X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/3ad48540d4d77f50cc62d16acb78f17019ef431d..f0c48553cbe15f3218e4ab37a812df53f845c650:/client/loclass/elite_crack.c?ds=sidebyside diff --git a/client/loclass/elite_crack.c b/client/loclass/elite_crack.c index 27a2a1bc..8fda0fbd 100644 --- a/client/loclass/elite_crack.c +++ b/client/loclass/elite_crack.c @@ -1,32 +1,70 @@ +/***************************************************************************** + * WARNING + * + * THIS CODE IS CREATED FOR EXPERIMENTATION AND EDUCATIONAL USE ONLY. + * + * USAGE OF THIS CODE IN OTHER WAYS MAY INFRINGE UPON THE INTELLECTUAL + * PROPERTY OF OTHER PARTIES, SUCH AS INSIDE SECURE AND HID GLOBAL, + * AND MAY EXPOSE YOU TO AN INFRINGEMENT ACTION FROM THOSE PARTIES. + * + * THIS CODE SHOULD NEVER BE USED TO INFRINGE PATENTS OR INTELLECTUAL PROPERTY RIGHTS. + * + ***************************************************************************** + * + * This file is part of loclass. It is a reconstructon of the cipher engine + * used in iClass, and RFID techology. + * + * The implementation is based on the work performed by + * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and + * Milosch Meriac in the paper "Dismantling IClass". + * + * Copyright (C) 2014 Martin Holst Swende + * + * This is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation, or, at your option, any later version. + * + * This file is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with loclass. If not, see . + * + * + ****************************************************************************/ + #include #include #include #include -#include +#include "util.h" +#include "util_posix.h" #include "cipherutils.h" #include "cipher.h" #include "ikeys.h" #include "elite_crack.h" #include "fileutils.h" -#include "des.h" +#include "mbedtls/des.h" /** * @brief Permutes a key from standard NIST format to Iclass specific format - * from http://www.proxmark.org/forum/viewtopic.php?pid=11220#p11220 + * from http://www.proxmark.org/forum/viewtopic.php?pid=11220#p11220 * - * If you permute [6c 8d 44 f9 2a 2d 01 bf] you get [8a 0d b9 88 bb a7 90 ea] as shown below. + * If you permute [6c 8d 44 f9 2a 2d 01 bf] you get [8a 0d b9 88 bb a7 90 ea] as shown below. * - * 1 0 1 1 1 1 1 1 bf - * 0 0 0 0 0 0 0 1 01 - * 0 0 1 0 1 1 0 1 2d - * 0 0 1 0 1 0 1 0 2a - * 1 1 1 1 1 0 0 1 f9 - * 0 1 0 0 0 1 0 0 44 - * 1 0 0 0 1 1 0 1 8d - * 0 1 1 0 1 1 0 0 6c + * 1 0 1 1 1 1 1 1 bf + * 0 0 0 0 0 0 0 1 01 + * 0 0 1 0 1 1 0 1 2d + * 0 0 1 0 1 0 1 0 2a + * 1 1 1 1 1 0 0 1 f9 + * 0 1 0 0 0 1 0 0 44 + * 1 0 0 0 1 1 0 1 8d + * 0 1 1 0 1 1 0 0 6c * - * 8 0 b 8 b a 9 e - * a d 9 8 b 7 0 a + * 8 0 b 8 b a 9 e + * a d 9 8 b 7 0 a * * @param key * @param dest @@ -37,7 +75,7 @@ void permutekey(uint8_t key[8], uint8_t dest[8]) int i; for(i = 0 ; i < 8 ; i++) { - dest[i] = (((key[7] & (0x80 >> i)) >> (7-i)) << 7) | + dest[i] = (((key[7] & (0x80 >> i)) >> (7-i)) << 7) | (((key[6] & (0x80 >> i)) >> (7-i)) << 6) | (((key[5] & (0x80 >> i)) >> (7-i)) << 5) | (((key[4] & (0x80 >> i)) >> (7-i)) << 4) | @@ -60,7 +98,7 @@ void permutekey_rev(uint8_t key[8], uint8_t dest[8]) int i; for(i = 0 ; i < 8 ; i++) { - dest[7-i] = (((key[0] & (0x80 >> i)) >> (7-i)) << 7) | + dest[7-i] = (((key[0] & (0x80 >> i)) >> (7-i)) << 7) | (((key[1] & (0x80 >> i)) >> (7-i)) << 6) | (((key[2] & (0x80 >> i)) >> (7-i)) << 5) | (((key[3] & (0x80 >> i)) >> (7-i)) << 4) | @@ -113,26 +151,128 @@ void hash1(uint8_t csn[] , uint8_t k[]) k[0] = csn[0]^csn[1]^csn[2]^csn[3]^csn[4]^csn[5]^csn[6]^csn[7]; k[1] = csn[0]+csn[1]+csn[2]+csn[3]+csn[4]+csn[5]+csn[6]+csn[7]; k[2] = rr(swap( csn[2]+k[1] )); - k[3] = rr(swap( csn[3]+k[0] )); - k[4] = ~rr(swap( csn[4]+k[2] ))+1; - k[5] = ~rr(swap( csn[5]+k[3] ))+1; + k[3] = rl(swap( csn[3]+k[0] )); + k[4] = ~rr( csn[4]+k[2] )+1; + k[5] = ~rl( csn[5]+k[3] )+1; k[6] = rr( csn[6]+(k[4]^0x3c) ); k[7] = rl( csn[7]+(k[5]^0xc3) ); int i; for(i = 7; i >=0; i--) k[i] = k[i] & 0x7F; } +/** +Definition 14. Define the rotate key function rk : (F 82 ) 8 × N → (F 82 ) 8 as +rk(x [0] . . . x [7] , 0) = x [0] . . . x [7] +rk(x [0] . . . x [7] , n + 1) = rk(rl(x [0] ) . . . rl(x [7] ), n) +**/ +void rk(uint8_t *key, uint8_t n, uint8_t *outp_key) +{ + + memcpy(outp_key, key, 8); + + uint8_t j; + + while(n-- > 0) + for(j=0; j < 8 ; j++) + outp_key[j] = rl(outp_key[j]); + + return; +} + +static mbedtls_des_context ctx_enc = { {0} }; +static mbedtls_des_context ctx_dec = { {0} }; + +void desdecrypt_iclass(uint8_t *iclass_key, uint8_t *input, uint8_t *output) +{ + uint8_t key_std_format[8] = {0}; + permutekey_rev(iclass_key, key_std_format); + mbedtls_des_setkey_dec( &ctx_dec, key_std_format); + mbedtls_des_crypt_ecb(&ctx_dec,input,output); +} +void desencrypt_iclass(uint8_t *iclass_key, uint8_t *input, uint8_t *output) +{ + uint8_t key_std_format[8] = {0}; + permutekey_rev(iclass_key, key_std_format); + mbedtls_des_setkey_enc( &ctx_enc, key_std_format); + mbedtls_des_crypt_ecb(&ctx_enc,input,output); +} + +/** + * @brief Insert uint8_t[8] custom master key to calculate hash2 and return key_select. + * @param key unpermuted custom key + * @param hash1 hash1 + * @param key_sel output key_sel=h[hash1[i]] + */ +void hash2(uint8_t *key64, uint8_t *outp_keytable) +{ + /** + *Expected: + * High Security Key Table + +00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1 +10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21 +20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2 +30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C +40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6 +50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42 +60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95 +70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB + +**** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 ******/ + uint8_t key64_negated[8] = {0}; + uint8_t z[8][8]={{0},{0}}; + uint8_t temp_output[8]={0}; + //calculate complement of key + int i; + for(i=0;i<8;i++) + key64_negated[i]= ~key64[i]; + + // Once again, key is on iclass-format + desencrypt_iclass(key64, key64_negated, z[0]); + + prnlog("\nHigh security custom key (Kcus):"); + printvar("z0 ", z[0],8); + + uint8_t y[8][8]={{0},{0}}; + // y[0]=DES_dec(z[0],~key) + // Once again, key is on iclass-format + desdecrypt_iclass(z[0], key64_negated, y[0]); + printvar("y0 ", y[0],8); + + for(i=1; i<8; i++) + { + + // z [i] = DES dec (rk(K cus , i), z [i−1] ) + rk(key64, i, temp_output); + //y [i] = DES enc (rk(K cus , i), y [i−1] ) + + desdecrypt_iclass(temp_output,z[i-1], z[i]); + desencrypt_iclass(temp_output,y[i-1], y[i]); + + } + if(outp_keytable != NULL) + { + for(i = 0 ; i < 8 ; i++) + { + memcpy(outp_keytable+i*16,y[i],8); + memcpy(outp_keytable+8+i*16,z[i],8); + } + }else + { + printarr_human_readable("hash2", outp_keytable,128); + } +} /** * @brief Reads data from the iclass-reader-attack dump file. * @param dump, data from a iclass reader attack dump. The format of the dumpdata is expected to be as follows: - * <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC><8 byte HASH1><1 byte NUM_BYTES_TO_RECOVER><3 bytes BYTES_TO_RECOVER> - * .. N times... + * <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC><8 byte HASH1><1 byte NUM_BYTES_TO_RECOVER><3 bytes BYTES_TO_RECOVER> + * .. N times... * - * So the first attack, with 3 bytes to recover would be : ... 03000145 - * And a later attack, with 1 byte to recover (byte 0x5)would be : ...01050000 - * And an attack, with 2 bytes to recover (byte 0x5 and byte 0x07 )would be : ...02050700 + * So the first attack, with 3 bytes to recover would be : ... 03000145 + * And a later attack, with 1 byte to recover (byte 0x5)would be : ...01050000 + * And an attack, with 2 bytes to recover (byte 0x5 and byte 0x07 )would be : ...02050700 * * @param cc_nr an array to store cc_nr into (12 bytes) * @param csn an arracy ot store CSN into (8 bytes) @@ -166,8 +306,7 @@ static uint32_t startvalue = 0; * @param keytable where to write found values. * @return */ -int bruteforceItem(dumpdata item, uint16_t keytable[]) -{ +int bruteforceItem(dumpdata item, uint16_t keytable[]) { int errors = 0; uint8_t key_sel_p[8] = { 0 }; uint8_t div_key[8] = {0}; @@ -179,6 +318,8 @@ int bruteforceItem(dumpdata item, uint16_t keytable[]) uint8_t key_index[8] = {0}; hash1(item.csn, key_index); + printvar("CSN ", item.csn, 8); + printvar("HASH1", key_index, 8); /* * Determine which bytes to retrieve. A hash is typically @@ -193,26 +334,20 @@ int bruteforceItem(dumpdata item, uint16_t keytable[]) * Only the lower eight bits correspond to the (hopefully cracked) key-value. **/ uint8_t bytes_to_recover[3] = {0}; - uint8_t numbytes_to_recover = 0 ; - int i; - for(i =0 ; i < 8 ; i++) - { - if(keytable[key_index[i]] & (CRACKED | BEING_CRACKED)) continue; - bytes_to_recover[numbytes_to_recover++] = key_index[i]; - keytable[key_index[i]] |= BEING_CRACKED; + uint8_t numbytes_to_recover = 0; - if(numbytes_to_recover > 3) - { + for (int i = 0; i < 8; i++) { + if (keytable[key_index[i]] & (CRACKED | BEING_CRACKED)) continue; + if (numbytes_to_recover == 3) { prnlog("The CSN requires > 3 byte bruteforce, not supported"); - printvar("CSN", item.csn,8); - printvar("HASH1", key_index,8); - //Before we exit, reset the 'BEING_CRACKED' to zero - keytable[bytes_to_recover[0]] &= ~BEING_CRACKED; - keytable[bytes_to_recover[1]] &= ~BEING_CRACKED; - keytable[bytes_to_recover[2]] &= ~BEING_CRACKED; - + keytable[bytes_to_recover[0]] &= ~BEING_CRACKED; + keytable[bytes_to_recover[1]] &= ~BEING_CRACKED; + keytable[bytes_to_recover[2]] &= ~BEING_CRACKED; return 