X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/660d641a03456e99ea83c68dbd3d03bae2b64573..31cf80487727e43b6a7e75416a4a1c25d2c4dc8c:/client/nonce2key/nonce2key.c diff --git a/client/nonce2key/nonce2key.c b/client/nonce2key/nonce2key.c index 7459f1bb..ab97f597 100644 --- a/client/nonce2key/nonce2key.c +++ b/client/nonce2key/nonce2key.c @@ -9,61 +9,267 @@ //----------------------------------------------------------------------------- // MIFARE Darkside hack //----------------------------------------------------------------------------- +#include "nonce2key.h" -#define __STDC_FORMAT_MACROS -#include -#define llx PRIx64 +int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) { + struct Crypto1State *state; + uint32_t i, pos, rr = 0, nr_diff; + byte_t bt, ks3x[8], par[8][8]; -#include "nonce2key.h" -#include "ui.h" - -int nonce2key(uint32_t uid, uint32_t nt, uint64_t par_info, uint64_t ks_info, uint64_t * key) { - struct Crypto1State *state, *state_s; - uint32_t pos, nr, rr, nr_diff;//, ks1, ks2; - byte_t bt, i, ks3x[8], par[8][8]; - uint64_t key_recovered; - nr = rr = 0; - - // Reset the last three significant bits of the reader nonce - nr &= 0xffffff1f; + // Reset the last three significant bits of the reader nonce + nr &= 0xffffff1f; - PrintAndLog("\nuid(%08x) nt(%08x) par(%016"llx") ks(%016"llx")\n\n",uid,nt,par_info,ks_info); - - for (pos=0; pos<8; pos++) - { - ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; - bt = (par_info >> (pos*8)) & 0xff; - for (i=0; i<8; i++) - { - par[7-pos][i] = (bt >> i) & 0x01; - } - } - - printf("|diff|{nr} |ks3|ks3^5|parity |\n"); - printf("+----+--------+---+-----+---------------+\n"); - for (i=0; i<8; i++) - { - nr_diff = nr | i << 5; - printf("| %02x |%08x|",i << 5, nr_diff); - printf(" %01x | %01x |",ks3x[i], ks3x[i]^5); - for (pos=0; pos<7; pos++) printf("%01x,", par[i][pos]); - printf("%01x|\n", par[i][7]); - } + PrintAndLog("uid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08"llx")\n", uid, nt, par_info, ks_info, nr); + + for ( pos = 0; pos < 8; pos++ ) { + ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; + bt = (par_info >> (pos*8)) & 0xff; + + for ( i = 0; i < 8; i++) { + par[7-pos][i] = (bt >> i) & 0x01; + } + } + + printf("+----+--------+---+-----+---------------+\n"); + printf("|diff|{nr} |ks3|ks3^5|parity |\n"); + printf("+----+--------+---+-----+---------------+\n"); + for ( i = 0; i < 8; i++) { + nr_diff = nr | i << 5; + printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5); + + for (pos = 0; pos < 7; pos++) printf("%01x,", par[i][pos]); + printf("%01x|\n", par[i][7]); + } + printf("+----+--------+---+-----+---------------+\n"); + + clock_t t1 = clock(); + + state = lfsr_common_prefix(nr, rr, ks3x, par); + lfsr_rollback_word(state, uid ^ nt, 0); + crypto1_get_lfsr(state, key); + crypto1_destroy(state); + + t1 = clock() - t1; + if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks \n", (float)t1); + return 0; +} + +// call when PAR == 0, special attack? It seems to need two calls. with same uid, block, keytype +int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) { + + struct Crypto1State *state; + uint32_t i, pos, key_count; + byte_t ks3x[8]; + + uint64_t key_recovered; + + int64_t *state_s; + static uint8_t last_blockno; + static uint8_t last_keytype; + static uint32_t last_uid; + static int64_t *last_keylist; - state = lfsr_common_prefix(nr, rr, ks3x, par); - state_s = 0; - for (i = 0; (state) && ((state + i)->odd != 0 || (state + i)->even != 0) && (i < 10); i++) + if (last_uid != uid && + last_blockno != blockno && + last_keytype != keytype && + last_keylist != NULL) { - printf("%08x|%08x\n",(state+i)->odd, (state+i)->even); - state_s = state + i; + free(last_keylist); + last_keylist = NULL; + } + last_uid = uid; + last_blockno = blockno; + last_keytype = keytype; + + // Reset the last three significant bits of the reader nonce + nr &= 0xffffff1f; + + PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08"llx")\n", uid, nt, ks_info, nr); + + for (pos=0; pos<8; pos++) { + ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; + } + + PrintAndLog("parity is all zero, try special attack. Just wait for few more seconds..."); + + state = lfsr_common_prefix_ex(nr, ks3x); + state_s = (int64_t*)state; + + for (i = 0; (state) && ((state + i)->odd != -1); i++) { + lfsr_rollback_word(state + i, uid ^ nt, 0); + crypto1_get_lfsr(state + i, &key_recovered); + *(state_s + i) = key_recovered; } - if (!state_s) return 1; - lfsr_rollback_word(state_s, uid^nt, 0); - crypto1_get_lfsr(state_s, &key_recovered); - if (!state) free(state); + if(!state) + return 1; - *key = key_recovered; + qsort(state_s, i, sizeof(*state_s), compar_int); + *(state_s + i) = -1; + + //Create the intersection: + if ( last_keylist != NULL) { + + int64_t *p1, *p2, *p3; + p1 = p3 = last_keylist; + p2 = state_s; + + while ( *p1 != -1 && *p2 != -1 ) { + if (compar_int(p1, p2) == 0) { + printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n",(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1); + *p3++ = *p1++; + p2++; + } + else { + while (compar_int(p1, p2) == -1) ++p1; + while (compar_int(p1, p2) == 1) ++p2; + } + } + key_count = p3 - last_keylist; + PrintAndLog("one A"); + } else { + key_count = 0; + PrintAndLog("one B"); + } + + printf("key_count:%d\n", key_count); + + // The list may still contain several key candidates. Test each of them with mfCheckKeys + uint8_t keyBlock[6] = {0,0,0,0,0,0}; + uint64_t key64; + for (i = 0; i < key_count; i++) { + key64 = *(last_keylist + i); + num_to_bytes(key64, 6, keyBlock); + key64 = 0; + if (!mfCheckKeys(blockno, keytype, false, 1, keyBlock, &key64)) { + *key = key64; + free(last_keylist); + last_keylist = NULL; + free(state); + return 0; + } + } + + free(last_keylist); + last_keylist = state_s; + return 1; +} + +// 32 bit recover key from 2 nonces +bool tryMfk32(nonces_t data, uint64_t *outputkey) { + struct Crypto1State *s,*t; + uint64_t outkey = 0; + uint64_t key=0; // recovered key + uint32_t uid = data.cuid; + uint32_t nt = data.nonce; // first tag challenge (nonce) + uint32_t nr0_enc = data.nr; // first encrypted reader challenge + uint32_t ar0_enc = data.ar; // first encrypted reader response + uint32_t nr1_enc = data.nr2; // second encrypted reader challenge + uint32_t ar1_enc = data.ar2; // second encrypted reader response + clock_t t1 = clock(); + bool isSuccess = FALSE; + uint8_t counter = 0; + + + s = lfsr_recovery32(ar0_enc ^ prng_successor(nt, 64), 0); + + for(t = s; t->odd | t->even; ++t) { + lfsr_rollback_word(t, 0, 0); + lfsr_rollback_word(t, nr0_enc, 1); + lfsr_rollback_word(t, uid ^ nt, 0); + crypto1_get_lfsr(t, &key); + crypto1_word(t, uid ^ nt, 0); + crypto1_word(t, nr1_enc, 1); + if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt, 64))) { + //PrintAndLog("Found Key: [%012"llx"]", key); + outkey = key; + ++counter; + if (counter==20) break; + } + } + isSuccess = (counter > 0); + t1 = clock() - t1; + if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d\n", (float)t1, counter); + *outputkey = ( isSuccess ) ? outkey : 0; + crypto1_destroy(s); + return isSuccess; +} + +bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey) { + struct Crypto1State *s, *t; + uint64_t outkey = 0; + uint64_t key = 0; // recovered key + uint32_t uid = data.cuid; + uint32_t nt0 = data.nonce; // first tag challenge (nonce) + uint32_t nr0_enc = data.nr; // first encrypted reader challenge + uint32_t ar0_enc = data.ar; // first encrypted reader response + //uint32_t uid1 = le32toh(data+16); + uint32_t nt1 = data.nonce2; // second tag challenge (nonce) + uint32_t nr1_enc = data.nr2; // second encrypted reader challenge + uint32_t ar1_enc = data.ar2; // second encrypted reader response + bool isSuccess = FALSE; + int counter = 0; + + //PrintAndLog("Enter mfkey32_moebius"); + clock_t t1 = clock(); + + s = lfsr_recovery32(ar0_enc ^ prng_successor(nt0, 64), 0); - return 0; + for(t = s; t->odd | t->even; ++t) { + lfsr_rollback_word(t, 0, 0); + lfsr_rollback_word(t, nr0_enc, 1); + lfsr_rollback_word(t, uid ^ nt0, 0); + crypto1_get_lfsr(t, &key); + + crypto1_word(t, uid ^ nt1, 0); + crypto1_word(t, nr1_enc, 1); + if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt1, 64))) { + //PrintAndLog("Found Key: [%012"llx"]",key); + outkey=key; + ++counter; + if (counter==20) break; + } + } + isSuccess = (counter > 0); + t1 = clock() - t1; + if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d\n", (float)t1, counter); + *outputkey = ( isSuccess ) ? outkey : 0; + crypto1_destroy(s); + return isSuccess; +} + +int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){ + uint32_t uid = le32toh(data); + uint32_t nt = le32toh(data+4); // tag challenge + uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge + uint32_t ar_enc = le32toh(data+12); // encrypted reader response + uint32_t at_enc = le32toh(data+16); // encrypted tag response + return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey); +} + +int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){ + uint64_t key = 0; // recovered key + uint32_t ks2; // keystream used to encrypt reader response + uint32_t ks3; // keystream used to encrypt tag response + struct Crypto1State *revstate; + + PrintAndLog("Enter mfkey64"); + clock_t t1 = clock(); + + // Extract the keystream from the messages + ks2 = ar_enc ^ prng_successor(nt, 64); + ks3 = at_enc ^ prng_successor(nt, 96); + revstate = lfsr_recovery64(ks2, ks3); + lfsr_rollback_word(revstate, 0, 0); + lfsr_rollback_word(revstate, 0, 0); + lfsr_rollback_word(revstate, nr_enc, 1); + lfsr_rollback_word(revstate, uid ^ nt, 0); + crypto1_get_lfsr(revstate, &key); + PrintAndLog("Found Key: [%012"llx"]", key); + crypto1_destroy(revstate); + *outputkey = key; + + t1 = clock() - t1; + if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1); + return 0; }