpgaSetupSsc();
+
+	cmdsRecvd = 0;
+
+	LED_A_ON();
+	for(;;) {
+	
+		if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) {
+			DbpString("button press");
+			break;
+		}
+		// doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
+		// Okay, look at the command now.
+		lastorder = order;
+		if(receivedCmd[0] == 0x26) { // Received a REQUEST
+			resp = resp1; respLen = resp1Len; order = 1;
+			respdata = response1;
+			respsize = sizeof(response1);
+		} else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
+			resp = resp1; respLen = resp1Len; order = 6;
+			respdata = response1;
+			respsize = sizeof(response1);
+		} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) {	// Received request for UID (cascade 1)
+			resp = resp2; respLen = resp2Len; order = 2;
+			respdata = response2;
+			respsize = sizeof(response2);
+		} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
+			resp = resp2a; respLen = resp2aLen; order = 20;
+			respdata = response2a;
+			respsize = sizeof(response2a);
+		} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) {	// Received a SELECT (cascade 1)
+			resp = resp3; respLen = resp3Len; order = 3;
+			respdata = response3;
+			respsize = sizeof(response3);
+		} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) {	// Received a SELECT (cascade 2)
+			resp = resp3a; respLen = resp3aLen; order = 30;
+			respdata = response3a;
+			respsize = sizeof(response3a);
+		} else if(receivedCmd[0] == 0x30) {	// Received a (plain) READ
+			resp = resp4; respLen = resp4Len; order = 4; // Do nothing
+			Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]);
+			respdata = &nack;
+			respsize = sizeof(nack); // 4-bit answer
+		} else if(receivedCmd[0] == 0x50) {	// Received a HALT
+//			DbpString("Reader requested we HALT!:");
+			// Do not respond
+			resp = resp1; respLen = 0; order = 0;
+			respdata = NULL;
+			respsize = 0;
+		} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) {	// Received an authentication request
+			resp = resp5; respLen = resp5Len; order = 7;
+			respdata = response5;
+			respsize = sizeof(response5);
+		} else if(receivedCmd[0] == 0xE0) {	// Received a RATS request
+			resp = resp6; respLen = resp6Len; order = 70;
+			respdata = response6;
+			respsize = sizeof(response6);
+		} else {
+      if (order == 7 && len ==8) {
+        uint32_t nr = bytes_to_num(receivedCmd,4);
+        uint32_t ar = bytes_to_num(receivedCmd+4,4);
+        Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
+      } else {
+        // Never seen this command before
+        Dbprintf("Received unknown command (len=%d):",len);
+        Dbhexdump(len,receivedCmd,false);
+      }
+      // Do not respond
+      resp = resp1; respLen = 0; order = 0;
+      respdata = NULL;
+      respsize = 0;
+		}
+
+		// Count number of wakeups received after a halt
+		if(order == 6 && lastorder == 5) { happened++; }
+
+		// Count number of other messages after a halt
+		if(order != 6 && lastorder == 5) { happened2++; }
+
+		// Look at last parity bit to determine timing of answer
+		if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
+			// 1236, so correction bit needed
+			//i = 0;
+		}
+
+		if(cmdsRecvd > 999) {
+			DbpString("1000 commands later...");
+			break;
+		} else {
+			cmdsRecvd++;
+		}
+
+		if(respLen > 0) {
+			EmSendCmd14443aRaw(resp, respLen, receivedCmd[0] == 0x52);
+		}
+		
+		if (tracing) {
+			LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE);
+			if (respdata != NULL) {
+				LogTrace(respdata,respsize, 0, SwapBits(GetParity(respdata,respsize),respsize), FALSE);
+			}
+			if(traceLen > TRACE_SIZE) {
+				DbpString("Trace full");
+				break;
+			}
+		}
+
+		memset(receivedCmd, 0x44, RECV_CMD_SIZE);
+  }
+
+	Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
+	LED_A_OFF();
+}
+
+//-----------------------------------------------------------------------------
+// Transmit the command (to the tag) that was placed in ToSend[].
+//-----------------------------------------------------------------------------
+static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
+{
+  int c;
+
+  FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+
+	if (wait)
+    if(*wait < 10)
+      *wait = 10;
+
+  for(c = 0; c < *wait;) {
+    if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+      AT91C_BASE_SSC->SSC_THR = 0x00;		// For exact timing!
+      c++;
+    }
+    if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+      volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+      (void)r;
+    }
+    WDT_HIT();
+  }
+
+  c = 0;
+  for(;;) {
+    if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+      AT91C_BASE_SSC->SSC_THR = cmd[c];
+      c++;
+      if(c >= len) {
+        break;
+      }
+    }
+    if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+      volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
+      (void)r;
+    }
+    WDT_HIT();
+  }
+	if (samples) *samples = (c + *wait) << 3;
+}
+
+//-----------------------------------------------------------------------------
+// Code a 7-bit command without parity bit
+// This is especially for 0x26 and 0x52 (REQA and WUPA)
+//-----------------------------------------------------------------------------
+void ShortFrameFromReader(const uint8_t bt)
+{
+	int j;
+	int last;
+  uint8_t b;
+
+	ToSendReset();
+
+	// Start of Communication (Seq. Z)
+	ToSend[++ToSendMax] = SEC_Z;
+	last = 0;
+
+	b = bt;
+	for(j = 0; j < 7; j++) {
+		if(b & 1) {
+			// Sequence X
+			ToSend[++ToSendMax] = SEC_X;
+			last = 1;
+		} else {
+			if(last == 0) {
+				// Sequence Z
+				ToSend[++ToSendMax] = SEC_Z;
+			}
+			else {
+				// Sequence Y
+				ToSend[++ToSendMax] = SEC_Y;
+				last = 0;
+			}
+		}
+		b >>= 1;
+	}
+
+	// End of Communication
+	if(last == 0) {
+		// Sequence Z
+		ToSend[++ToSendMax] = SEC_Z;
+	}
+	else {
+		// Sequence Y
+		ToSend[++ToSendMax] = SEC_Y;
+		last = 0;
+	}
+	// Sequence Y
+	ToSend[++ToSendMax] = SEC_Y;
+
+	// Just to be sure!
