X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/3ad48540d4d77f50cc62d16acb78f17019ef431d..8a258b5880f37ecabd81de9920b6a41e47699a50:/armsrc/iso14443a.c?ds=sidebyside diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index d5dd05ca..cf64da2f 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -20,12 +20,9 @@ #include "iso14443a.h" #include "crapto1.h" #include "mifareutil.h" - +#include "BigBuf.h" static uint32_t iso14a_timeout; -uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET; int rsamples = 0; -int traceLen = 0; -int tracing = TRUE; uint8_t trigger = 0; // the block number for the ISO14443-4 PCB static uint8_t iso14_pcb_blocknum = 0; @@ -104,9 +101,9 @@ uint16_t FpgaSendQueueDelay; //variables used for timing purposes: //these are in ssp_clk cycles: -uint32_t NextTransferTime; -uint32_t LastTimeProxToAirStart; -uint32_t LastProxToAirDuration; +static uint32_t NextTransferTime; +static uint32_t LastTimeProxToAirStart; +static uint32_t LastProxToAirDuration; @@ -149,19 +146,35 @@ void iso14a_set_trigger(bool enable) { trigger = enable; } -void iso14a_clear_trace() { - memset(trace, 0x44, TRACE_SIZE); - traceLen = 0; -} - -void iso14a_set_tracing(bool enable) { - tracing = enable; -} void iso14a_set_timeout(uint32_t timeout) { iso14a_timeout = timeout; + if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106); +} + + +void iso14a_set_ATS_timeout(uint8_t *ats) { + + uint8_t tb1; + uint8_t fwi; + uint32_t fwt; + + if (ats[0] > 1) { // there is a format byte T0 + if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1) + if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1) + tb1 = ats[3]; + } else { + tb1 = ats[2]; + } + fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI) + fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc + + iso14a_set_timeout(fwt/(8*16)); + } + } } + //----------------------------------------------------------------------------- // Generate the parity value for a byte sequence // @@ -171,17 +184,28 @@ byte_t oddparity (const byte_t bt) return OddByteParity[bt]; } -uint32_t GetParity(const uint8_t * pbtCmd, int iLen) +void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) { - int i; - uint32_t dwPar = 0; - - // Generate the parity bits - for (i = 0; i < iLen; i++) { - // and save them to a 32Bit word - dwPar |= ((OddByteParity[pbtCmd[i]]) << i); + uint16_t paritybit_cnt = 0; + uint16_t paritybyte_cnt = 0; + uint8_t parityBits = 0; + + for (uint16_t i = 0; i < iLen; i++) { + // Generate the parity bits + parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt)); + if (paritybit_cnt == 7) { + par[paritybyte_cnt] = parityBits; // save 8 Bits parity + parityBits = 0; // and advance to next Parity Byte + paritybyte_cnt++; + paritybit_cnt = 0; + } else { + paritybit_cnt++; + } } - return dwPar; + + // save remaining parity bits + par[paritybyte_cnt] = parityBits; + } void AppendCrc14443a(uint8_t* data, int len) @@ -189,37 +213,6 @@ void AppendCrc14443a(uint8_t* data, int len) ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); } -// The function LogTrace() is also used by the iClass implementation in iClass.c -bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp, uint32_t dwParity, bool readerToTag) -{ - if (!tracing) return FALSE; - // Return when trace is full - if (traceLen + sizeof(timestamp) + sizeof(dwParity) + iLen >= TRACE_SIZE) { - tracing = FALSE; // don't trace any more - return FALSE; - } - - // Trace the random, i'm curious - trace[traceLen++] = ((timestamp >> 0) & 0xff); - trace[traceLen++] = ((timestamp >> 8) & 0xff); - trace[traceLen++] = ((timestamp >> 16) & 0xff); - trace[traceLen++] = ((timestamp >> 24) & 0xff); - - if (!readerToTag) { - trace[traceLen - 1] |= 0x80; - } - trace[traceLen++] = ((dwParity >> 0) & 0xff); - trace[traceLen++] = ((dwParity >> 8) & 0xff); - trace[traceLen++] = ((dwParity >> 16) & 0xff); - trace[traceLen++] = ((dwParity >> 24) & 0xff); - trace[traceLen++] = iLen; - if (btBytes != NULL && iLen != 0) { - memcpy(trace + traceLen, btBytes, iLen); - } - traceLen += iLen; - return TRUE; -} - //============================================================================= // ISO 14443 Type A - Miller decoder //============================================================================= @@ -252,14 +245,21 @@ void UartReset() Uart.state = STATE_UNSYNCD; Uart.bitCount = 0; Uart.len = 0; // number of decoded data bytes + Uart.parityLen = 0; // number of decoded parity bytes Uart.shiftReg = 0; // shiftreg to hold decoded data bits - Uart.parityBits = 0; // + Uart.parityBits = 0; // holds 8 parity bits Uart.twoBits = 0x0000; // buffer for 2 Bits Uart.highCnt = 0; Uart.startTime = 0; Uart.endTime = 0; } +void UartInit(uint8_t *data, uint8_t *parity) +{ + Uart.output = data; + Uart.parity = parity; + UartReset(); +} // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) @@ -267,25 +267,27 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) Uart.twoBits = (Uart.twoBits << 8) | bit; - if (Uart.state == STATE_UNSYNCD) { // not yet synced - if (Uart.highCnt < 7) { // wait for a stable unmodulated signal + if (Uart.state == STATE_UNSYNCD) { // not yet synced + + if (Uart.highCnt < 2) { // wait for a stable unmodulated signal if (Uart.twoBits == 0xffff) { Uart.highCnt++; } else { Uart.highCnt = 0; } } else { - Uart.syncBit = 0xFFFF; // not set - // look for 00xx1111 (the start bit) - if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; - else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6; - else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5; - else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4; - else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3; - else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2; - else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1; - else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0; - if (Uart.syncBit != 0xFFFF) { + Uart.syncBit = 0xFFFF; // not set + // we look for a ...1111111100x11111xxxxxx pattern (the start bit) + if ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8; // mask is 11x11111 xxxxxxxx, + // check for 00x11111 xxxxxxxx + else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7; // both masks shifted right one bit, left padded with '1' + else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6; // ... + else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5; + else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4; + else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3; + else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2; + else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1; + if (Uart.syncBit != 0xFFFF) { // found a sync bit Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); Uart.startTime -= Uart.syncBit; Uart.endTime = Uart.startTime; @@ -298,11 +300,9 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) { if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error UartReset(); - Uart.highCnt = 6; } else { // Modulation in first half = Sequence Z = logic "0" if (Uart.state == STATE_MILLER_X) { // error - must not follow after X UartReset(); - Uart.highCnt = 6; } else { Uart.bitCount++; Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg @@ -314,6 +314,10 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit Uart.bitCount = 0; Uart.shiftReg = 0; + if((Uart.len&0x0007) == 0) { // every 8 data bytes + Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits + Uart.parityBits = 0; + } } } } @@ -329,21 +333,37 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit Uart.bitCount = 