X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/6658905f18a1eebc148836f26c731dea9c1377dc..6c5ad038603d132d10802eecbef5c2f2547d94ae:/armsrc/appmain.c?ds=sidebyside diff --git a/armsrc/appmain.c b/armsrc/appmain.c index 30312754..11047b1c 100644 --- a/armsrc/appmain.c +++ b/armsrc/appmain.c @@ -4,14 +4,15 @@ // Jonathan Westhues, Mar 2006 // Edits by Gerhard de Koning Gans, Sep 2007 (##) //----------------------------------------------------------------------------- + #include +#include #include "apps.h" +#include "legicrf.h" +#ifdef WITH_LCD #include "fonts.h" #include "LCD.h" - -// The large multi-purpose buffer, typically used to hold A/D samples, -// maybe pre-processed in some way. -DWORD BigBuf[16000]; +#endif //============================================================================= // A buffer where we can queue things up to be sent through the FPGA, for @@ -22,6 +23,13 @@ DWORD BigBuf[16000]; BYTE ToSend[256]; int ToSendMax; static int ToSendBit; +struct common_area common_area __attribute__((section(".commonarea"))); + +void BufferClear(void) +{ + memset(BigBuf,0,sizeof(BigBuf)); + DbpString("Buffer cleared"); +} void ToSendReset(void) { @@ -55,10 +63,14 @@ void ToSendStuffBit(int b) void DbpString(char *str) { + /* this holds up stuff unless we're connected to usb */ + if (!UsbConnected()) + return; + UsbCommand c; c.cmd = CMD_DEBUG_PRINT_STRING; - c.ext1 = strlen(str); - memcpy(c.d.asBytes, str, c.ext1); + c.arg[0] = strlen(str); + memcpy(c.d.asBytes, str, c.arg[0]); UsbSendPacket((BYTE *)&c, sizeof(c)); // TODO fix USB so stupid things like this aren't req'd @@ -67,76 +79,41 @@ void DbpString(char *str) void DbpIntegers(int x1, int x2, int x3) { + /* this holds up stuff unless we're connected to usb */ + if (!UsbConnected()) + return; + UsbCommand c; c.cmd = CMD_DEBUG_PRINT_INTEGERS; - c.ext1 = x1; - c.ext2 = x2; - c.ext3 = x3; + c.arg[0] = x1; + c.arg[1] = x2; + c.arg[2] = x3; UsbSendPacket((BYTE *)&c, sizeof(c)); // XXX SpinDelay(50); } -void AcquireRawAdcSamples125k(BOOL at134khz) -{ - BYTE *dest = (BYTE *)BigBuf; - int n = sizeof(BigBuf); - int i; - - memset(dest,0,n); - - if(at134khz) { - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); - } else { - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); - } - - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - i = 0; - for(;;) { - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - SSC_TRANSMIT_HOLDING = 0x43; - LED_D_ON(); - } - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - dest[i] = (BYTE)SSC_RECEIVE_HOLDING; - i++; - LED_D_OFF(); - if(i >= n) { - break; - } - } - } - DbpIntegers(dest[0], dest[1], at134khz); -} - //----------------------------------------------------------------------------- // Read an ADC channel and block till it completes, then return the result -// in ADC units (0 to 1023). Also a routine to average sixteen samples and +// in ADC units (0 to 1023). Also a routine to average 32 samples and // return that. //----------------------------------------------------------------------------- static int ReadAdc(int ch) { DWORD d; - ADC_CONTROL = ADC_CONTROL_RESET; - ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) | + AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; + AT91C_BASE_ADC->ADC_MR = + ADC_MODE_PRESCALE(32) | + ADC_MODE_STARTUP_TIME(16) | ADC_MODE_SAMPLE_HOLD_TIME(8); - ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch); + AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); - ADC_CONTROL = ADC_CONTROL_START; - while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch))) + AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; + while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ; - d = ADC_CHANNEL_DATA(ch); + d = AT91C_BASE_ADC->ADC_CDR[ch]; return d; } @@ -155,408 +132,401 @@ static int AvgAdc(int ch) void MeasureAntennaTuning(void) { -// Impedances are Zc = 1/(j*omega*C), in ohms -#define LF_TUNING_CAP_Z 1273 // 1 nF @ 125 kHz -#define HF_TUNING_CAP_Z 235 // 50 pF @ 13.56 MHz - - int vLf125, vLf134, vHf; // in mV + BYTE *dest = (BYTE *)BigBuf; + int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;; + int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV UsbCommand c; - // Let the FPGA drive the low-frequency antenna around 125 kHz. - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); - SpinDelay(20); - vLf125 = AvgAdc(4); - // Vref = 3.3V, and a 10000:240 voltage divider on the input - // can measure voltages up to 137500 mV - vLf125 = (137500 * vLf125) >> 10; + DbpString("Measuring antenna characteristics, please wait."); + memset(BigBuf,0,sizeof(BigBuf)); - // Let the FPGA drive the low-frequency antenna around 134 kHz. - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); - SpinDelay(20); - vLf134 = AvgAdc(4); - // Vref = 3.3V, and a 10000:240 voltage divider on the input - // can measure voltages up to 137500 mV - vLf134 = (137500 * vLf134) >> 10; +/* + * Sweeps the useful LF range of the proxmark from + * 46.8kHz (divisor=255) to 600kHz (divisor=19) and + * read the voltage in the antenna, the result left + * in the buffer is a graph which should clearly show + * the resonating frequency of your LF antenna + * ( hopefully around 95 if it is tuned to 125kHz!) + */ + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + for (i=255; i>19; i--) { + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); + SpinDelay(20); + // Vref = 3.3V, and a 10000:240 voltage divider on the input + // can measure voltages up to 137500 mV + adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10); + if (i==95) vLf125 = adcval; // voltage at 125Khz + if (i==89) vLf134 = adcval; // voltage at 134Khz + + dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes + if(dest[i] > peak) { + peakv = adcval; + peak = dest[i]; + peakf = i; + ptr = i; + } + } // Let the FPGA drive the high-frequency antenna around 13.56 MHz. FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(20); - vHf = AvgAdc(5); // Vref = 3300mV, and an 10:1 voltage divider on the input // can measure voltages up to 33000 mV - vHf = (33000 * vHf) >> 10; + vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; c.cmd = CMD_MEASURED_ANTENNA_TUNING; - c.ext1 = (vLf125 << 0) | (vLf134 << 16); - c.ext2 = vHf; - c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16); + c.arg[0] = (vLf125 << 0) | (vLf134 << 16); + c.arg[1] = vHf; + c.arg[2] = peakf | (peakv << 16); UsbSendPacket((BYTE *)&c, sizeof(c)); } -void SimulateTagLowFrequency(int period) +void SimulateTagHfListen(void) { + BYTE *dest = (BYTE *)BigBuf; + int n = sizeof(BigBuf); + BYTE v = 0; int i; - BYTE *tab = (BYTE *)BigBuf; - - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); + int p = 0; - PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK); + // We're using this mode just so that I can test it out; the simulated + // tag mode would work just as well and be simpler. + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); - PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT); - PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK); + // We need to listen to the high-frequency, peak-detected path. + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); -#define SHORT_COIL() LOW(GPIO_SSC_DOUT) -#define OPEN_COIL() HIGH(GPIO_SSC_DOUT) + FpgaSetupSsc(); i = 0; for(;;) { - while(!(PIO_PIN_DATA_STATUS & (1<SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0xff; } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + BYTE r = (BYTE)AT91C_BASE_SSC->SSC_RHR; - LED_D_ON(); - if(tab[i]) { - OPEN_COIL(); - } else { - SHORT_COIL(); - } - LED_D_OFF(); + v <<= 1; + if(r & 1) { + v |= 1; + } + p++; + + if(p >= 8) { + dest[i] = v; + v = 0; + p = 0; + i++; - while(PIO_PIN_DATA_STATUS & (1<= n) { + break; + } } - WDT_HIT(); } - - i++; - if(i == period) i = 0; } + DbpString("simulate tag (now type bitsamples)"); } -// compose fc/8 fc/10 waveform -static void fc(int c, int *n) { - BYTE *dest = (BYTE *)BigBuf; - int idx; - - // for when we want an fc8 