1; + } else { + bytes_to_recover[numbytes_to_recover++] = key_index[i]; + keytable[key_index[i]] |= BEING_CRACKED; } } @@ -230,86 +365,81 @@ int bruteforceItem(dumpdata item, uint16_t keytable[]) uint32_t endmask = 1 << 8*numbytes_to_recover; - for(i =0 ; i < numbytes_to_recover && numbytes_to_recover > 1; i++) + for (int i = 0; i < numbytes_to_recover; i++) { prnlog("Bruteforcing byte %d", bytes_to_recover[i]); + } - while(!found && !(brute & endmask)) - { + while (!found && !(brute & endmask)) { //Update the keytable with the brute-values - for(i =0 ; i < numbytes_to_recover; i++) - { + for(int i = 0 ; i < numbytes_to_recover; i++) { keytable[bytes_to_recover[i]] &= 0xFF00; - keytable[bytes_to_recover[i]] |= (brute >> (i*8) & 0xFF); + keytable[bytes_to_recover[i]] |= ((brute >> (i*8)) & 0xFF); } // Piece together the key - key_sel[0] = keytable[key_index[0]] & 0xFF;key_sel[1] = keytable[key_index[1]] & 0xFF; - key_sel[2] = keytable[key_index[2]] & 0xFF;key_sel[3] = keytable[key_index[3]] & 0xFF; - key_sel[4] = keytable[key_index[4]] & 0xFF;key_sel[5] = keytable[key_index[5]] & 0xFF; - key_sel[6] = keytable[key_index[6]] & 0xFF;key_sel[7] = keytable[key_index[7]] & 0xFF; + key_sel[0] = keytable[key_index[0]] & 0xFF; + key_sel[1] = keytable[key_index[1]] & 0xFF; + key_sel[2] = keytable[key_index[2]] & 0xFF; + key_sel[3] = keytable[key_index[3]] & 0xFF; + key_sel[4] = keytable[key_index[4]] & 0xFF; + key_sel[5] = keytable[key_index[5]] & 0xFF; + key_sel[6] = keytable[key_index[6]] & 0xFF; + key_sel[7] = keytable[key_index[7]] & 0xFF; //Permute from iclass format to standard format permutekey_rev(key_sel,key_sel_p); //Diversify diversifyKey(item.csn, key_sel_p, div_key); //Calc mac - doMAC(item.cc_nr, div_key,calculated_MAC); + doMAC(item.cc_nr, div_key, calculated_MAC); - if(memcmp(calculated_MAC, item.mac, 4) == 0) - { - for(i =0 ; i < numbytes_to_recover; i++) - prnlog("=> %d: 0x%02x", bytes_to_recover[i],0xFF & keytable[bytes_to_recover[i]]); + if (memcmp(calculated_MAC, item.mac, 4) == 0) { + for (int i = 0; i < numbytes_to_recover; i++) + prnlog("=> %d: 0x%02x", bytes_to_recover[i], 0xFF & keytable[bytes_to_recover[i]]); found = true; break; } brute++; - if((brute & 0xFFFF) == 0) - { + if ((brute & 0xFFFF) == 0) { printf("%d",(brute >> 16) & 0xFF); fflush(stdout); } } - if(! found) - { - prnlog("Failed to recover %d bytes using the following CSN",numbytes_to_recover); - printvar("CSN",item.csn,8); + + if (!found) { + prnlog("\nFailed to recover %d bytes", numbytes_to_recover); errors++; //Before we exit, reset the 'BEING_CRACKED' to zero - for(i =0 ; i < numbytes_to_recover; i++) - { - keytable[bytes_to_recover[i]] &= 0xFF; - keytable[bytes_to_recover[i]] |= CRACK_FAILED; + for (int i = 0; i < numbytes_to_recover; i++) { + keytable[bytes_to_recover[i]] &= ~BEING_CRACKED; } - - }else - { - for(i =0 ; i < numbytes_to_recover; i++) - { - keytable[bytes_to_recover[i]] &= 0xFF; - keytable[bytes_to_recover[i]] |= CRACKED; + } else { + for (int i = 0; i < numbytes_to_recover; i++) { + keytable[bytes_to_recover[i]] &= ~BEING_CRACKED; + keytable[bytes_to_recover[i]] |= CRACKED; } - } + return