+	ToSend[++ToSendMax] = SEC_Y;
+	ToSend[++ToSendMax] = SEC_Y;
+	ToSend[++ToSendMax] = SEC_Y;
+
+    // Convert from last character reference to length
+    ToSendMax++;
+}
+
+//-----------------------------------------------------------------------------
+// Prepare reader command to send to FPGA
+//
+//-----------------------------------------------------------------------------
+void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity)
+{
+  int i, j;
+  int last;
+  uint8_t b;
+
+  ToSendReset();
+
+  // Start of Communication (Seq. Z)
+  ToSend[++ToSendMax] = SEC_Z;
+  last = 0;
+
+  // Generate send structure for the data bits
+  for (i = 0; i < len; i++) {
+    // Get the current byte to send
+    b = cmd[i];
+
+    for (j = 0; j < 8; j++) {
+      if (b & 1) {
+        // Sequence X
+    	  ToSend[++ToSendMax] = SEC_X;
+        last = 1;
+      } else {
+        if (last == 0) {
+          // Sequence Z
+        	ToSend[++ToSendMax] = SEC_Z;
+        } else {
+          // Sequence Y
+        	ToSend[++ToSendMax] = SEC_Y;
+          last = 0;
+        }
+      }
+      b >>= 1;
+    }
+
+    // Get the parity bit
+    if ((dwParity >> i) & 0x01) {
+      // Sequence X
+    	ToSend[++ToSendMax] = SEC_X;
+      last = 1;
+    } else {
+      if (last == 0) {
+        // Sequence Z
+    	  ToSend[++ToSendMax] = SEC_Z;
+      } else {
+        // Sequence Y
+    	  ToSend[++ToSendMax] = SEC_Y;
+        last = 0;
+      }
+    }
+  }
+
+  // End of Communication
+  if (last == 0) {
+    // Sequence Z
+	  ToSend[++ToSendMax] = SEC_Z;
+  } else {
+    // Sequence Y
+	  ToSend[++ToSendMax] = SEC_Y;
+    last = 0;
+  }
+  // Sequence Y
+  ToSend[++ToSendMax] = SEC_Y;
+
+  // Just to be sure!
+  ToSend[++ToSendMax] = SEC_Y;
+  ToSend[++ToSendMax] = SEC_Y;
+  ToSend[++ToSendMax] = SEC_Y;
+
+  // Convert from last character reference to length
+  ToSendMax++;
+}
+
+//-----------------------------------------------------------------------------
+// Wait for commands from reader
+// Stop when button is pressed (return 1) or field was gone (return 2)
+// Or return 0 when command is captured
+//-----------------------------------------------------------------------------
+static int EmGetCmd(uint8_t *received, int *len, int maxLen)
+{
+	*len = 0;
+
+	uint32_t timer = 0, vtime = 0;
+	int analogCnt = 0;
+	int analogAVG = 0;
+
+	// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
+	// only, since we are receiving, not transmitting).
+	// Signal field is off with the appropriate LED
+	LED_D_OFF();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+
+	// Set ADC to read field strength
+	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
+	AT91C_BASE_ADC->ADC_MR =
+				ADC_MODE_PRESCALE(32) |
+				ADC_MODE_STARTUP_TIME(16) |
+				ADC_MODE_SAMPLE_HOLD_TIME(8);
+	AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
+	// start ADC
+	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+	
+	// Now run a 'software UART' on the stream of incoming samples.