pattern every 4 logical bits - if(c==0) { - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - } - // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples - if(c==8) { - for (idx=0; idx<6; idx++) { - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - } - } +void ReadMem(int addr) +{ + const DWORD *data = ((DWORD *)addr); + int i; - // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples - if(c==10) { - for (idx=0; idx<5; idx++) { - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - } - } + DbpString("Reading memory at address"); + DbpIntegers(0, 0, addr); + for (i = 0; i < 8; i+= 2) + DbpIntegers(0, data[i], data[i+1]); } -// prepare a waveform pattern in the buffer based on the ID given then -// simulate a HID tag until the button is pressed -static void CmdHIDsimTAG(int hi, int lo) +/* osimage version information is linked in */ +extern struct version_information version_information; +/* bootrom version information is pointed to from _bootphase1_version_pointer */ +extern char *_bootphase1_version_pointer, _flash_start, _flash_end; +void SendVersion(void) { - int n=0, i=0; - /* - HID tag bitstream format - The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits - A 1 bit is represented as 6 fc8 and 5 fc10 patterns - A 0 bit is represented as 5 fc10 and 6 fc8 patterns - A fc8 is inserted before every 4 bits - A special start of frame pattern is used consisting a0b0 where a and b are neither 0 - nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) - */ - - if (hi>0xFFF) { - DbpString("Tags can only have 44 bits."); - return; - } - fc(0,&n); - // special start of frame marker containing invalid bit sequences - fc(8, &n); fc(8, &n); // invalid - fc(8, &n); fc(10, &n); // logical 0 - fc(10, &n); fc(10, &n); // invalid - fc(8, &n); fc(10, &n); // logical 0 - - WDT_HIT(); - // manchester encode bits 43 to 32 - for (i=11; i>=0; i--) { - if ((i%4)==3) fc(0,&n); - if ((hi>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition - } else { - fc(8, &n); fc(10, &n); // high-low transition - } - } - - WDT_HIT(); - // manchester encode bits 31 to 0 - for (i=31; i>=0; i--) { - if ((i%4)==3) fc(0,&n); - if ((lo>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition - } else { - fc(8, &n); fc(10, &n); // high-low transition - } + char temp[48]; /* Limited data payload in USB packets */ + DbpString("Prox/RFID mark3 RFID instrument"); + + /* Try to find the bootrom version information. Expect to find a pointer at + * symbol _bootphase1_version_pointer, perform slight sanity checks on the + * pointer, then use it. + */ + char *bootrom_version = *(char**)&_bootphase1_version_pointer; + if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) { + DbpString("bootrom version information appears invalid"); + } else { + FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); + DbpString(temp); } - - LED_A_ON(); - SimulateTagLowFrequency(n); - LED_A_OFF(); + + FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); + DbpString(temp); + + FpgaGatherVersion(temp, sizeof(temp)); + DbpString(temp); } -// loop to capture raw HID waveform then FSK demodulate the TAG ID from it -static void CmdHIDdemodFSK(void) +#ifdef WITH_LF +// samy's sniff and repeat routine +void SamyRun() { - BYTE *dest = (BYTE *)BigBuf; - int m=0, n=0, i=0, idx=0, found=0, lastval=0; - DWORD hi=0, lo=0; + DbpString("Stand-alone mode! No PC necessary."); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); + // 3 possible options? no just 2 for now +#define OPTS 2 - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + int high[OPTS], low[OPTS]; - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); + // Oooh pretty -- notify user we're in elite samy mode now + LED(LED_RED, 200); + LED(LED_ORANGE, 200); + LED(LED_GREEN, 200); + LED(LED_ORANGE, 200); + LED(LED_RED, 200); + LED(LED_ORANGE, 200); + LED(LED_GREEN, 200); + LED(LED_ORANGE, 200); + LED(LED_RED, 200); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); + int selected = 0; + int playing = 0; - for(;;) { + // Turn on selected LED + LED(selected + 1, 0); + + for (;;) + { + UsbPoll(FALSE); WDT_HIT(); - LED_A_ON(); - if(BUTTON_PRESS()) { - LED_A_OFF(); - return; - } - i = 0; - m = sizeof(BigBuf); - memset(dest,128,m); - for(;;) { - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - SSC_TRANSMIT_HOLDING = 0x43; - LED_D_ON(); - } - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - dest[i] = (BYTE)SSC_RECEIVE_HOLDING; - // we don't care about actual value, only if it's more or less than a - // threshold essentially we capture zero crossings for later analysis - if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; - i++; - LED_D_OFF(); - if(i >= m) { - break; - } - } - } + // Was our button held down or pressed? + int button_pressed = BUTTON_HELD(1000); + SpinDelay(300); - // FSK demodulator + // Button was held for a second, begin recording + if (button_pressed > 0) + { + LEDsoff(); + LED(selected + 1, 0); + LED(LED_RED2, 0); - // sync to first lo-hi transition - for( idx=1; idx>1)&0xffff); - hi=0; - lo=0; - found=0; - } - } - if (found) { - if (dest[idx] && (!dest[idx+1]) ) { - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|0; - } else if ( (!dest[idx]) && dest[idx+1]) { - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|1; - } else { - found=0; - hi=0; - lo=0; - } - idx++; - } - if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) + // Change where to record (or begin playing) + else if (button_pressed) + { + // Next option if we were previously playing + if (playing) + selected = (selected + 1) % OPTS; + playing = !playing; + + LEDsoff(); + LED(selected + 1, 0); + + // Begin transmitting + if (playing) { - found=1; - idx+=6; - if (found && (hi|lo)) { - DbpString("TAG ID"); - DbpIntegers(hi, lo, (lo>>1)&0xffff); - hi=0; - lo=0; - found=0; - } + LED(LED_GREEN, 0); + DbpString("Playing"); + // wait for button to be released + while(BUTTON_PRESS()) + WDT_HIT(); + DbpIntegers(selected, high[selected], low[selected]); + CmdHIDsimTAG(high[selected], low[selected], 0); + DbpString("Done playing"); + if (BUTTON_HELD(1000) > 0) + { + DbpString("Exiting"); + LEDsoff(); + return; + } + + /* We pressed a button so ignore it here with a delay */ + SpinDelay(300); + + // when done, we're done playing, move to next option + selected = (selected + 1) % OPTS; + playing = !playing; + LEDsoff(); + LED(selected + 1, 0); } + else + while(BUTTON_PRESS()) + WDT_HIT(); } - WDT_HIT(); } } - -void SimulateTagHfListen(void) +#endif + +/* +OBJECTIVE +Listen and detect an external reader. Determine the best location +for the antenna. + +INSTRUCTIONS: +Inside the ListenReaderField() function, there is two mode. +By default, when you call the function, you will enter mode 1. +If you press the PM3 button one time, you will enter mode 2. +If you press the PM3 button a second time, you will exit the function. + +DESCRIPTION OF MODE 1: +This mode just listens for an external reader field and lights up green +for HF and/or red for LF. This is the original mode of the detectreader +function. + +DESCRIPTION OF MODE 2: +This mode will visually represent, using the LEDs, the actual strength of the +current compared to the maximum current detected. Basically, once you know +what kind of external reader is present, it will help you spot the best location to place +your antenna. You will probably not get some good results if there is a LF and a HF reader +at the same place! :-) + +LIGHT SCHEME USED: +*/ +static const char LIGHT_SCHEME[] = { + 0x0, /* ---- | No field detected */ + 0x1, /* X--- | 14% of maximum current detected */ + 0x2, /* -X-- | 29% of maximum current detected */ + 0x4, /* --X- | 43% of maximum current detected */ + 0x8, /* ---X | 57% of maximum current detected */ + 0xC, /* --XX | 71% of maximum current detected */ + 0xE, /* -XXX | 86% of maximum current detected */ + 0xF, /* XXXX | 100% of maximum current detected */ +}; +static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); + +void ListenReaderField(int