0; Uart.shiftReg = 0; + if ((Uart.len&0x0007) == 0) { // every 8 data bytes + Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits + Uart.parityBits = 0; + } } } else { // no modulation in both halves - Sequence Y if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication Uart.state = STATE_UNSYNCD; - if(Uart.len == 0 && Uart.bitCount > 0) { // if we decoded some bits - Uart.shiftReg >>= (9 - Uart.bitCount); // add them to the output - Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); - Uart.parityBits <<= 1; // no parity bit - add "0" - Uart.bitCount--; // last "0" was part of the EOC sequence + Uart.bitCount--; // last "0" was part of EOC sequence + Uart.shiftReg <<= 1; // drop it + if(Uart.bitCount > 0) { // if we decoded some bits + Uart.shiftReg >>= (9 - Uart.bitCount); // right align them + Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output + Uart.parityBits <<= 1; // add a (void) parity bit + Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits + Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it + return TRUE; + } else if (Uart.len & 0x0007) { // there are some parity bits to store + Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits + Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them + } + if (Uart.len) { + return TRUE; // we are finished with decoding the raw data sequence + } else { + UartReset(); // Nothing received - start over + Uart.highCnt = 1; } - return TRUE; } if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC UartReset(); - Uart.highCnt = 6; + Uart.highCnt = 1; } else { // a logic "0" Uart.bitCount++; Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg @@ -354,6 +374,10 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit Uart.bitCount = 0; Uart.shiftReg = 0; + if ((Uart.len&0x0007) == 0) { // every 8 data bytes + Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits + Uart.parityBits = 0; + } } } } @@ -398,6 +422,7 @@ void DemodReset() { Demod.state = DEMOD_UNSYNCD; Demod.len = 0; // number of decoded data bytes + Demod.parityLen = 0; Demod.shiftReg = 0; // shiftreg to hold decoded data bits Demod.parityBits = 0; // Demod.collisionPos = 0; // Position of collision bit @@ -407,6 +432,13 @@ void DemodReset() Demod.endTime = 0; } +void DemodInit(uint8_t *data, uint8_t *parity) +{ + Demod.output = data; + Demod.parity = parity; + DemodReset(); +} + // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) { @@ -455,6 +487,10 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit Demod.bitCount = 0; Demod.shiftReg = 0; + if((Demod.len&0x0007) == 0) { // every 8 data bytes + Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits + Demod.parityBits = 0; + } } Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4; } else { // no modulation in first half @@ -467,16 +503,25 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit Demod.bitCount = 0; Demod.shiftReg = 0; + if ((Demod.len&0x0007) == 0) { // every 8 data bytes + Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1 + Demod.parityBits = 0; + } } Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1); } else { // no modulation in both halves - End of communication - if (Demod.len > 0 || Demod.bitCount > 0) { // received something - if(Demod.bitCount > 0) { // if we decoded bits - Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output - Demod.output[Demod.len++] = Demod.shiftReg & 0xff; - // No parity bit, so just shift a 0 - Demod.parityBits <<= 1; - } + if(Demod.bitCount > 0) { // there are some remaining data bits + Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits + Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output + Demod.parityBits <<= 1; // add a (void) parity bit + Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits + Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them + return TRUE; + } else if (Demod.len & 0x0007) { // there are some parity bits to store + Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits + Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them + } + if (Demod.len) { return TRUE; // we are finished with decoding the raw data sequence } else { // nothing received. Start over DemodReset(); @@ -505,8 +550,6 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // bit 1 - trigger from first reader 7-bit request LEDsoff(); - // init trace buffer - iso14a_clear_trace(); // We won't start recording the frames that we acquire until we trigger; // a good trigger condition to get started is probably when we see a @@ -514,19 +557,25 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // triggered == FALSE -- to wait first for card bool triggered = !(param & 0x03); + // Allocate memory from BigBuf for some buffers + // free all previous allocations first + BigBuf_free(); + // The command (reader -> tag) that we're receiving. - // The length of a received command will in most cases be no more than 18 bytes. - // So 32 should be enough! - uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); + uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); + uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); + // The response (tag -> reader) that we're receiving. - uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); - - // As we receive stuff, we copy it from receivedCmd or receivedResponse - // into trace, along with its length and other annotations. - //uint8_t *trace = (uint8_t *)BigBuf; + uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE); + uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE); // The DMA buffer, used to stream samples from the FPGA - uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET; + uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); + + // init trace buffer + clear_trace(); + set_tracing(TRUE); + uint8_t *data = dmaBuf; uint8_t previous_data = 0; int maxDataLen = 0; @@ -537,11 +586,11 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); // Set up the demodulator for tag -> reader responses. - Demod.output = receivedResponse; - + DemodInit(receivedResponse, receivedResponsePar); + // Set up the demodulator for the reader -> tag commands - Uart.output = receivedCmd; - + UartInit(receivedCmd, receivedCmdPar); + // Setup and start DMA. FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); @@ -566,7 +615,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // test for length of buffer if(dataLen > maxDataLen) { maxDataLen = dataLen; - if(dataLen > 400) { + if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { Dbprintf("blew circular buffer! dataLen=%d", dataLen); break; } @@ -598,8 +647,12 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE; if(triggered) { - if (!LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.parityBits, TRUE)) break; - if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; + if (!LogTrace(receivedCmd, + Uart.len, + Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, + Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, + Uart.parity, + TRUE)) break; } /* And ready to receive another command. */ UartReset(); @@ -616,8 +669,12 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) { LED_B_ON(); - if (!LogTrace(receivedResponse, Demod.len, Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parityBits, FALSE)) break; - if (!LogTrace(NULL, 0, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 0, FALSE)) break; + if (!LogTrace(receivedResponse, + Demod.len, + Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, + Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, + Demod.parity, + FALSE)) break; if ((!triggered) && (param & 0x01)) triggered = TRUE; @@ -641,17 +698,15 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { FpgaDisableSscDma(); Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); - Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]); + Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); LEDsoff(); } //----------------------------------------------------------------------------- // Prepare tag messages //----------------------------------------------------------------------------- -static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity) +static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) { - int i; - ToSendReset(); // Correction bit, might be removed when not needed @@ -668,12 +723,11 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity ToSend[++ToSendMax] = SEC_D; LastProxToAirDuration = 8 * ToSendMax - 4; - for(i = 0; i < len; i++) { - int j; + for(uint16_t i = 0; i < len; i++) { uint8_t b = cmd[i]; // Data bits - for(j = 0; j < 8; j++) { + for(uint16_t j = 0; j < 8; j++) { if(b & 1) { ToSend[++ToSendMax] = SEC_D; } else { @@ -683,7 +737,7 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity } // Get the parity bit - if ((dwParity >> i) & 0x01) { + if (parity[i>>3] & (0x80>>(i&0x0007))) { ToSend[++ToSendMax] = SEC_D; LastProxToAirDuration = 8 * ToSendMax - 4; } else { @@ -699,8 +753,12 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity ToSendMax++; } -static void CodeIso14443aAsTag(const uint8_t *cmd, int len){ - CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len)); +static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) +{ + uint8_t par[MAX_PARITY_SIZE]; + + GetParity(cmd, len, par); + CodeIso14443aAsTagPar(cmd, len, par); } @@ -747,7 +805,7 @@ static void Code4bitAnswerAsTag(uint8_t cmd) // Stop when button is pressed // Or return TRUE when command is captured //----------------------------------------------------------------------------- -static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen) +static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) { // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen // only, since we are receiving, not transmitting). @@ -756,8 +814,7 @@ static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); // Now run a `software UART' on the stream of incoming samples. - UartReset(); - Uart.output = received; + UartInit(received, parity); // clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; @@ -777,18 +834,17 @@ static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen } } -static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded); +static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded); int EmSend4bitEx(uint8_t resp, bool correctionNeeded); int EmSend4bit(uint8_t resp); -int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par); -int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par); -int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded); -int EmSendCmd(uint8_t *resp, int respLen); -int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par); -bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity, - uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity); +int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par); +int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded); +int EmSendCmd(uint8_t *resp, uint16_t respLen); +int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par); +bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, + uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity); -static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); +static uint8_t* free_buffer_pointer; typedef struct { uint8_t* response; @@ -798,10 +854,6 @@ typedef struct { uint32_t ProxToAirDuration; } tag_response_info_t; -void reset_free_buffer() { - free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); -} - bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes // This will need the following byte array for a modulation sequence @@ -813,7 +865,8 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe // ----------- + // 166 bytes, since every bit that needs to be send costs us a byte // - + + // Prepare the tag modulation bits from the message CodeIso14443aAsTag(response_info->response,response_info->response_n); @@ -834,15 +887,22 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe return true; } + +// "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit. +// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) +// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits +// -> need 273 bytes buffer +#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273 + bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { // Retrieve and store the current buffer index response_info->modulation = free_buffer_pointer; // Determine the maximum size we can use from our buffer - size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer; + size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; // Forward the prepare tag modulation function to the inner function - if (prepare_tag_modulation(response_info,max_buffer_size)) { + if (prepare_tag_modulation(response_info, max_buffer_size)) { // Update the free buffer offset free_buffer_pointer += ToSendMax; return true; @@ -857,10 +917,6 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { //----------------------------------------------------------------------------- void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) { - // Enable and clear the trace - iso14a_clear_trace(); - iso14a_set_tracing(TRUE); - uint8_t sak; // The first response contains the ATQA (note: bytes are transmitted in reverse order). @@ -891,6 +947,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) response1[1] = 0x00; sak = 0x28; } break; + case 5: { // MIFARE TNP3XXX + // Says: I am a toy + response1[0] = 0x01; + response1[1] = 0x0f; + sak = 0x01; + } break; default: { Dbprintf("Error: unkown tagtype (%d)",tagType); return; @@ -898,10 +960,11 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) } // The second response contains the (mandatory) first 24 bits of the UID - uint8_t response2[5]; + uint8_t response2[5] = {0x00}; // Check if the uid uses the (optional) part - uint8_t response2a[5]; + uint8_t response2a[5] = {0x00}; + if (uid_2nd) { response2[0] = 0x88; num_to_bytes(uid_1st,3,response2+1); @@ -922,17 +985,21 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; // Prepare the mandatory SAK (for 4 and 7 byte UID) - uint8_t response3[3]; + uint8_t response3[3] = {0x00}; response3[0] = sak; ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit - uint8_t response3a[3]; + uint8_t response3a[3] = {0x00}; response3a[0] = sak & 0xFB; ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce - uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS + uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: + // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, + // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1 + // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us) + // TC(1) = 0x02: CID supported, NAD not supported ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); #define TAG_RESPONSE_COUNT 7 @@ -959,16 +1026,23 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) .modulation_n = 0 }; - // Reset the offset pointer of the free buffer - reset_free_buffer(); - + BigBuf_free_keep_EM(); + + // allocate buffers: + uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); + uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); + free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); + + // clear trace + clear_trace(); + set_tracing(TRUE); + // Prepare