+	Uart.output = received;
+	Uart.byteCntMax = maxLen;
+	Uart.state = STATE_UNSYNCD;
+
+	for(;;) {
+		WDT_HIT();
+
+		if (BUTTON_PRESS()) return 1;
+
+		// test if the field exists
+		if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) {
+			analogCnt++;
+			analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
+			AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
+			if (analogCnt >= 32) {
+				if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+					vtime = GetTickCount();
+					if (!timer) timer = vtime;
+					// 50ms no field --> card to idle state
+					if (vtime - timer > 50) return 2;
+				} else
+					if (timer) timer = 0;
+				analogCnt = 0;
+				analogAVG = 0;
+			}
+		}
+		// transmit none
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+			AT91C_BASE_SSC->SSC_THR = 0x00;
+		}
+		// receive and test the miller decoding
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+			volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+			if(MillerDecoding((b & 0xf0) >> 4)) {
+				*len = Uart.byteCnt;
+				if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
+				return 0;
+			}
+			if(MillerDecoding(b & 0x0f)) {
+				*len = Uart.byteCnt;
+				if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE);
+				return 0;
+			}
+		}
+	}
+}
+
+static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded)
+{
+	int i, u = 0;
+	uint8_t b = 0;
+
+	// Modulate Manchester
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
+	AT91C_BASE_SSC->SSC_THR = 0x00;
+	FpgaSetupSsc();
+	
+	// include correction bit
+	i = 1;
+	if((Uart.parityBits & 0x01) || correctionNeeded) {
+		// 1236, so correction bit needed
+		i = 0;
+	}
+	
+	// send cycle
+	for(;;) {
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+			volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+			(void)b;
+		}
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+			if(i > respLen) {
+				b = 0xff; // was 0x00
+				u++;
+			} else {
+				b = resp[i];
+				i++;
+			}
+			AT91C_BASE_SSC->SSC_THR = b;
+
+			if(u > 4) break;
+		}
+		if(BUTTON_PRESS()) {
+			break;
+		}
+	}
+
+	return 0;
+}
+
+int EmSend4bitEx(uint8_t resp, int correctionNeeded){
+  Code4bitAnswerAsTag(resp);
+	int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+  if (tracing) LogTrace(&resp, 1, GetDeltaCountUS(), GetParity(&resp, 1), FALSE);
+	return res;
+}
+
+int EmSend4bit(uint8_t resp){
+	return EmSend4bitEx(resp, 0);
+}
+
+int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par){
+  CodeIso14443aAsTagPar(resp, respLen, par);
+	int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded);
+  if (tracing) LogTrace(resp, respLen, GetDeltaCountUS(), par, FALSE);
+	return res;
+}
+
+int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){
+	return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen));
+}
+
+int EmSendCmd(uint8_t *resp, int respLen){
+	return EmSendCmdExPar(resp, respLen, 0, GetParity(resp, respLen));
+}
+
+int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){
+	return EmSendCmdExPar(resp, respLen, 0, par);
+}
+
+//-----------------------------------------------------------------------------
+// Wait a certain time for tag response
+//  If a response is captured return TRUE
+//  If it takes to long return FALSE
+//-----------------------------------------------------------------------------
+static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer
+{
+	// buffer needs to be 512 bytes
+	int c;
+
+	// Set FPGA mode to "reader listen mode", no modulation (listen
+	// only, since we are receiving, not transmitting).
+	// Signal field is on with the appropriate LED
+	LED_D_ON();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
+
+	// Now get the answer from the card
+	Demod.output = receivedResponse;
+	Demod.len = 0;
+	Demod.state = DEMOD_UNSYNCD;
+
+	uint8_t b;
+	if (elapsed) *elapsed = 0;
+
+	c = 0;
+	for(;;) {
+		WDT_HIT();
+
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
+			AT91C_BASE_SSC->SSC_THR = 0x00;  // To make use of exact timing of next command from reader!!
+			if (elapsed) (*elapsed)++;
+		}
+		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
+			if(c < iso14a_timeout) { c++; } else { return FALSE; }
+			b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+			if(ManchesterDecoding((b>>4) & 0xf)) {
+				*samples = ((c - 1) << 3) + 4;
+				return TRUE;
+			}
+			if(ManchesterDecoding(b & 0x0f)) {
+				*samples = c << 3;
+				return TRUE;
+			}
+		}
+	}
+}
+
+void ReaderTransmitShort(const uint8_t* bt)
+{
+  int wait = 0;
+  int samples = 0;
+
+  ShortFrameFromReader(*bt);
+
+  // Select the card
+  TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
+
+  // Store reader command in buffer
+  if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE);
+}
+
+void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
+{
+  int wait = 0;
+  int samples = 0;
+
+  // This is tied to other size changes
+  // 	uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
+  CodeIso14443aAsReaderPar(frame,len,par);
+
+  // Select the card
+  TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
+  if(trigger)
+  	LED_A_ON();
+
+  // Store reader command in buffer
+  if (tracing) LogTrace(frame,len,0,par,TRUE);
+}
+
+
+void ReaderTransmit(uint8_t* frame, int len)
+{
+  // Generate parity and redirect
+  ReaderTransmitPar(frame,len,GetParity(frame,len));
+}
+
+int ReaderReceive(uint8_t* receivedAnswer)
+{
+  int samples = 0;
+  if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
+  if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
+  if(samples == 0) return FALSE;
+  return Demod.len;
+}
+
+int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr)
+{
+  int samples = 0;
+  if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE;
+  if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE);
+	*parptr = Demod.parityBits;
+  if(samples == 0) return FALSE;
+  return Demod.len;
+}
+
+/* performs iso14443a anticolision procedure
+ * fills the uid pointer unless NULL
+ * fills resp_data unless NULL */
+int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) {
+	uint8_t wupa[]       = { 0x52 };  // 0x26 - REQA  0x52 - WAKE-UP