limit) { - BYTE *dest = (BYTE *)BigBuf; - int n = sizeof(BigBuf); - BYTE v = 0; - int i; - int p = 0; + int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max; + int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max; + int mode=1, display_val, display_max, i; - // We're using this mode just so that I can test it out; the simulated - // tag mode would work just as well and be simpler. - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); +#define LF_ONLY 1 +#define HF_ONLY 2 - // We need to listen to the high-frequency, peak-detected path. - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + LEDsoff(); - FpgaSetupSsc(); + lf_av=lf_max=ReadAdc(ADC_CHAN_LF); + + if(limit != HF_ONLY) { + DbpString("LF 125/134 Baseline:"); + DbpIntegers(lf_av,0,0); + lf_baseline= lf_av; + } + + hf_av=hf_max=ReadAdc(ADC_CHAN_HF); + + if (limit != LF_ONLY) { + DbpString("HF 13.56 Baseline:"); + DbpIntegers(hf_av,0,0); + hf_baseline= hf_av; + } - i = 0; for(;;) { - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - SSC_TRANSMIT_HOLDING = 0xff; + if (BUTTON_PRESS()) { + SpinDelay(500); + switch (mode) { + case 1: + mode=2; + DbpString("Signal Strength Mode"); + break; + case 2: + default: + DbpString("Stopped"); + LEDsoff(); + return; + break; + } } - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - BYTE r = (BYTE)SSC_RECEIVE_HOLDING; + WDT_HIT(); - v <<= 1; - if(r & 1) { - v |= 1; + if (limit != HF_ONLY) { + if(mode==1) { + if (abs(lf_av - lf_baseline) > 10) LED_D_ON(); + else LED_D_OFF(); } - p++; - - if(p >= 8) { - dest[i] = v; - v = 0; - p = 0; - i++; + + ++lf_count; + lf_av_new= ReadAdc(ADC_CHAN_LF); + // see if there's a significant change + if(abs(lf_av - lf_av_new) > 10) { + DbpString("LF 125/134 Field Change:"); + DbpIntegers(lf_av,lf_av_new,lf_count); + lf_av= lf_av_new; + if (lf_av > lf_max) + lf_max = lf_av; + lf_count= 0; + } + } - if(i >= n) { + if (limit != LF_ONLY) { + if (mode == 1){ + if (abs(hf_av - hf_baseline) > 10) LED_B_ON(); + else LED_B_OFF(); + } + + ++hf_count; + hf_av_new= ReadAdc(ADC_CHAN_HF); + // see if there's a significant change + if(abs(hf_av - hf_av_new) > 10) { + DbpString("HF 13.56 Field Change:"); + DbpIntegers(hf_av,hf_av_new,hf_count); + hf_av= hf_av_new; + if (hf_av > hf_max) + hf_max = hf_av; + hf_count= 0; + } + } + + if(mode == 2) { + if (limit == LF_ONLY) { + display_val = lf_av; + display_max = lf_max; + } else if (limit == HF_ONLY) { + display_val = hf_av; + display_max = hf_max; + } else { /* Pick one at random */ + if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { + display_val = hf_av; + display_max = hf_max; + } else { + display_val = lf_av; + display_max = lf_max; + } + } + for (i=0; i= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { + if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); + if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); + if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); + if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); break; } } } } - DbpString("simulate tag (now type bitsamples)"); } void UsbPacketReceived(BYTE *packet, int len) @@ -564,159 +534,283 @@ void UsbPacketReceived(BYTE *packet, int len) UsbCommand *c = (UsbCommand *)packet; switch(c->cmd) { +#ifdef WITH_LF case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: - AcquireRawAdcSamples125k(c->ext1); + AcquireRawAdcSamples125k(c->arg[0]); break; +#endif +#ifdef WITH_LF + case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: + ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); + break; +#endif + +#ifdef WITH_ISO15693 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: AcquireRawAdcSamplesIso15693(); break; +#endif + + case CMD_BUFF_CLEAR: + BufferClear(); + break; +#ifdef WITH_ISO15693 case CMD_READER_ISO_15693: - ReaderIso15693(c->ext1); + ReaderIso15693(c->arg[0]); break; +#endif - case CMD_SIMTAG_ISO_15693: - SimTagIso15693(c->ext1); + case CMD_READER_LEGIC_RF: + LegicRfReader(); break; +#ifdef WITH_ISO15693 + case