X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/6658905f18a1eebc148836f26c731dea9c1377dc..af65f5f71df8019e34e885070c99e31b06ccce55:/fpga/hi_read_rx_xcorr.v diff --git a/fpga/hi_read_rx_xcorr.v b/fpga/hi_read_rx_xcorr.v index 253f5080..dece2db3 100644 --- a/fpga/hi_read_rx_xcorr.v +++ b/fpga/hi_read_rx_xcorr.v @@ -1,165 +1,185 @@ -//----------------------------------------------------------------------------- -// -// Jonathan Westhues, April 2006 -//----------------------------------------------------------------------------- - -module hi_read_rx_xcorr( - pck0, ck_1356meg, ck_1356megb, - pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, - adc_d, adc_clk, - ssp_frame, ssp_din, ssp_dout, ssp_clk, - cross_hi, cross_lo, - dbg, - xcorr_is_848, snoop -); - input pck0, ck_1356meg, ck_1356megb; - output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; - input [7:0] adc_d; - output adc_clk; - input ssp_dout; - output ssp_frame, ssp_din, ssp_clk; - input cross_hi, cross_lo; - output dbg; - input xcorr_is_848, snoop; - -// Carrier is steady on through this, unless we're snooping. -assign pwr_hi = ck_1356megb & (~snoop); -assign pwr_oe1 = 1'b0; -assign pwr_oe2 = 1'b0; -assign pwr_oe3 = 1'b0; -assign pwr_oe4 = 1'b0; - -reg ssp_clk; -reg ssp_frame; - -reg fc_div_2; -always @(posedge ck_1356meg) - fc_div_2 = ~fc_div_2; - -reg adc_clk; - -always @(xcorr_is_848 or fc_div_2 or ck_1356meg) - if(xcorr_is_848) - // The subcarrier frequency is fc/16; we will sample at fc, so that - // means the subcarrier is 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 ... - adc_clk <= ck_1356meg; - else - // The subcarrier frequency is fc/32; we will sample at fc/2, and - // the subcarrier will look identical. - adc_clk <= fc_div_2; - -// When we're a reader, we just need to do the BPSK demod; but when we're an -// eavesdropper, we also need to pick out the commands sent by the reader, -// using AM. Do this the same way that we do it for the simulated tag. -reg after_hysteresis, after_hysteresis_prev; -reg [11:0] has_been_low_for; -always @(negedge adc_clk) -begin - if(& adc_d[7:0]) after_hysteresis <= 1'b1; - else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0; - - if(after_hysteresis) - begin - has_been_low_for <= 7'b0; - end - else - begin - if(has_been_low_for == 12'd4095) - begin - has_been_low_for <= 12'd0; - after_hysteresis <= 1'b1; - end - else - has_been_low_for <= has_been_low_for + 1; - end -end - -// Let us report a correlation every 4 subcarrier cycles, or 4*16 samples, -// so we need a 6-bit counter. -reg [5:0] corr_i_cnt; -reg [5:0] corr_q_cnt; -// And a couple of registers in which to accumulate the correlations. -reg signed [15:0] corr_i_accum; -reg signed [15:0] corr_q_accum; -reg signed [7:0] corr_i_out; -reg signed [7:0] corr_q_out; - -// ADC data appears on the rising edge, so sample it on the falling edge -always @(negedge adc_clk) -begin - // These are the correlators: we correlate against in-phase and quadrature - // versions of our reference signal, and keep the (signed) result to - // send out later over the SSP. - if(corr_i_cnt == 7'd63) - begin - if(snoop) - begin - corr_i_out <= {corr_i_accum[12:6], after_hysteresis_prev}; - corr_q_out <= {corr_q_accum[12:6], after_hysteresis}; - end - else - begin - // Only correlations need to be delivered. - corr_i_out <= corr_i_accum[13:6]; - corr_q_out <= corr_q_accum[13:6]; - end - - corr_i_accum <= adc_d; - corr_q_accum <= adc_d; - corr_q_cnt <= 4; - corr_i_cnt <= 0; - end - else - begin - if(corr_i_cnt[3]) - corr_i_accum <= corr_i_accum - adc_d; - else - corr_i_accum <= corr_i_accum + adc_d; - - if(corr_q_cnt[3]) - corr_q_accum <= corr_q_accum - adc_d; - else - corr_q_accum <= corr_q_accum + adc_d; - - corr_i_cnt <= corr_i_cnt + 1; - corr_q_cnt <= corr_q_cnt + 1; - end - - // The logic in hi_simulate.v reports 4 samples per bit. We report two - // (I, Q) pairs per bit, so we should do 2 samples per pair. - if(corr_i_cnt == 6'd31) - after_hysteresis_prev <= after_hysteresis; - - // Then the result from last time is serialized and send out to the ARM. - // We get one report each cycle, and each report is 16 bits, so the - // ssp_clk should be the adc_clk divided by 64/16 = 4. - - if(corr_i_cnt[1:0] == 2'b10) - ssp_clk <= 1'b0; - - if(corr_i_cnt[1:0] == 2'b00) - begin - ssp_clk <= 1'b1; - // Don't shift if we just loaded new data, obviously. - if(corr_i_cnt != 7'd0) - begin - corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]}; - corr_q_out[7:1] <= corr_q_out[6:0]; - end - end - - if(corr_i_cnt[5:2] == 4'b000 || corr_i_cnt[5:2] == 4'b1000) - ssp_frame = 1'b1; - else - ssp_frame = 1'b0; - -end - -assign ssp_din = corr_i_out[7]; - -assign dbg = corr_i_cnt[3]; - -// Unused. -assign pwr_lo = 1'b0; - -endmodule +//----------------------------------------------------------------------------- +// +// Jonathan Westhues, April 2006 +//----------------------------------------------------------------------------- + +module hi_read_rx_xcorr( + pck0, ck_1356meg, ck_1356megb, + pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, + adc_d, adc_clk, + ssp_frame, ssp_din, ssp_dout, ssp_clk, + cross_hi, cross_lo, + dbg, + xcorr_is_848, snoop, xcorr_quarter_freq +); + input pck0, ck_1356meg, ck_1356megb; + output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; + input [7:0] adc_d; + output adc_clk; + input ssp_dout; + output ssp_frame, ssp_din, ssp_clk; + input cross_hi, cross_lo; + output dbg; + input xcorr_is_848, snoop, xcorr_quarter_freq; + +// Carrier is steady on through this, unless we're snooping. +assign pwr_hi = ck_1356megb & (~snoop); +assign pwr_oe1 = 1'b0; +assign pwr_oe2 = 1'b0; +assign pwr_oe3 = 1'b0; +assign pwr_oe4 = 1'b0; + +reg ssp_clk; +reg ssp_frame; + +reg fc_div_2; +always @(posedge ck_1356meg) + fc_div_2 = ~fc_div_2; + +reg fc_div_4; +always @(posedge fc_div_2) + fc_div_4 = ~fc_div_4; + +reg fc_div_8; +always @(posedge fc_div_4) + fc_div_8 = ~fc_div_8; + +reg adc_clk; + +always @(xcorr_is_848 or xcorr_quarter_freq or ck_1356meg) + if(~xcorr_quarter_freq) + begin + if(xcorr_is_848) + // The subcarrier frequency is fc/16; we will sample at fc, so that + // means the subcarrier is 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 ... + adc_clk <= ck_1356meg; + else + // The subcarrier frequency is fc/32; we will sample at fc/2, and + // the subcarrier will look identical. + adc_clk <= fc_div_2; + end + else + begin + if(xcorr_is_848) + // The subcarrier frequency is fc/64 + adc_clk <= fc_div_4; + else + // The subcarrier frequency is fc/128 + adc_clk <= fc_div_8; + end + +// When we're a reader, we just need to do the BPSK demod; but when we're an +// eavesdropper, we also need to pick out the commands sent by the reader, +// using AM. Do this the same way that we do it for the simulated tag. +reg after_hysteresis, after_hysteresis_prev; +reg [11:0] has_been_low_for; +always @(negedge adc_clk) +begin + if(& adc_d[7:0]) after_hysteresis <= 1'b1; + else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0; + + if(after_hysteresis) + begin + has_been_low_for <= 7'b0; + end + else + begin + if(has_been_low_for == 12'd4095) + begin + has_been_low_for <= 12'd0; + after_hysteresis <= 1'b1; + end + else + has_been_low_for <= has_been_low_for + 1; + end +end + +// Let us report a correlation every 4 subcarrier cycles, or 4*16 samples, +// so we need a 6-bit counter. +reg [5:0] corr_i_cnt; +reg [5:0] corr_q_cnt; +// And a couple of registers in which to accumulate the correlations. +reg signed [15:0] corr_i_accum; +reg signed [15:0] corr_q_accum; +reg signed [7:0] corr_i_out; +reg signed [7:0] corr_q_out; + +// ADC data appears on the rising edge, so sample it on the falling edge +always @(negedge adc_clk) +begin + // These are the correlators: we correlate against in-phase and quadrature + // versions of our reference signal, and keep the (signed) result to + // send out later over the SSP. + if(corr_i_cnt == 7'd63) + begin + if(snoop) + begin + corr_i_out <= {corr_i_accum[12:6], after_hysteresis_prev}; + corr_q_out <= {corr_q_accum[12:6], after_hysteresis}; + end + else + begin + // Only correlations need to be delivered. + corr_i_out <= corr_i_accum[13:6]; + corr_q_out <= corr_q_accum[13:6]; + end + + corr_i_accum <= adc_d; + corr_q_accum <= adc_d; + corr_q_cnt <= 4; + corr_i_cnt <= 0; + end + else + begin + if(corr_i_cnt[3]) + corr_i_accum <= corr_i_accum - adc_d; + else + corr_i_accum <= corr_i_accum + adc_d; + + if(corr_q_cnt[3]) + corr_q_accum <= corr_q_accum - adc_d; + else + corr_q_accum <= corr_q_accum + adc_d; + + corr_i_cnt <= corr_i_cnt + 1; + corr_q_cnt <= corr_q_cnt + 1; + end + + // The logic in hi_simulate.v reports 4 samples per bit. We report two + // (I, Q) pairs per bit, so we should do 2 samples per pair. + if(corr_i_cnt == 6'd31) + after_hysteresis_prev <= after_hysteresis; + + // Then the result from last time is serialized and send out to the ARM. + // We get one report each cycle, and each report is 16 bits, so the + // ssp_clk should be the adc_clk divided by 64/16 = 4. + + if(corr_i_cnt[1:0] == 2'b10) + ssp_clk <= 1'b0; + + if(corr_i_cnt[1:0] == 2'b00) + begin + ssp_clk <= 1'b1; + // Don't shift if we just loaded new data, obviously. + if(corr_i_cnt != 7'd0) + begin + corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]}; + corr_q_out[7:1] <= corr_q_out[6:0]; + end + end + + if(corr_i_cnt[5:2] == 4'b000 || corr_i_cnt[5:2] == 4'b1000) + ssp_frame = 1'b1; + else + ssp_frame = 1'b0; + +end + +assign ssp_din = corr_i_out[7]; + +assign dbg = corr_i_cnt[3]; + +// Unused. +assign pwr_lo = 1'b0; + +endmodule