+	uint8_t sel_all[]    = { 0x93,0x20 };
+	uint8_t sel_uid[]    = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+	uint8_t rats[]       = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0
+	uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);	// was 3560 - tied to other size changes
+  byte_t uid_resp[4];
+  size_t uid_resp_len;
+
+	uint8_t sak = 0x04; // cascade uid
+	int cascade_level = 0;
+	int len;
+	 
+	// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
+	ReaderTransmitShort(wupa);
+	// Receive the ATQA
+	if(!ReaderReceive(resp)) return 0;
+//  Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
+  
+	if(p_hi14a_card) {
+		memcpy(p_hi14a_card->atqa, resp, 2);
+    p_hi14a_card->uidlen = 0;
+    memset(p_hi14a_card->uid,0,10);
+  }
+	
+  // clear uid
+  if (uid_ptr) {
+    memset(uid_ptr,0,10);
+  }
+
+	// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
+	// which case we need to make a cascade 2 request and select - this is a long UID
+	// While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
+	for(; sak & 0x04; cascade_level++)
+	{
+		// SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97)
+		sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
+
+		// SELECT_ALL
+		ReaderTransmit(sel_all,sizeof(sel_all));
+		if (!ReaderReceive(resp)) return 0;
+    
+    // First backup the current uid 
+    memcpy(uid_resp,resp,4);
+    uid_resp_len = 4;
+    //    Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
+    
+		// calculate crypto UID
+		if(cuid_ptr) {
+      *cuid_ptr = bytes_to_num(uid_resp, 4);
+    }
+
+		// Construct SELECT UID command
+		memcpy(sel_uid+2,resp,5);
+		AppendCrc14443a(sel_uid,7);
+		ReaderTransmit(sel_uid,sizeof(sel_uid));
+
+		// Receive the SAK
+		if (!ReaderReceive(resp)) return 0;
+		sak = resp[0];
+
+    // Test if more parts of the uid are comming
+    if ((sak & 0x04) && uid_resp[0] == 0x88) {
+      // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of:
+      // http://www.nxp.com/documents/application_note/AN10927.pdf
+      memcpy(uid_ptr, uid_ptr + 1, 3);
+      uid_resp_len = 3;
+    }
+    
+    if(uid_ptr) {
+      memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len);
+    }
+    
+    if(p_hi14a_card) {
+      memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len);
+      p_hi14a_card->uidlen += uid_resp_len;
+    }
+	}
+
+	if(p_hi14a_card) {
+		p_hi14a_card->sak = sak;
+		p_hi14a_card->ats_len = 0;
+	}
+
+	if( (sak & 0x20) == 0) {
+		return 2; // non iso14443a compliant tag
+  }
+
+	// Request for answer to select
+	if(p_hi14a_card) {  // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!!
+		AppendCrc14443a(rats, 2);
+		ReaderTransmit(rats, sizeof(rats));
+		
+		if (!(len = ReaderReceive(resp))) return 0;
+		
+		memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats));
+		p_hi14a_card->ats_len = len;
+	}
+	
+	// reset the PCB block number
+	iso14_pcb_blocknum = 0;
+	return 1;
+}
+
+void iso14443a_setup() {
+  // Set up the synchronous serial port
+  FpgaSetupSsc();
+	// Start from off (no field generated)
+	// Signal field is off with the appropriate LED
+	LED_D_OFF();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	SpinDelay(50);
+
+	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+
+	// Now give it time to spin up.
+	// Signal field is on with the appropriate LED
+	LED_D_ON();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+	SpinDelay(50);
+
+	iso14a_timeout = 2048; //default
+}
+
+int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
+	uint8_t real_cmd[cmd_len+4];
+	real_cmd[0] = 0x0a; //I-Block
+	// put block number into the PCB
+	real_cmd[0] |= iso14_pcb_blocknum;
+	real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards
+	memcpy(real_cmd+2, cmd, cmd_len);
+	AppendCrc14443a(real_cmd,cmd_len+2);
+ 
+	ReaderTransmit(real_cmd, cmd_len+4);
+	size_t len = ReaderReceive(data);
+	uint8_t * data_bytes = (uint8_t *) data;
+	if (!len)
+		return 0; //DATA LINK ERROR
+	// if we received an I- or R(ACK)-Block with a block number equal to the
+	// current block number, toggle the current block number
+	else if (len >= 4 // PCB+CID+CRC = 4 bytes
+	         && ((data_bytes[0] & 0xC0) == 0 // I-Block
+	             || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0
+	         && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers
+	{
+		iso14_pcb_blocknum ^= 1;
+	}
+
+	return len;
+}
+
+//-----------------------------------------------------------------------------
+// Read an ISO 14443a tag. Send out commands and store answers.
+//
+//-----------------------------------------------------------------------------
+void ReaderIso14443a(UsbCommand * c)
+{
+	iso14a_command_t param = c->arg[0];
+	uint8_t * cmd = c->d.asBytes;
+	size_t len = c->arg[1];
+  uint32_t arg0 = 0;
+  byte_t buf[USB_CMD_DATA_SIZE];
+  
+  iso14a_clear_trace();
+  iso14a_set_tracing(true);
+
+	if(param & ISO14A_REQUEST_TRIGGER) {
+    iso14a_set_trigger(1);
+  }
+
+	if(param & ISO14A_CONNECT) {
+		iso14443a_setup();
+		arg0 = iso14443a_select_card(NULL,(iso14a_card_select_t*)buf,NULL);
+		cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(iso14a_card_select_t));
+//    UsbSendPacket((void *)ack, sizeof(UsbCommand));
+	}
+
+	if(param & ISO14A_SET_TIMEOUT) {
+		iso14a_timeout = c->arg[2];
+	}
+
+	if(param & ISO14A_SET_TIMEOUT) {
+		iso14a_timeout = c->arg[2];
+	}
+
+	if(param & ISO14A_APDU) {
+		arg0 = iso14_apdu(cmd, len, buf);
+		cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+//		UsbSendPacket((void *)ack, sizeof(UsbCommand));
+	}
+
+	if(param & ISO14A_RAW) {
+		if(param & ISO14A_APPEND_CRC) {
+			AppendCrc14443a(cmd,len);
+			len += 2;
+		}
+		ReaderTransmit(cmd,len);
+		arg0 = ReaderReceive(buf);
+//		UsbSendPacket((void *)ack, sizeof(UsbCommand));
+    cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
+	}
+
+	if(param & ISO14A_REQUEST_TRIGGER) {
+    iso14a_set_trigger(0);
+  }
+
+	if(param & ISO14A_NO_DISCONNECT) {
+		return;
+  }
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	LEDsoff();
+}
+
+//-----------------------------------------------------------------------------
+// Read an ISO 14443a tag. Send out commands and store answers.