CMD_SIMTAG_ISO_15693: + SimTagIso15693(c->arg[0]); + break; +#endif +#ifdef WITH_ISO14443b case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: - AcquireRawAdcSamplesIso14443(c->ext1); + AcquireRawAdcSamplesIso14443(c->arg[0]); break; +#endif +#ifdef WITH_ISO14443b + case CMD_READ_SRI512_TAG: + ReadSRI512Iso14443(c->arg[0]); + break; + case CMD_READ_SRIX4K_TAG: + ReadSRIX4KIso14443(c->arg[0]); + break; +#endif + +#ifdef WITH_ISO14443a case CMD_READER_ISO_14443a: - ReaderIso14443a(c->ext1); + ReaderIso14443a(c->arg[0]); break; +#endif +#ifdef WITH_ISO14443a + case CMD_READER_MIFARE: + ReaderMifare(c->arg[0]); + break; +#endif + +#ifdef WITH_ISO14443b case CMD_SNOOP_ISO_14443: SnoopIso14443(); break; +#endif +#ifdef WITH_ISO14443a case CMD_SNOOP_ISO_14443a: SnoopIso14443a(); break; +#endif case CMD_SIMULATE_TAG_HF_LISTEN: SimulateTagHfListen(); break; +#ifdef WITH_ISO14443b case CMD_SIMULATE_TAG_ISO_14443: SimulateIso14443Tag(); break; - +#endif + +#ifdef WITH_ISO14443a case CMD_SIMULATE_TAG_ISO_14443a: - SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID + SimulateIso14443aTag(c->arg[0], c->arg[1]); // ## Simulate iso14443a tag - pass tag type & UID break; +#endif case CMD_MEASURE_ANTENNA_TUNING: MeasureAntennaTuning(); break; + case CMD_LISTEN_READER_FIELD: + ListenReaderField(c->arg[0]); + break; + +#ifdef WITH_LF case CMD_HID_DEMOD_FSK: - CmdHIDdemodFSK(); // Demodulate HID tag + CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag break; +#endif +#ifdef WITH_LF case CMD_HID_SIM_TAG: - CmdHIDsimTAG(c->ext1, c->ext2); // Simulate HID tag by ID + CmdHIDsimTAG(c->arg[0], c->arg[1], 1); // Simulate HID tag by ID break; +#endif case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control - LED_C_ON(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); - LED_C_OFF(); + LED_D_OFF(); // LED D indicates field ON or OFF + break; + +#ifdef WITH_LF + case CMD_READ_TI_TYPE: + ReadTItag(); + break; +#endif + +#ifdef WITH_LF + case CMD_WRITE_TI_TYPE: + WriteTItag(c->arg[0],c->arg[1],c->arg[2]); break; +#endif - case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: - case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: { + case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: { UsbCommand n; if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; } else { n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; } - n.ext1 = c->ext1; - memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD)); + n.arg[0] = c->arg[0]; + memcpy(n.d.asDwords, BigBuf+c->arg[0], 12*sizeof(DWORD)); UsbSendPacket((BYTE *)&n, sizeof(n)); break; } + case CMD_DOWNLOADED_SIM_SAMPLES_125K: { BYTE *b = (BYTE *)BigBuf; - memcpy(b+c->ext1, c->d.asBytes, 48); + memcpy(b+c->arg[0], c->d.asBytes, 48); break; } + +#ifdef WITH_LF case CMD_SIMULATE_TAG_125K: LED_A_ON(); - SimulateTagLowFrequency(c->ext1); + SimulateTagLowFrequency(c->arg[0], 1); LED_A_OFF(); break; +#endif + + case CMD_READ_MEM: + ReadMem(c->arg[0]); + break; + case CMD_SET_LF_DIVISOR: + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); + break; + + case CMD_SET_ADC_MUX: + switch(c->arg[0]) { + case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; + case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; + case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; + case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; + } + break; + + case CMD_VERSION: + SendVersion(); + break; + +#ifdef WITH_LF + case CMD_LF_SIMULATE_BIDIR: + SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); + break; +#endif + +#ifdef WITH_LCD case CMD_LCD_RESET: LCDReset(); break; - case CMD_LCD: - LCDSend(c->ext1); + LCDSend(c->arg[0]); break; - - case CMD_SETUP_WRITE: +#endif + case CMD_SETUP_WRITE: case CMD_FINISH_WRITE: + case CMD_HARDWARE_RESET: USB_D_PLUS_PULLUP_OFF(); SpinDelay(1000); SpinDelay(1000); - RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET; + AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; for(;;) { // We're going to reset, and the bootrom