the responses of the anticollision phase // there will be not enough time to do this at the moment the reader sends it REQA for (size_t i=0; imodulation, p_response->modulation_n, receivedCmd[0] == 0x52); // do the tracing for the previous reader request and this tag answer: + uint8_t par[MAX_PARITY_SIZE]; + GetParity(p_response->response, p_response->response_n, par); + EmLogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.parityBits, + Uart.parity, p_response->response, p_response->response_n, LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, - SwapBits(GetParity(p_response->response, p_response->response_n), p_response->response_n)); + par); } if (!tracing) { @@ -1145,6 +1217,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); LED_A_OFF(); + BigBuf_free_keep_EM(); } @@ -1180,7 +1253,7 @@ void PrepareDelayedTransfer(uint16_t delay) // if == 0: transfer immediately and return time of transfer // if != 0: delay transfer until time specified //------------------------------------------------------------------------------------- -static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing) +static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) { FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); @@ -1205,13 +1278,6 @@ static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing) // clear TXRDY AT91C_BASE_SSC->SSC_THR = SEC_Y; - // for(uint16_t c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission) - // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - // AT91C_BASE_SSC->SSC_THR = SEC_Y; - // c++; - // } - // } - uint16_t c = 0; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { @@ -1224,14 +1290,13 @@ static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing) } NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME); - } //----------------------------------------------------------------------------- // Prepare reader command (in bits, support short frames) to send to FPGA //----------------------------------------------------------------------------- -void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity) +void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) { int i, j; int last; @@ -1271,10 +1336,10 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwPari b >>= 1; } - // Only transmit (last) parity bit if we transmitted a complete byte + // Only transmit parity bit if we transmitted a complete byte if (j == 8) { // Get the parity bit - if ((dwParity >> i) & 0x01) { + if (parity[i>>3] & (0x80 >> (i&0x0007))) { // Sequence X ToSend[++ToSendMax] = SEC_X; LastProxToAirDuration = 8 * (ToSendMax+1) - 2; @@ -1312,17 +1377,18 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwPari //----------------------------------------------------------------------------- // Prepare reader command to send to FPGA //----------------------------------------------------------------------------- -void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) +void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) { - CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity); + CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); } + //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed (return 1) or field was gone (return 2) // Or return 0 when command is captured //----------------------------------------------------------------------------- -static int EmGetCmd(uint8_t *received, int *len) +static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) { *len = 0; @@ -1339,20 +1405,19 @@ static int EmGetCmd(uint8_t *received, int *len) // Set ADC to read field strength AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; AT91C_BASE_ADC->ADC_MR = - ADC_MODE_PRESCALE(32) | - ADC_MODE_STARTUP_TIME(16) | - ADC_MODE_SAMPLE_HOLD_TIME(8); + ADC_MODE_PRESCALE(63) | + ADC_MODE_STARTUP_TIME(1) | + ADC_MODE_SAMPLE_HOLD_TIME(15); AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); // start ADC AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; // Now run a 'software UART' on the stream of incoming samples. - UartReset(); - Uart.output = received; + UartInit(received, parity); // Clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - + for(;;) { WDT_HIT(); @@ -1364,7 +1429,7 @@ static int EmGetCmd(uint8_t *received, int *len) analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; if (analogCnt >= 32) { - if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { + if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { vtime = GetTickCount(); if (!timer) timer = vtime; // 50ms no field --> card to idle state @@ -1389,7 +1454,7 @@ static int EmGetCmd(uint8_t *received, int *len) } -static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded) +static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) { uint8_t b; uint16_t i = 0; @@ -1427,7 +1492,7 @@ static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded) AT91C_BASE_SSC->SSC_THR = SEC_F; // send cycle - for(; i <= respLen; ) { + for(; i < respLen; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = resp[i++]; FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; @@ -1439,14 +1504,15 @@ static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded) } // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: - for (i = 0; i < 2 ; ) { + uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; + for (i = 0; i <= fpga_queued_bits/8 + 1; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = SEC_F; FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; i++; } } - + LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0); return 0; @@ -1456,16 +1522,18 @@ int EmSend4bitEx(uint8_t resp, bool correctionNeeded){ Code4bitAnswerAsTag(resp); int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); // do the tracing for the previous reader request and this tag answer: + uint8_t par[1]; + GetParity(&resp, 1, par); EmLogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.parityBits, + Uart.parity, &resp, 1, LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, - SwapBits(GetParity(&resp, 1), 1)); + par); return res; } @@ -1473,7 +1541,7 @@ int EmSend4bit(uint8_t resp){ return EmSend4bitEx(resp, false); } -int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par){ +int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){ CodeIso14443aAsTagPar(resp, respLen, par); int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); // do the tracing for the previous reader request and this tag answer: @@ -1481,29 +1549,33 @@ int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t p Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.parityBits, + Uart.parity, resp, respLen, LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, - SwapBits(GetParity(resp, respLen), respLen)); + par); return res; } -int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded){ - return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen)); +int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){ + uint8_t par[MAX_PARITY_SIZE]; + GetParity(resp, respLen, par); + return EmSendCmdExPar(resp, respLen, correctionNeeded, par); } -int EmSendCmd(uint8_t *resp, int respLen){ - return EmSendCmdExPar(resp, respLen, false, GetParity(resp, respLen)); +int EmSendCmd(uint8_t *resp, uint16_t respLen){ + uint8_t par[MAX_PARITY_SIZE]; + GetParity(resp, respLen, par); + return EmSendCmdExPar(resp, respLen, false, par); } -int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){ +int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ return EmSendCmdExPar(resp, respLen, false, par); } -bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity, - uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity) +bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, + uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity) { if (tracing) { // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from @@ -1514,15 +1586,9 @@ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_Start uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; reader_EndTime = tag_StartTime - exact_fdt; reader_StartTime = reader_EndTime - reader_modlen; - if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_Parity, TRUE)) { - return FALSE; - } else if (!LogTrace(NULL, 0, reader_EndTime, 0, TRUE)) { + if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) { return FALSE; - } else if (!LogTrace(tag_data, tag_len, tag_StartTime, tag_Parity, FALSE)) { - return FALSE; - } else { - return (!LogTrace(NULL, 0, tag_EndTime, 0, FALSE)); - } + } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE)); } else { return TRUE; } @@ -1533,9 +1599,9 @@ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_Start // If a response is captured return TRUE // If it takes too long return FALSE //----------------------------------------------------------------------------- -static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen) +static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) { - uint16_t c; + uint32_t c; // Set FPGA mode to "reader listen mode", no modulation (listen // only, since we are receiving, not transmitting). @@ -1544,12 +1610,11 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); // Now get the answer from the card - DemodReset(); - Demod.output = receivedResponse; + DemodInit(receivedResponse, receivedResponsePar); // clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - + c = 0; for(;;) { WDT_HIT(); @@ -1559,17 +1624,16 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, if(ManchesterDecoding(b, offset, 0)) { NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD); return TRUE; - } else if(c++ > iso14a_timeout) { + } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) { return FALSE; } } } } -void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing) +void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) { - - CodeIso14443aBitsAsReaderPar(frame,bits,par); + CodeIso14443aBitsAsReaderPar(frame, bits, par); // Send command to tag TransmitFor14443a(ToSend, ToSendMax, timing); @@ -1578,190 +1642,191 @@ void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *tim // Log reader command in trace buffer if (tracing) { - LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); - LogTrace(NULL, 0, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, 0, TRUE); + LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); } } -void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing) +void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) { - ReaderTransmitBitsPar(frame,len*8,par, timing); + ReaderTransmitBitsPar(frame, len*8, par, timing); } -void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing) +void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) { // Generate parity and redirect - ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing); + uint8_t par[MAX_PARITY_SIZE]; + GetParity(frame, len/8, par); + ReaderTransmitBitsPar(frame, len, par, timing); } -void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing) +void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) { // Generate parity and redirect - ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing); + uint8_t par[MAX_PARITY_SIZE]; + GetParity(frame, len, par); + ReaderTransmitBitsPar(frame, len*8, par, timing); } -int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset) +int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) { - if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160)) return FALSE; + if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE; if (tracing) { - LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE); - LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE); + LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); } return Demod.len; } -int ReaderReceive(uint8_t* receivedAnswer) -{ - return ReaderReceiveOffset(receivedAnswer, 0); -} - -int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr) +int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) { - if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160)) return FALSE; + if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE; if (tracing) { - LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE); - LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE); + LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); } - *parptr = Demod.parityBits; return Demod.len; } /* performs iso14443a anticollision procedure * fills the uid pointer unless NULL * fills resp_data unless NULL */ -int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) { - uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP - uint8_t sel_all[] = { 0x93,0x20 }; - uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; - uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 - uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes - byte_t uid_resp[4]; - size_t uid_resp_len; - - uint8_t sak = 0x04; // cascade uid - int cascade_level = 0; - int len; - - // Broadcast for a card, WUPA (0x52) will force response from all cards in the field +int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) { + uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP + uint8_t sel_all[] = { 0x93,0x20 }; + uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; + uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 + uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller + uint8_t resp_par[MAX_PARITY_SIZE]; + byte_t uid_resp[4]; + size_t uid_resp_len; + + uint8_t sak = 0x04; // cascade uid + int cascade_level = 0; + int len; + + // Broadcast for a card, WUPA (0x52) will force response from all cards in the field ReaderTransmitBitsPar(wupa,7,0, NULL); - // Receive the ATQA - if(!ReaderReceive(resp)) return 0; - // Dbprintf("atqa: %02x %02x",resp[0],resp[1]); - - if(p_hi14a_card) { - memcpy(p_hi14a_card->atqa, resp, 2); - p_hi14a_card->uidlen = 0; - memset(p_hi14a_card->uid,0,10); - } + // Receive the ATQA + if(!ReaderReceive(resp, resp_par)) return 0; - // clear uid - if (uid_ptr) { - memset(uid_ptr,0,10); - } + if(p_hi14a_card) { + memcpy(p_hi14a_card->atqa, resp, 2); + p_hi14a_card->uidlen = 0; + memset(p_hi14a_card->uid,0,10); + } + + // clear uid + if (uid_ptr) { + memset(uid_ptr,0,10); + } - // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in - // which case we need to make a cascade 2 request and select - this is a long UID - // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. - for(; sak & 0x04; cascade_level++) { - // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) - sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; - - // SELECT_ALL - ReaderTransmit(sel_all,sizeof(sel_all), NULL); - if (!ReaderReceive(resp)) return 0; - - if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit - memset(uid_resp, 0, 4); - uint16_t uid_resp_bits = 0; - uint16_t collision_answer_offset = 0; - // anti-collision-loop: - while (Demod.collisionPos) { - Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); - for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point - uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; - uid_resp[uid_resp_bits & 0xf8] |= UIDbit << (uid_resp_bits % 8); + // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in + // which case