+//
+//-----------------------------------------------------------------------------
+void ReaderMifare(uint32_t parameter)
+{
+	// Mifare AUTH
+	uint8_t mf_auth[]    = { 0x60,0x00,0xf5,0x7b };
+	uint8_t mf_nr_ar[]   = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
+
+	uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET);	// was 3560 - tied to other size changes
+	traceLen = 0;
+	tracing = false;
+
+	iso14443a_setup();
+
+	LED_A_ON();
+	LED_B_OFF();
+	LED_C_OFF();
+
+	byte_t nt_diff = 0;
+	LED_A_OFF();
+	byte_t par = 0;
+	//byte_t par_mask = 0xff;
+	byte_t par_low = 0;
+	int led_on = TRUE;
+	uint8_t uid[8];
+	uint32_t cuid;
+
+	tracing = FALSE;
+	byte_t nt[4] = {0,0,0,0};
+	byte_t nt_attacked[4], nt_noattack[4];
+	byte_t par_list[8] = {0,0,0,0,0,0,0,0};
+	byte_t ks_list[8] = {0,0,0,0,0,0,0,0};
+	num_to_bytes(parameter, 4, nt_noattack);
+	int isOK = 0, isNULL = 0;
+
+	while(TRUE)
+	{
+		LED_C_OFF();
+		FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+		SpinDelay(50);
+		FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
+		LED_C_ON();
+		SpinDelay(2);
+
+		// Test if the action was cancelled
+		if(BUTTON_PRESS()) {
+			break;
+		}
+
+		if(!iso14443a_select_card(uid, NULL, &cuid)) continue;
+
+		// Transmit MIFARE_CLASSIC_AUTH
+		ReaderTransmit(mf_auth, sizeof(mf_auth));
+
+		// Receive the (16 bit) "random" nonce
+		if (!ReaderReceive(receivedAnswer)) continue;
+		memcpy(nt, receivedAnswer, 4);
+
+		// Transmit reader nonce and reader answer
+		ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar),par);
+
+		// Receive 4 bit answer
+		if (ReaderReceive(receivedAnswer))
+		{
+			if ( (parameter != 0) && (memcmp(nt, nt_noattack, 4) == 0) ) continue;
+
+			isNULL = !(nt_attacked[0] == 0) && (nt_attacked[1] == 0) && (nt_attacked[2] == 0) && (nt_attacked[3] == 0);
+			if ( (isNULL != 0 ) && (memcmp(nt, nt_attacked, 4) != 0) ) continue;
+
+			if (nt_diff == 0)
+			{
+				LED_A_ON();
+				memcpy(nt_attacked, nt, 4);
+				//par_mask = 0xf8;
+				par_low = par & 0x07;
+			}
+
+			led_on = !led_on;
+			if(led_on) LED_B_ON(); else LED_B_OFF();
+			par_list[nt_diff] = par;
+			ks_list[nt_diff] = receivedAnswer[0] ^ 0x05;
+
+			// Test if the information is complete
+			if (nt_diff == 0x07) {
+				isOK = 1;
+				break;
+			}
+
+			nt_diff = (nt_diff + 1) & 0x07;
+			mf_nr_ar[3] = nt_diff << 5;
+			par = par_low;
+		} else {
+			if (nt_diff == 0)
+			{
+				par++;
+			} else {
+				par = (((par >> 3) + 1) << 3) | par_low;
+			}
+		}
+	}
+
+	LogTrace(nt, 4, 0, GetParity(nt, 4), TRUE);
+	LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE);
+	LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE);
+
+  byte_t buf[48];
+//	UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
+	memcpy(buf + 0,  uid, 4);
+	memcpy(buf + 4,  nt, 4);
+	memcpy(buf + 8,  par_list, 8);
+	memcpy(buf + 16, ks_list, 8);
+		
+	LED_B_ON();
+  cmd_send(CMD_ACK,isOK,0,0,buf,48);
+//	UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
+	LED_B_OFF();	
+
+	// Thats it...
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	LEDsoff();
+	tracing = TRUE;
+	
+	if (MF_DBGLEVEL >= 1)	DbpString("COMMAND mifare FINISHED");
+}
+
+
+//-----------------------------------------------------------------------------
+// MIFARE 1K simulate. 
+// 
+//-----------------------------------------------------------------------------
+void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
+{
+	int cardSTATE = MFEMUL_NOFIELD;
+	int _7BUID = 0;
+	int vHf = 0;	// in mV
+	//int nextCycleTimeout = 0;
+	int res;
+//	uint32_t timer = 0;
+	uint32_t selTimer = 0;
+	uint32_t authTimer = 0;
+	uint32_t par = 0;
+	int len = 0;
+	uint8_t cardWRBL = 0;
+	uint8_t cardAUTHSC = 0;
+	uint8_t cardAUTHKEY = 0xff;  // no authentication
+	//uint32_t cardRn = 0;
+	uint32_t cardRr = 0;
+	uint32_t cuid = 0;
+	//uint32_t rn_enc = 0;
+	uint32_t ans = 0;
+	uint32_t cardINTREG = 0;
+	uint8_t cardINTBLOCK = 0;
+	struct Crypto1State mpcs = {0, 0};
+	struct Crypto1State *pcs;
+	pcs = &mpcs;
+	
+	uint8_t* receivedCmd = eml_get_bigbufptr_recbuf();
+	uint8_t *response = eml_get_bigbufptr_sendbuf();
+	
+	static uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID
+
+	static uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; 
+	static uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!!