will take control. } break; + case CMD_START_FLASH: + if(common_area.flags.bootrom_present) { + common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; + } + USB_D_PLUS_PULLUP_OFF(); + AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; + for(;;); + break; + + case CMD_DEVICE_INFO: { + UsbCommand c; + c.cmd = CMD_DEVICE_INFO; + c.arg[0] = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; + if(common_area.flags.bootrom_present) c.arg[0] |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; + UsbSendPacket((BYTE*)&c, sizeof(c)); + } + break; default: DbpString("unknown command"); break; } } -void AppMain(void) +void __attribute__((noreturn)) AppMain(void) { - memset(BigBuf,0,sizeof(BigBuf)); SpinDelay(100); + + if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { + /* Initialize common area */ + memset(&common_area, 0, sizeof(common_area)); + common_area.magic = COMMON_AREA_MAGIC; + common_area.version = 1; + } + common_area.flags.osimage_present = 1; - LED_D_OFF(); - LED_C_OFF(); - LED_B_OFF(); - LED_A_OFF(); + LED_D_OFF(); + LED_C_OFF(); + LED_B_OFF(); + LED_A_OFF(); UsbStart(); // The FPGA gets its clock from us from PCK0 output, so set that up. - PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0); - PIO_DISABLE = (1 << GPIO_PCK0); - PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0; + AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; + AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; + AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz - PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK | - PMC_CLK_PRESCALE_DIV_4; - PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0); + AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | + AT91C_PMC_PRES_CLK_4; + AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; // Reset SPI - SPI_CONTROL = SPI_CONTROL_RESET; + AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; // Reset SSC - SSC_CONTROL = SSC_CONTROL_RESET; + AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; // Load the FPGA image, which we have stored in our flash. FpgaDownloadAndGo(); +#ifdef WITH_LCD + LCDInit(); // test text on different colored backgrounds - LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK ); - LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE ); - LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED ); - LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN ); - LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE ); - LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW); - LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN ); - LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA); + LCDString(" The quick brown fox ", (char *)&FONT6x8,1,1+8*0,WHITE ,BLACK ); + LCDString(" jumped over the ", (char *)&FONT6x8,1,1+8*1,BLACK ,WHITE ); + LCDString(" lazy dog. ", (char *)&FONT6x8,1,1+8*2,YELLOW ,RED ); + LCDString(" AaBbCcDdEeFfGgHhIiJj ", (char *)&FONT6x8,1,1+8*3,RED ,GREEN ); + LCDString(" KkLlMmNnOoPpQqRrSsTt ", (char *)&FONT6x8,1,1+8*4,MAGENTA,BLUE ); + LCDString("UuVvWwXxYyZz0123456789", (char *)&FONT6x8,1,1+8*5,BLUE ,YELLOW); + LCDString("`-=[]_;',./~!@#$%^&*()", (char *)&FONT6x8,1,1+8*6,BLACK ,CYAN ); + LCDString(" _+{}|:\\\"<>? ",(char *)&FONT6x8,1,1+8*7,BLUE ,MAGENTA); // color bands LCDFill(0, 1+8* 8, 132, 8, BLACK); @@ -728,30 +822,15 @@ void AppMain(void) LCDFill(0, 1+8*14, 132, 8, CYAN); LCDFill(0, 1+8*15, 132, 8, MAGENTA); +#endif + for(;;) { UsbPoll(FALSE); WDT_HIT(); - } -} -void SpinDelay(int ms) -{ - int ticks = (48000*ms) >> 10; - - // Borrow a PWM unit for my real-time clock - PWM_ENABLE = PWM_CHANNEL(0); - // 48 MHz / 1024 gives 46.875 kHz - PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10); - PWM_CH_DUTY_CYCLE(0) = 0; - PWM_CH_PERIOD(0) = 0xffff; - - WORD start = (WORD)PWM_CH_COUNTER(0); - - for(;;) { - WORD now = (WORD)PWM_CH_COUNTER(0); - if(now == (WORD)(start + ticks)) { - return; - } - WDT_HIT(); +#ifdef WITH_LF + if (BUTTON_HELD(1000) > 0) + SamyRun(); +#endif } }