errors; } /** * From dismantling iclass-paper: - * Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] . - * Then he can simply recover the master custom key K_cus by computing - * K_cus = ~DES(z[0] , y[0] ) . + * Assume that an adversary somehow learns the first 16 bytes of hash2(K_cus ), i.e., y [0] and z [0] . + * Then he can simply recover the master custom key K_cus by computing + * K_cus = ~DES(z[0] , y[0] ) . * - * Furthermore, the adversary is able to verify that he has the correct K cus by - * checking whether z [0] = DES enc (K_cus , ~K_cus ). + * Furthermore, the adversary is able to verify that he has the correct K cus by + * checking whether z [0] = DES enc (K_cus , ~K_cus ). * @param keytable an array (128 bytes) of hash2(kcus) * @param master_key where to put the master key * @return 0 for ok, 1 for failz */ int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] ) { - des_context ctx_e = {DES_ENCRYPT,{0}}; + mbedtls_des_context ctx_e = { {0} }; uint8_t z_0[8] = {0}; uint8_t y_0[8] = {0}; @@ -328,8 +458,8 @@ int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] ) permutekey_rev(z_0, z_0_rev); // ~K_cus = DESenc(z[0], y[0]) - des_setkey_enc( &ctx_e, z_0_rev ); - des_crypt_ecb(&ctx_e, y_0, key64_negated); + mbedtls_des_setkey_enc( &ctx_e, z_0_rev ); + mbedtls_des_crypt_ecb(&ctx_e, y_0, key64_negated); int i; for(i = 0; i < 8 ; i++) @@ -342,8 +472,8 @@ int calculateMasterKey(uint8_t first16bytes[], uint64_t master_key[] ) uint8_t key64_stdformat[8] = {0}; permutekey_rev(key64, key64_stdformat); - des_setkey_enc( &ctx_e, key64_stdformat ); - des_crypt_ecb(&ctx_e, key64_negated, result); + mbedtls_des_setkey_enc( &ctx_e, key64_stdformat ); + mbedtls_des_crypt_ecb(&ctx_e, key64_negated, result); prnlog("\nHigh security custom key (Kcus):"); printvar("Std format ", key64_stdformat,8); printvar("Iclass format", key64,8); @@ -372,19 +502,19 @@ int bruteforceDump(uint8_t dump[], size_t dumpsize, uint16_t keytable[]) uint8_t i; int errors = 0; size_t itemsize = sizeof(dumpdata); - clock_t t1 = clock(); + uint64_t t1 = msclock(); dumpdata* attack = (dumpdata* ) malloc(itemsize); - for(i = 0 ; i * itemsize < dumpsize ; i++ ) + for (i = 0 ; i * itemsize < dumpsize ; i++ ) { memcpy(attack,dump+i*itemsize, itemsize); errors += bruteforceItem(*attack, keytable); } free(attack); - clock_t t2 = clock(); - float diff = (((float)t2 - (float)t1) / CLOCKS_PER_SEC ); - prnlog("\nPerformed full crack in %f seconds",diff); + t1 = msclock() - t1; + float diff = (float)t1 / 1000.0; + prnlog("\nPerformed full crack in %f seconds", diff); // Pick out the first 16 bytes of the keytable. // The keytable is now in 16-bit ints, where the upper 8 bits @@ -392,12 +522,11 @@ int bruteforceDump(uint8_t dump[], size_t dumpsize, uint16_t keytable[]) // master key calculation uint8_t first16bytes[16] = {0}; - for(i = 0 ; i < 16 ; i++) - { + for (int i = 0; i < 16; i++) { first16bytes[i] = keytable[i] & 0xFF; - if(!(keytable[i] & CRACKED)) - { - prnlog("Error, we are missing byte %d, custom key calculation will fail...", i); + if (!