+		
+	static uint8_t rSAK[] = {0x08, 0xb6, 0xdd};
+	static uint8_t rSAK1[] = {0x04, 0xda, 0x17};
+
+	static uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04};
+//	static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f};
+	static uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
+
+	// clear trace
+	traceLen = 0;
+	tracing = true;
+
+  // Authenticate response - nonce
+	uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
+	
+	// get UID from emul memory
+	emlGetMemBt(receivedCmd, 7, 1);
+	_7BUID = !(receivedCmd[0] == 0x00);
+	if (!_7BUID) {                     // ---------- 4BUID
+		rATQA[0] = 0x04;
+
+		emlGetMemBt(rUIDBCC1, 0, 4);
+		rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+	} else {                           // ---------- 7BUID
+		rATQA[0] = 0x44;
+
+		rUIDBCC1[0] = 0x88;
+		emlGetMemBt(&rUIDBCC1[1], 0, 3);
+		rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
+		emlGetMemBt(rUIDBCC2, 3, 4);
+		rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
+	}
+
+// --------------------------------------	test area
+
+// --------------------------------------	END test area
+	// start mkseconds counter
+	StartCountUS();
+
+	// We need to listen to the high-frequency, peak-detected path.
+	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+	FpgaSetupSsc();
+
+  FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
+	SpinDelay(200);
+
+	if (MF_DBGLEVEL >= 1)	Dbprintf("Started. 7buid=%d", _7BUID);
+	// calibrate mkseconds counter
+	GetDeltaCountUS();
+	while (true) {
+		WDT_HIT();
+
+		if(BUTTON_PRESS()) {
+			break;
+		}
+
+		// find reader field
+		// Vref = 3300mV, and an 10:1 voltage divider on the input
+		// can measure voltages up to 33000 mV
+		if (cardSTATE == MFEMUL_NOFIELD) {
+			vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+			if (vHf > MF_MINFIELDV) {
+				cardSTATE_TO_IDLE();
+				LED_A_ON();
+			}
+		} 
+
+		if (cardSTATE != MFEMUL_NOFIELD) {
+			res = EmGetCmd(receivedCmd, &len, RECV_CMD_SIZE); // (+ nextCycleTimeout)
+			if (res == 2) {
+				cardSTATE = MFEMUL_NOFIELD;
+				LEDsoff();
+				continue;
+			}
+			if(res) break;
+		}
+		
+		//nextCycleTimeout = 0;
+		
+//		if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]);
+
+		if (len != 4 && cardSTATE != MFEMUL_NOFIELD) { // len != 4 <---- speed up the code 4 authentication
+			// REQ or WUP request in ANY state and WUP in HALTED state
+			if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) {
+				selTimer = GetTickCount();
+				EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52));
+				cardSTATE = MFEMUL_SELECT1;
+
+				// init crypto block
+				LED_B_OFF();
+				LED_C_OFF();
+				crypto1_destroy(pcs);
+				cardAUTHKEY = 0xff;
+			}
+		}
+		
+		switch (cardSTATE) {
+			case MFEMUL_NOFIELD:{
+				break;
+			}
+			case MFEMUL_HALTED:{
+				break;
+			}
+			case MFEMUL_IDLE:{
+				break;
+			}
+			case MFEMUL_SELECT1:{
+				// select all
+				if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) {
+					EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1));
+					break;
+				}
+
+				// select card
+				if (len == 9 && 
+						(receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) {
+					if (!_7BUID) 
+						EmSendCmd(rSAK, sizeof(rSAK));
+					else
+						EmSendCmd(rSAK1, sizeof(rSAK1));
+
+					cuid = bytes_to_num(rUIDBCC1, 4);
+					if (!_7BUID) {
+						cardSTATE = MFEMUL_WORK;
+						LED_B_ON();
+						if (MF_DBGLEVEL >= 4)	Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer);
+						break;
+					} else {
+						cardSTATE = MFEMUL_SELECT2;
+						break;
+					}
+				}
+				
+				break;
+			}
+			case MFEMUL_SELECT2:{
+				if (!len) break;
+			
+				if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) {
+					EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2));
+					break;
+				}
+
+				// select 2 card
+				if (len == 9 && 
+						(receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) {
+					EmSendCmd(rSAK, sizeof(rSAK));
+
+					cuid = bytes_to_num(rUIDBCC2, 4);
+					cardSTATE = MFEMUL_WORK;
+					LED_B_ON();
+					if (MF_DBGLEVEL >= 4)	Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer);
+					break;
+				}
+				
+				// i guess there is a command). go into the work state.