we need to make a cascade 2 request and select - this is a long UID + // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. + for(; sak & 0x04; cascade_level++) { + // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) + sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; + + // SELECT_ALL + ReaderTransmit(sel_all, sizeof(sel_all), NULL); + if (!ReaderReceive(resp, resp_par)) return 0; + + if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit + memset(uid_resp, 0, 4); + uint16_t uid_resp_bits = 0; + uint16_t collision_answer_offset = 0; + // anti-collision-loop: + while (Demod.collisionPos) { + Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); + for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point + uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; + uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); + } + uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position + uid_resp_bits++; + // construct anticollosion command: + sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits + for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { + sel_uid[2+i] = uid_resp[i]; + } + collision_answer_offset = uid_resp_bits%8; + ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); + if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0; } - uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position - uid_resp_bits++; - // construct anticollosion command: - sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits - for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { - sel_uid[2+i] = uid_resp[i]; + // finally, add the last bits and BCC of the UID + for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { + uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; + uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); } - collision_answer_offset = uid_resp_bits%8; - ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); - if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0; + + } else { // no collision, use the response to SELECT_ALL as current uid + memcpy(uid_resp, resp, 4); } - // finally, add the last bits and BCC of the UID - for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { - uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; - uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); + uid_resp_len = 4; + + // calculate crypto UID. Always use last 4 Bytes. + if(cuid_ptr) { + *cuid_ptr = bytes_to_num(uid_resp, 4); } - } else { // no collision, use the response to SELECT_ALL as current uid - memcpy(uid_resp,resp,4); - } - uid_resp_len = 4; - // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]); + // Construct SELECT UID command + sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) + memcpy(sel_uid+2, uid_resp, 4); // the UID + sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC + AppendCrc14443a(sel_uid, 7); // calculate and add CRC + ReaderTransmit(sel_uid, sizeof(sel_uid), NULL); + + // Receive the SAK + if (!ReaderReceive(resp, resp_par)) return 0; + sak = resp[0]; + + // Test if more parts of the uid are coming + if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { + // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: + // http://www.nxp.com/documents/application_note/AN10927.pdf + uid_resp[0] = uid_resp[1]; + uid_resp[1] = uid_resp[2]; + uid_resp[2] = uid_resp[3]; + + uid_resp_len = 3; + } - // calculate crypto UID. Always use last 4 Bytes. - if(cuid_ptr) { - *cuid_ptr = bytes_to_num(uid_resp, 4); - } + if(uid_ptr) { + memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); + } - // Construct SELECT UID command - sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) - memcpy(sel_uid+2,uid_resp,4); // the UID - sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC - AppendCrc14443a(sel_uid,7); // calculate and add CRC - ReaderTransmit(sel_uid,sizeof(sel_uid), NULL); - - // Receive the SAK - if (!ReaderReceive(resp)) return 0; - sak = resp[0]; - - // Test if more parts of the uid are comming - if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { - // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: - // http://www.nxp.com/documents/application_note/AN10927.pdf - memcpy(uid_resp, uid_resp + 1, 3); - uid_resp_len = 3; - } + if(p_hi14a_card) { + memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); + p_hi14a_card->uidlen += uid_resp_len; + } + } - if(uid_ptr) { - memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); - } + if(p_hi14a_card) { + p_hi14a_card->sak = sak; + p_hi14a_card->ats_len = 0; + } - if(p_hi14a_card) { - memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); - p_hi14a_card->uidlen += uid_resp_len; - } - } + // non iso14443a compliant tag + if( (sak & 0x20) == 0) return 2; - if(p_hi14a_card) { - p_hi14a_card->sak = sak; - p_hi14a_card->ats_len = 0; - } + // Request for answer to select + AppendCrc14443a(rats, 2); + ReaderTransmit(rats, sizeof(rats), NULL); - if( (sak & 0x20) == 0) { - return 2; // non iso14443a compliant tag - } + if (!(len = ReaderReceive(resp, resp_par))) return 0; - // Request for answer to select - AppendCrc14443a(rats, 2); - ReaderTransmit(rats, sizeof(rats), NULL); + + if(p_hi14a_card) { + memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); + p_hi14a_card->ats_len = len; + } - if (!(len = ReaderReceive(resp))) return 0; + // reset the PCB block number + iso14_pcb_blocknum = 0; - if(p_hi14a_card) { - memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); - p_hi14a_card->ats_len = len; - } + // set default timeout based on ATS + iso14a_set_ATS_timeout(resp); - // reset the PCB block number - iso14_pcb_blocknum = 0; - return 1; + return 1; } void iso14443a_setup(uint8_t fpga_minor_mode) { @@ -1789,7 +1854,8 @@ void iso14443a_setup(uint8_t fpga_minor_mode) { iso14a_set_timeout(1050); // 10ms default } -int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { +int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { + uint8_t parity[MAX_PARITY_SIZE]; uint8_t real_cmd[cmd_len+4]; real_cmd[0] = 0x0a; //I-Block // put block number into the PCB @@ -1799,8 +1865,8 @@ int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { AppendCrc14443a(real_cmd,cmd_len+2); ReaderTransmit(real_cmd, cmd_len+4, NULL); - size_t len = ReaderReceive(data); - uint8_t * data_bytes = (uint8_t *) data; + size_t len = ReaderReceive(data, parity); + uint8_t *data_bytes = (uint8_t *) data; if (!len) return 0; //DATA LINK ERROR // if we received an I- or R(ACK)-Block with a block number equal to the @@ -1824,16 +1890,18 @@ void ReaderIso14443a(UsbCommand *c) { iso14a_command_t param = c->arg[0]; uint8_t *cmd = c->d.asBytes; - size_t len = c->arg[1]; - size_t lenbits = c->arg[2]; + size_t len = c->arg[1] & 0xffff; + size_t lenbits = c->arg[1] >> 16; + uint32_t timeout = c->arg[2]; uint32_t arg0 = 0; byte_t buf[USB_CMD_DATA_SIZE]; + uint8_t par[MAX_PARITY_SIZE]; if(param & ISO14A_CONNECT) { - iso14a_clear_trace(); + clear_trace(); } - iso14a_set_tracing(TRUE); + set_tracing(TRUE); if(param & ISO14A_REQUEST_TRIGGER) { iso14a_set_trigger(TRUE); @@ -1849,7 +1917,7 @@ void ReaderIso14443a(UsbCommand *c) } if(param & ISO14A_SET_TIMEOUT) { - iso14a_timeout = c->arg[2]; + iso14a_set_timeout(timeout); } if(param & ISO14A_APDU) { @@ -1861,15 +1929,15 @@ void ReaderIso14443a(UsbCommand *c) if(param & ISO14A_APPEND_CRC) { AppendCrc14443a(cmd,len); len += 2; - lenbits += 16; + if (lenbits) lenbits += 16; } if(lenbits>0) { - - ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL); + GetParity(cmd, lenbits/8, par); + ReaderTransmitBitsPar(cmd, lenbits, par, NULL); } else { ReaderTransmit(cmd,len, NULL); } - arg0 = ReaderReceive(buf); + arg0 = ReaderReceive(buf, par); cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); } @@ -1923,23 +1991,27 @@ void ReaderMifare(bool first_try) uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; static uint8_t mf_nr_ar3; - uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); + uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; + uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; - iso14a_clear_trace(); - iso14a_set_tracing(TRUE); + // free eventually allocated BigBuf memory. We want all for tracing. + BigBuf_free(); + + clear_trace(); + set_tracing(TRUE); byte_t nt_diff = 0; - byte_t par = 0; - //byte_t par_mask = 0xff; + uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough static byte_t par_low = 0; bool led_on = TRUE; - uint8_t uid[10]; + uint8_t uid[10] ={0}; uint32_t cuid; - uint32_t nt, previous_nt; + uint32_t nt = 0; + uint32_t previous_nt = 0; static uint32_t nt_attacked = 0; - byte_t par_list[8] = {0,0,0,0,0,0,0,0}; - byte_t ks_list[8] = {0,0,0,0,0,0,0,0}; + byte_t par_list[8] = {0x00}; + byte_t ks_list[8] = {0x00}; static uint32_t sync_time; static uint32_t sync_cycles; @@ -1948,8 +2020,6 @@ void ReaderMifare(bool first_try) uint16_t consecutive_resyncs = 0; int isOK = 0; - - if (first_try) { mf_nr_ar3 = 0; iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); @@ -1957,14 +2027,13 @@ void ReaderMifare(bool first_try) sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). nt_attacked = 0; nt = 0; - par = 0; + par[0] = 0; } else { // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) - // nt_attacked = prng_successor(nt_attacked, 1); mf_nr_ar3++; mf_nr_ar[3] = mf_nr_ar3; - par = par_low; + par[0] = par_low; } LED_A_ON(); @@ -2000,7 +2069,7 @@ void ReaderMifare(bool first_try) ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); // Receive the (4 Byte) "random" nonce - if (!ReaderReceive(receivedAnswer)) { + if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) { if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); continue; } @@ -2052,19 +2121,19 @@ void ReaderMifare(bool first_try) consecutive_resyncs = 0; // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding - if (ReaderReceive(receivedAnswer)) + if (ReaderReceive(receivedAnswer, receivedAnswerPar)) { catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer if (nt_diff == 0) { - par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change + par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change } led_on = !led_on; if(led_on) LED_B_ON(); else LED_B_OFF(); - par_list[nt_diff] = par; + par_list[nt_diff] = SwapBits(par[0], 8); ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; // Test if the information is complete @@ -2075,13 +2144,13 @@ void ReaderMifare(bool first_try) nt_diff = (nt_diff + 1) & 0x07; mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); - par = par_low; + par[0] = par_low; } else { if (nt_diff == 0 && first_try) { - par++; + par[0]++; } else { - par = (((par >> 3) + 1) << 3) | par_low; + par[0] = ((par[0] & 0x1F) + 1) | par_low; } } } @@ -2102,7 +2171,7 @@ void ReaderMifare(bool first_try) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); - iso14a_set_tracing(FALSE); + set_tracing(FALSE); } /** @@ -2123,8 +2192,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * int res; uint32_t selTimer = 0; uint32_t authTimer = 0; - uint32_t par = 0; - int len = 0; + uint16_t len = 0; uint8_t cardWRBL = 0; uint8_t cardAUTHSC = 0; uint8_t cardAUTHKEY = 0xff; // no authentication @@ -2138,8 +2206,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * struct Crypto1State *pcs; pcs = &mpcs; uint32_t numReads = 0;//Counts numer of times reader read a block - uint8_t* receivedCmd = eml_get_bigbufptr_recbuf(); - uint8_t *response = eml_get_bigbufptr_sendbuf(); + uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; + uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE]; + uint8_t response[MAX_MIFARE_FRAME_SIZE]; + uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; @@ -2156,9 +2226,12 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0}; uint8_t ar_nr_collected = 0; + // free eventually allocated BigBuf memory but keep Emulator Memory + BigBuf_free_keep_EM(); + // clear trace - iso14a_clear_trace(); - iso14a_set_tracing(TRUE); + clear_trace(); + set_tracing(TRUE); // Authenticate response - nonce uint32_t nonce = bytes_to_num(rAUTH_NT, 4); @@ -2197,6 +2270,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if (_7BUID) { rATQA[0] = 0x44; rUIDBCC1[0] = 0x88; + rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; } @@ -2206,9 +2280,12 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if (MF_DBGLEVEL >= 1) { if (!_7BUID) { - Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3]); + Dbprintf("4B UID: %02x%02x%02x%02x", + rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]); } else { - Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3],rUIDBCC2[0],rUIDBCC2[1] ,rUIDBCC2[2] , rUIDBCC2[3]); + Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x", + rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], + rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]); } } @@ -2217,10 +2294,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * WDT_HIT(); // find reader field - // Vref = 3300mV, and an 10:1 voltage divider on the input - // can measure voltages up to 33000 mV if (cardSTATE == MFEMUL_NOFIELD) { - vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; + vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; if (vHf > MF_MINFIELDV) { cardSTATE_TO_IDLE(); LED_A_ON(); @@ -2230,7 +2305,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * //Now, get data - res = EmGetCmd(receivedCmd, &len); + res = EmGetCmd(receivedCmd, &len, receivedCmd_par); if (res == 2) { //Field is off! cardSTATE = MFEMUL_NOFIELD; LEDsoff(); @@ -2257,8 +2332,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * case MFEMUL_NOFIELD: case MFEMUL_HALTED: case MFEMUL_IDLE:{ - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } case MFEMUL_SELECT1:{ @@ -2276,7 +2350,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * // select card if (len == 9 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { - EmSendCmd(_7BUID?rSAK1:rSAK, sizeof(_7BUID?rSAK1:rSAK)); + EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK)); cuid = bytes_to_num(rUIDBCC1, 4); if (!_7BUID) { cardSTATE = MFEMUL_WORK; @@ -2293,12 +2367,12 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if( len != 8) { cardSTATE_TO_IDLE(); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } + uint32_t ar = bytes_to_num(receivedCmd, 4); - uint32_t nr= bytes_to_num(&receivedCmd[4], 4); + uint32_t nr = bytes_to_num(&receivedCmd[4], 4); //Collect AR/NR if(ar_nr_collected < 2){ @@ -2318,13 +2392,15 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * // test if auth OK if (cardRr != prng_successor(nonce, 64)){ - if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr, prng_successor(nonce, 64)); + if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", + cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', + cardRr, prng_successor(nonce, 64)); // Shouldn't we respond anything here? // Right now, we don't nack or anything, which causes the // reader to do a WUPA after a while. /Martin + // -- which is the correct response. /piwi cardSTATE_TO_IDLE(); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } @@ -2335,13 +2411,14 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); LED_C_ON(); cardSTATE = MFEMUL_WORK; - if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED. sector=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer); + if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", + cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', + GetTickCount() - authTimer); break; } case MFEMUL_SELECT2:{ if (!len) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) { @@ -2362,8 +2439,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * // i guess there is a command). go into the work state. if (len != 4) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } cardSTATE = MFEMUL_WORK; @@ -2373,8 +2449,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * case MFEMUL_WORK:{ if (len == 0) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } @@ -2393,15 +2468,16 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); if (!encrypted_data) { // first authentication - if (MF_DBGLEVEL >= 2) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); + if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce } else { // nested authentication - if (MF_DBGLEVEL >= 2) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); + if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); num_to_bytes(ans, 4, rAUTH_AT); } + EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]); cardSTATE = MFEMUL_AUTH1; @@ -2422,38 +2498,37 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } if(len != 4) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } if(receivedCmd[0] == 0x30 // read block || receivedCmd[0] == 0xA0 // write block - || receivedCmd[0] == 0xC0 - || receivedCmd[0] == 0xC1 - || receivedCmd[0] == 0xC2 // inc dec restore + || receivedCmd[0] == 0xC0 // inc + || receivedCmd[0] == 0xC1 // dec + || receivedCmd[0] == 0xC2 // restore || receivedCmd[0] == 0xB0) { // transfer if (receivedCmd[1] >= 16 * 4) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); + if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); break; } if (receivedCmd[1] / 4 != cardAUTHSC) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); + if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); break; } } // read block if (receivedCmd[0] == 0x30) { - if (MF_DBGLEVEL >= 2) { + if (MF_DBGLEVEL >= 4) { Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]); } emlGetMem(response, receivedCmd[1], 1); AppendCrc14443a(response, 16); - mf_crypto1_encrypt(pcs, response, 18, &par); - EmSendCmdPar(response, 18, par); + mf_crypto1_encrypt(pcs, response, 18, response_par); + EmSendCmdPar(response, 18, response_par); numReads++; if(exitAfterNReads > 0 && numReads == exitAfterNReads) { Dbprintf("%d reads done, exiting", numReads); @@ -2463,7 +2538,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } // write block if (receivedCmd[0] == 0xA0) { - if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]); + if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); cardSTATE = MFEMUL_WRITEBL2; cardWRBL = receivedCmd[1]; @@ -2471,7 +2546,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } // increment, decrement, restore if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) { - if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); + if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); if (emlCheckValBl(receivedCmd[1])) { if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); @@ -2489,7 +2564,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } // transfer if (receivedCmd[0] == 0xB0) { - if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); + if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); else @@ -2502,8 +2577,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * LED_C_OFF(); cardSTATE = MFEMUL_HALTED; if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } // RATS @@ -2524,8 +2598,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardSTATE = MFEMUL_WORK; } else { cardSTATE_TO_IDLE(); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); } break; } @@ -2538,8 +2611,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardSTATE_TO_IDLE(); break; } - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); cardINTREG = cardINTREG + ans; cardSTATE = MFEMUL_WORK; break; @@ -2552,8 +2624,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardSTATE_TO_IDLE(); break; } - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); cardINTREG = cardINTREG - ans; cardSTATE = MFEMUL_WORK; break; @@ -2566,8 +2637,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardSTATE_TO_IDLE(); break; } - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); cardSTATE = MFEMUL_WORK; break; } @@ -2588,7 +2658,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if(ar_nr_collected > 1) { Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", - ar_nr_responses[0], // UID + ar_nr_responses[0], // UID ar_nr_responses[1], //NT ar_nr_responses[2], //AR1 ar_nr_responses[3], //NR1 @@ -2607,7 +2677,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } } } - if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen); + if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen()); + } @@ -2624,21 +2695,26 @@ void RAMFUNC SniffMifare(uint8_t param) { // C(red) A(yellow) B(green) LEDsoff(); // init trace buffer - iso14a_clear_trace(); + clear_trace(); + set_tracing(TRUE); // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! - uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); + uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; + uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE]; // The response (tag -> reader) that we're receiving. - uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); + uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE]; + uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE]; // As we receive stuff, we copy it from receivedCmd or receivedResponse // into trace, along with its length and other annotations. //uint8_t *trace = (uint8_t *)BigBuf; - // The DMA buffer, used to stream samples from the FPGA - uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET; + // free eventually allocated BigBuf memory + BigBuf_free(); + // allocate the DMA buffer, used to stream samples from the FPGA + uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); uint8_t *data = dmaBuf; uint8_t previous_data = 0; int maxDataLen = 0; @@ -2649,10 +2725,10 @@ void RAMFUNC SniffMifare(uint8_t param) { iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); // Set up the demodulator for tag -> reader responses. - Demod.output = receivedResponse; + DemodInit(receivedResponse, receivedResponsePar); // Set up the demodulator for the reader -> tag commands - Uart.output = receivedCmd; + UartInit(receivedCmd, receivedCmdPar); // Setup for the DMA. FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. @@ -2697,7 +2773,7 @@ void RAMFUNC SniffMifare(uint8_t param) { // test for length of buffer if(dataLen > maxDataLen) { // we are more behind than ever... maxDataLen = dataLen; - if(dataLen > 400) { + if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); break; } @@ -2724,7 +2800,7 @@ void RAMFUNC SniffMifare(uint8_t param) { uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { LED_C_INV(); - if (MfSniffLogic(receivedCmd, Uart.len, Uart.parityBits, Uart.bitCount, TRUE)) break; + if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break; /* And ready to receive another command. */ UartReset(); @@ -2740,7 +2816,7 @@ void RAMFUNC SniffMifare(uint8_t param) { if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { LED_C_INV(); - if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break; + if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break; // And ready to receive another response. DemodReset();