(keytable[i] & CRACKED)) { + prnlog("Error, we are missing byte %d, cannot calculate custom key.", i); + return 1; } } errors += calculateMasterKey(first16bytes, NULL); @@ -423,15 +552,23 @@ int bruteforceFile(const char *filename, uint16_t keytable[]) long fsize = ftell(f); fseek(f, 0, SEEK_SET); + if (fsize < 0) { + prnlog("Error, when getting fsize"); + fclose(f); + return 1; + } + uint8_t *dump = malloc(fsize); - size_t bytes_read = fread(dump, fsize, 1, f); + size_t bytes_read = fread(dump, 1, fsize, f); fclose(f); - if (bytes_read < fsize) - { - prnlog("Error, could only read %d bytes (should be %d)",bytes_read, fsize ); - } - return bruteforceDump(dump,fsize,keytable); + if (bytes_read < fsize) { + prnlog("Error, could only read %d bytes (should be %d)",bytes_read, fsize ); + } + + uint8_t res = bruteforceDump(dump,fsize,keytable); + free(dump); + return res; } /** * @@ -475,9 +612,18 @@ int _testBruteforce() **** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 **** **/ uint16_t keytable[128] = {0}; - //save some time... - startvalue = 0x7B0000; - errors |= bruteforceFile("iclass_dump.bin",keytable); + + //Test a few variants + if(fileExists("iclass_dump.bin")) + { + errors |= bruteforceFile("iclass_dump.bin",keytable); + }else if(fileExists("loclass/iclass_dump.bin")){ + errors |= bruteforceFile("loclass/iclass_dump.bin",keytable); + }else if(fileExists("client/loclass/iclass_dump.bin")){ + errors |= bruteforceFile("client/loclass/iclass_dump.bin",keytable); + }else{ + prnlog("Error: The file iclass_dump.bin was not found!"); + } } return errors; } @@ -511,15 +657,60 @@ int _test_iclass_key_permutation() prnlog("[+] Iclass key permutation OK!"); return 0; } +int _testHash1() +{ + uint8_t csn[8]= {0x01,0x02,0x03,0x04,0xF7,0xFF,0x12,0xE0}; + uint8_t k[8] = {0}; + hash1(csn, k); + uint8_t expected[8] = {0x7E,0x72,0x2F,0x40,0x2D,0x02,0x51,0x42}; + if(memcmp(k,expected,8) != 0) + { + prnlog("Error with hash1!"); + printarr("calculated", k, 8); + printarr("expected", expected, 8); + return 1; + } + return 0; +} int testElite() { prnlog("[+] Testing iClass Elite functinality..."); - prnlog("[+] Testing key diversification ..."); + prnlog("[+] Testing hash2"); + uint8_t k_cus[8] = {0x5B,0x7C,0x62,0xC4,0x91,0xC1,0x1B,0x39}; + + /** + *Expected: + * High Security Key Table + +00 F1 35 59 A1 0D 5A 26 7F 18 60 0B 96 8A C0 25 C1 +10 BF A1 3B B0 FF 85 28 75 F2 1F C6 8F 0E 74 8F 21 +20 14 7A 55 16 C8 A9 7D B3 13 0C 5D C9 31 8D A9 B2 +30 A3 56 83 0F 55 7E DE 45 71 21 D2 6D C1 57 1C 9C +40 78 2F 64 51 42 7B 64 30 FA 26 51 76 D3 E0 FB B6 +50 31 9F BF 2F 7E 4F 94 B4 BD 4F 75 91 E3 1B EB 42 +60 3F 88 6F B8 6C 2C 93 0D 69 2C D5 20 3C C1 61 95 +70 43 08 A0 2F FE B3 26 D7 98 0B 34 7B 47 70 A0 AB + + + +**** The 64-bit HS Custom Key Value = 5B7C62C491C11B39 **** + */ + uint8_t keytable[128] = {0}; + hash2(k_cus, keytable); + printarr_human_readable("Hash2", keytable, 128); + if(keytable[3] == 0xA1 && keytable[0x30] == 0xA3 && keytable[0x6F] == 0x95) + { + prnlog("[+] Hash2 looks fine..."); + } int errors = 0 ; + prnlog("[+] Testing hash1..."); + errors += _testHash1(); + prnlog("[+] Testing key diversification ..."); errors +=_test_iclass_key_permutation(); errors += _testBruteforce(); + return errors; }