+				if (len != 4) break;
+				cardSTATE = MFEMUL_WORK;
+				goto lbWORK;
+			}
+			case MFEMUL_AUTH1:{
+				if (len == 8) {
+					// --- crypto
+					//rn_enc = bytes_to_num(receivedCmd, 4);
+					//cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1);
+					cardRr = bytes_to_num(&receivedCmd[4], 4) ^ crypto1_word(pcs, 0, 0);
+					// test if auth OK
+					if (cardRr != prng_successor(nonce, 64)){
+						if (MF_DBGLEVEL >= 4)	Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr, prng_successor(nonce, 64));
+						cardSTATE_TO_IDLE();
+						break;
+					}
+					ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0);
+					num_to_bytes(ans, 4, rAUTH_AT);
+					// --- crypto
+					EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+					cardSTATE = MFEMUL_AUTH2;
+				} else {
+					cardSTATE_TO_IDLE();
+				}
+				if (cardSTATE != MFEMUL_AUTH2) break;
+			}
+			case MFEMUL_AUTH2:{
+				LED_C_ON();
+				cardSTATE = MFEMUL_WORK;
+				if (MF_DBGLEVEL >= 4)	Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer);
+				break;
+			}
+			case MFEMUL_WORK:{
+lbWORK:	if (len == 0) break;
+				
+				if (cardAUTHKEY == 0xff) {
+					// first authentication
+					if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
+						authTimer = GetTickCount();
+
+						cardAUTHSC = receivedCmd[1] / 4;  // received block num
+						cardAUTHKEY = receivedCmd[0] - 0x60;
+
+						// --- crypto
+						crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
+						ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
+						num_to_bytes(nonce, 4, rAUTH_AT);
+						EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+						// --- crypto
+						
+//   last working revision 
+//						EmSendCmd14443aRaw(resp1, resp1Len, 0);
+//						LogTrace(NULL, 0, GetDeltaCountUS(), 0, true);
+
+						cardSTATE = MFEMUL_AUTH1;
+						//nextCycleTimeout = 10;
+						break;
+					}
+				} else {
+					// decrypt seqence
+					mf_crypto1_decrypt(pcs, receivedCmd, len);
+					
+					// nested authentication
+					if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) {
+						authTimer = GetTickCount();
+
+						cardAUTHSC = receivedCmd[1] / 4;  // received block num
+						cardAUTHKEY = receivedCmd[0] - 0x60;
+
+						// --- crypto
+						crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY));
+						ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
+						num_to_bytes(ans, 4, rAUTH_AT);
+						EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
+						// --- crypto
+
+						cardSTATE = MFEMUL_AUTH1;
+						//nextCycleTimeout = 10;
+						break;
+					}
+				}
+				
+				// rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
+				// BUT... ACK --> NACK
+				if (len == 1 && receivedCmd[0] == CARD_ACK) {
+					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+					break;
+				}
+				
+				// rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
+				if (len == 1 && receivedCmd[0] == CARD_NACK_NA) {
+					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+					break;
+				}
+				
+				// read block
+				if (len == 4 && receivedCmd[0] == 0x30) {
+					if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
+						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+						break;
+					}
+					emlGetMem(response, receivedCmd[1], 1);
+					AppendCrc14443a(response, 16);
+					mf_crypto1_encrypt(pcs, response, 18, &par);
+					EmSendCmdPar(response, 18, par);
+					break;
+				}
+				
+				// write block
+				if (len == 4 && receivedCmd[0] == 0xA0) {
+					if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
+						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+						break;
+					}
+					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+					//nextCycleTimeout = 50;
+					cardSTATE = MFEMUL_WRITEBL2;
+					cardWRBL = receivedCmd[1];
+					break;
+				}
+			
+				// works with cardINTREG
+				
+				// increment, decrement, restore
+				if (len == 4 && (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2)) {
+					if (receivedCmd[1] >= 16 * 4 || 
+							receivedCmd[1] / 4 != cardAUTHSC || 
+							emlCheckValBl(receivedCmd[1])) {
+						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+						break;
+					}
+					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+					if (receivedCmd[0] == 0xC1)
+						cardSTATE = MFEMUL_INTREG_INC;
+					if (receivedCmd[0] == 0xC0)
+						cardSTATE = MFEMUL_INTREG_DEC;
+					if (receivedCmd[0] == 0xC2)
+						cardSTATE = MFEMUL_INTREG_REST;
+					cardWRBL = receivedCmd[1];
+					
+					break;
+				}
+				
+
+				// transfer
+				if (len == 4 && receivedCmd[0] == 0xB0) {
+					if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) {
+						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+						break;
+					}
+					
+					if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1]))
+						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+					else
+						EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+						
+					break;
+				}
+
+				// halt
+				if (len == 4 && (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00)) {
+					LED_B_OFF();
+					LED_C_OFF();
+					cardSTATE = MFEMUL_HALTED;
+					if (MF_DBGLEVEL >= 4)	Dbprintf("--> HALTED. Selected time: %d ms",  GetTickCount() - selTimer);
+					break;
+				}
+				
+				// command not allowed
+				if (len == 4) {
+					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+					break;
+				}
+
+				// case break
+				break;
+			}
+			case MFEMUL_WRITEBL2:{
+				if (len == 18){
+					mf_crypto1_decrypt(pcs, receivedCmd, len);
+					emlSetMem(receivedCmd, cardWRBL, 1);
+					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK));
+					cardSTATE = MFEMUL_WORK;
+					break;
+				} else {
+					cardSTATE_TO_IDLE();
+					break;
+				}
+				break;
+			}
+			
+			case MFEMUL_INTREG_INC:{
+				mf_crypto1_decrypt(pcs, receivedCmd, len);
+				memcpy(&ans, receivedCmd, 4);
+				if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+					cardSTATE_TO_IDLE();
+					break;
+				}
+				cardINTREG = cardINTREG + ans;
+				cardSTATE = MFEMUL_WORK;
+				break;
+			}
+			case MFEMUL_INTREG_DEC:{
+				mf_crypto1_decrypt(pcs, receivedCmd, len);
+				memcpy(&ans, receivedCmd, 4);
+				if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+					cardSTATE_TO_IDLE();
+					break;
+				}
+				cardINTREG = cardINTREG - ans;
+				cardSTATE = MFEMUL_WORK;
+				break;
+			}
+			case MFEMUL_INTREG_REST:{
+				mf_crypto1_decrypt(pcs, receivedCmd, len);
+				memcpy(&ans, receivedCmd, 4);
+				if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) {
+					EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA));
+					cardSTATE_TO_IDLE();
+					break;
+				}
+				cardSTATE = MFEMUL_WORK;
+				break;
+			}
+		}
+	}
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	LEDsoff();
+
+	// add trace trailer
+	memset(rAUTH_NT, 0x44, 4);
+	LogTrace(rAUTH_NT, 4, 0, 0, TRUE);
+
+	if (MF_DBGLEVEL >= 1)	Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",	tracing, traceLen);
+}
+
+//-----------------------------------------------------------------------------
+// MIFARE sniffer. 
+// 
+//-----------------------------------------------------------------------------
+void RAMFUNC SniffMifare(uint8_t param) {
+	// param:
+	// bit 0 - trigger from first card answer
+	// bit 1 - trigger from first reader 7-bit request
+
+	// C(red) A(yellow) B(green)
+	LEDsoff();
+	// init trace buffer
+    iso14a_clear_trace();
+
+	// The command (reader -> tag) that we're receiving.
+	// The length of a received command will in most cases be no more than 18 bytes.
+	// So 32 should be enough!
+	uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET);
+	// The response (tag -> reader) that we're receiving.
+	uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET);
+
+	// As we receive stuff, we copy it from receivedCmd or receivedResponse
+	// into trace, along with its length and other annotations.
+	//uint8_t *trace = (uint8_t *)BigBuf;
+	
+	// The DMA buffer, used to stream samples from the FPGA
+	int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET;
+	int8_t *data = dmaBuf;
+	int maxDataLen = 0;
+	int dataLen = 0;
+
+	// Set up the demodulator for tag -> reader responses.
+	Demod.output = receivedResponse;
+	Demod.len = 0;
+	Demod.state = DEMOD_UNSYNCD;
+
+	// Set up the demodulator for the reader -> tag commands
+	memset(&Uart, 0, sizeof(Uart));
+	Uart.output = receivedCmd;
+	Uart.byteCntMax = 32; // was 100 (greg)//////////////////
+	Uart.state = STATE_UNSYNCD;
+
+	// Setup for the DMA.
+	FpgaSetupSsc();
+	FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
+
+	// And put the FPGA in the appropriate mode
+	// Signal field is off with the appropriate LED
+	LED_D_OFF();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
+	SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
+	
+	// init sniffer
+	MfSniffInit();
+	int sniffCounter = 0;
+
+	// And now we loop, receiving samples.
+	while(true) {
+		if(BUTTON_PRESS()) {
+			DbpString("cancelled by button");
+			goto done;
+		}
+
+		LED_A_ON();
+		WDT_HIT();
+		
+		if (++sniffCounter > 65) {
+			if (MfSniffSend(2000)) {
+				FpgaEnableSscDma();
+			}
+			sniffCounter = 0;
+		}
+
+		int register readBufDataP = data - dmaBuf;
+		int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR;
+		if (readBufDataP <= dmaBufDataP){
+			dataLen = dmaBufDataP - readBufDataP;
+		} else {
+			dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1;
+		}
+		// test for length of buffer
+		if(dataLen > maxDataLen) {
+			maxDataLen = dataLen;
+			if(dataLen > 400) {
+				Dbprintf("blew circular buffer! dataLen=0x%x", dataLen);
+				goto done;
+			}
+		}
+		if(dataLen < 1) continue;
+
+		// primary buffer was stopped( <-- we lost data!
+		if (!AT91C_BASE_PDC_SSC->PDC_RCR) {
+			AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf;
+			AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE;
+			Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary
+		}
+		// secondary buffer sets as primary, secondary buffer was stopped
+		if (!AT91C_BASE_PDC_SSC->PDC_RNCR) {
+			AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
+			AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
+		}
+
+		LED_A_OFF();
+		
+		if(MillerDecoding((data[0] & 0xF0) >> 4)) {
+			LED_C_INV();
+			// check - if there is a short 7bit request from reader
+			if (MfSniffLogic(receivedCmd, Uart.byteCnt, Uart.parityBits, Uart.bitCnt, TRUE)) break;
+
+			/* And ready to receive another command. */
+			Uart.state = STATE_UNSYNCD;
+			
+			/* And also reset the demod code */
+			Demod.state = DEMOD_UNSYNCD;
+		}
+
+		if(ManchesterDecoding(data[0] & 0x0F)) {
+			LED_C_INV();
+
+			if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break;
+
+			// And ready to receive another response.
+			memset(&Demod, 0, sizeof(Demod));
+			Demod.output = receivedResponse;
+			Demod.state = DEMOD_UNSYNCD;
+
+			/* And also reset the uart code */
+			Uart.state = STATE_UNSYNCD;
+		}
+
+		data++;
+		if(data > dmaBuf + DMA_BUFFER_SIZE) {
+			data = dmaBuf;
+		}
+	} // main cycle
+
+	DbpString("COMMAND FINISHED");
+
+done:
+	FpgaDisableSscDma();
+	MfSniffEnd();
+	
+	Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x Uart.byteCntMax=%x", maxDataLen, Uart.state, Uart.byteCnt, Uart.byteCntMax);
+	LEDsoff();
+}
\ No newline at end of file