X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/6658905f18a1eebc148836f26c731dea9c1377dc..c86220246ef82c34a76e7cae4eb83556fcdfd30b:/fpga/hi_iso14443a.v?ds=sidebyside diff --git a/fpga/hi_iso14443a.v b/fpga/hi_iso14443a.v index eb03fa23..ec5aa757 100644 --- a/fpga/hi_iso14443a.v +++ b/fpga/hi_iso14443a.v @@ -3,6 +3,13 @@ // Gerhard de Koning Gans, April 2008 //----------------------------------------------------------------------------- +// constants for the different modes: +`define SNIFFER 3'b000 +`define TAGSIM_LISTEN 3'b001 +`define TAGSIM_MOD 3'b010 +`define READER_LISTEN 3'b011 +`define READER_MOD 3'b100 + module hi_iso14443a( pck0, ck_1356meg, ck_1356megb, pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, @@ -25,26 +32,25 @@ module hi_iso14443a( reg ssp_clk; reg ssp_frame; -reg fc_div_2; -always @(posedge ck_1356meg) - fc_div_2 = ~fc_div_2; - wire adc_clk; assign adc_clk = ck_1356meg; -reg after_hysteresis, after_hysteresis_prev1, after_hysteresis_prev2, after_hysteresis_prev3; +reg after_hysteresis, pre_after_hysteresis, after_hysteresis_prev1, after_hysteresis_prev2, after_hysteresis_prev3, after_hysteresis_prev4; reg [11:0] has_been_low_for; reg [8:0] saw_deep_modulation; reg [2:0] deep_counter; reg deep_modulation; + always @(negedge adc_clk) begin - if(& adc_d[7:6]) after_hysteresis <= 1'b1; - else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0; + if(& adc_d[7:6]) after_hysteresis <= 1'b1; // adc_d >= 196 (U >= 3,28V) -> after_hysteris = 1 + else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0; // if adc_d <= 15 (U <= 1,13V) -> after_hysteresis = 0 + + pre_after_hysteresis <= after_hysteresis; - if(~(| adc_d[7:0])) + if(~(| adc_d[7:0])) // if adc_d == 0 (U <= 0,94V) begin - if(deep_counter == 3'd7) + if(deep_counter == 3'd7) // adc_d == 0 for 7 adc_clk ticks -> deep_modulation (by reader) begin deep_modulation <= 1'b1; saw_deep_modulation <= 8'd0; @@ -52,10 +58,10 @@ begin else deep_counter <= deep_counter + 1; end - else + else begin deep_counter <= 3'd0; - if(saw_deep_modulation == 8'd255) + if(saw_deep_modulation == 8'd255) // adc_d != 0 for 255 adc_clk ticks -> deep_modulation is over, now waiting for tag's response deep_modulation <= 1'b0; else saw_deep_modulation <= saw_deep_modulation + 1; @@ -63,229 +69,309 @@ begin if(after_hysteresis) begin - has_been_low_for <= 7'b0; + has_been_low_for <= 12'd0; end else begin if(has_been_low_for == 12'd4095) begin has_been_low_for <= 12'd0; - after_hysteresis <= 1'b1; + after_hysteresis <= 1'b1; // reset after_hysteresis to 1 if it had been 0 for 4096 cycles (no field) end else + begin has_been_low_for <= has_been_low_for + 1; + end end end + + // Report every 4 subcarrier cycles -// 64 periods of carrier frequency => 6-bit counter [negedge_cnt] -reg [5:0] negedge_cnt; -reg bit1, bit2, bit3; -reg [3:0] count_ones; -reg [3:0] count_zeros; -wire [7:0] avg; -reg [7:0] lavg; -reg signed [12:0] step1; -reg signed [12:0] step2; -reg [7:0] stepsize; +// 128 periods of carrier frequency => 7-bit counter [negedge_cnt] +reg [6:0] negedge_cnt; +reg bit1, bit2, bit3, bit4; reg curbit; -reg [12:0] average; -wire signed [9:0] dif; -// A register to send the results to the arm -reg signed [7:0] to_arm; +// storage for four previous samples: +reg [7:0] adc_d_1; +reg [7:0] adc_d_2; +reg [7:0] adc_d_3; +reg [7:0] adc_d_4; + +// the filtered signal (filter performs noise reduction and edge detection) +// (gaussian derivative) +wire signed [10:0] adc_d_filtered; +assign adc_d_filtered = (adc_d_4 << 1) + adc_d_3 - adc_d_1 - (adc_d << 1); + +// Registers to store steepest edges detected: +reg [7:0] rx_mod_falling_edge_max; +reg [7:0] rx_mod_rising_edge_max; + +// A register to send 8 Bit results to the arm +reg [7:0] to_arm; -assign avg[7:0] = average[11:4]; -assign dif = lavg - avg; reg bit_to_arm; reg fdt_indicator, fdt_elapsed; reg [10:0] fdt_counter; -reg [47:0] mod_sig_buf; -wire mod_sig_buf_empty; -reg [5:0] mod_sig_ptr; +//reg [47:0] mod_sig_buf; +reg [31:0] mod_sig_buf; +//reg [5:0] mod_sig_ptr; +reg [4:0] mod_sig_ptr; reg [3:0] mod_sig_flip; reg mod_sig, mod_sig_coil; reg temp_buffer_reset; reg sendbit; - -assign mod_sig_buf_empty = ~(|mod_sig_buf[47:0]); -reg [2:0] ssp_frame_counter; +reg [3:0] sub_carrier_cnt; +reg[3:0] reader_falling_edge_time; // ADC data appears on the rising edge, so sample it on the falling edge always @(negedge adc_clk) begin - - // last bit = 0 then fdt = 1172, in case of 0x26 (7-bit command, LSB first!) - // last bit = 1 then fdt = 1236, in case of 0x52 (7-bit command, LSB first!) - if(fdt_counter == 11'd740) fdt_indicator = 1'b1; + // ------------------------------------------------------------------------------------------------------------------------------------------------------------------ + // relevant for TAGSIM_MOD only. Timing of Tag's answer relative to a command received from a reader + // ISO14443-3 specifies: + // fdt = 1172, if last bit was 0. + // fdt = 1236, if last bit was 1. + // the FPGA takes care for the 1172 delay. To achieve the additional 1236-1172=64 ticks delay, the ARM must send an additional correction bit (before the start bit). + // The correction bit will be coded as 00010000, i.e. it adds 4 bits to the transmission stream, causing the required delay. + if(fdt_counter == 11'd547) fdt_indicator <= 1'b1; // The ARM must not send earlier to prevent mod_sig_buf overflow. + // The mod_sig_buf can buffer 29 excess data bits, i.e. a maximum delay of 29 * 16 = 464 adc_clk ticks. fdt_indicator + // could appear at ssp_din after 1 tick, 16 ticks for the transfer, 128 ticks until response is sended. + // 1148 - 464 - 1 - 128 - 8 = 547 - if(fdt_counter == 11'd1148) + if ((mod_type == `TAGSIM_MOD) || (mod_type == `TAGSIM_LISTEN)) begin - if(fdt_elapsed) + if(fdt_counter == 11'd1148) // the RF part delays the rising edge by approx 5 adc_clk_ticks, the ADC needs 3 clk_ticks for A/D conversion, + // 16 ticks delay by mod_sig_buf + // 1172 - 5 - 3 - 16 = 1148. begin - if(negedge_cnt[3:0] == mod_sig_flip[3:0]) mod_sig_coil <= mod_sig; + if(fdt_elapsed) + begin + if(negedge_cnt[3:0] == mod_sig_flip) mod_sig_coil <= mod_sig; // start modulating (if mod_sig is already set) + sub_carrier_cnt[3:0] <= sub_carrier_cnt[3:0] + 1; + end + else + begin + mod_sig_flip <= negedge_cnt[3:0]; // start modulation at this time + sub_carrier_cnt[3:0] <= 0; // subcarrier phase in sync with start of modulation + mod_sig_coil <= mod_sig; // assign signal to coil + fdt_elapsed = 1'b1; + if(~(| mod_sig_ptr[4:0])) mod_sig_ptr <= 5'd9; // if mod_sig_ptr == 0 -> didn't receive a 1 yet. Delay next 1 by n*128 ticks. + else temp_buffer_reset = 1'b1; // else fix the buffer size at current position + end end else begin - mod_sig_flip[3:0] <= negedge_cnt[3:0]; - mod_sig_coil <= mod_sig; - fdt_elapsed = 1'b1; - fdt_indicator = 1'b0; - - if(~(| mod_sig_ptr[5:0])) mod_sig_ptr <= 6'b001001; - else temp_buffer_reset = 1'b1; // fix position of the buffer pointer + fdt_counter <= fdt_counter + 1; // Count until 1155 end end - else + else // other modes: don't use the delay line. begin - fdt_counter <= fdt_counter + 1; - end + mod_sig_coil <= ssp_dout; + end - if(& negedge_cnt[3:0]) + + //------------------------------------------------------------------------------------------------------------------------------------------- + // Relevant for READER_LISTEN only + // look for steepest falling and rising edges: + + if(negedge_cnt[3:0] == 4'd1) // reset modulation detector. Save current edge. begin - // When there is a dip in the signal and not in reader mode - if(~after_hysteresis && mod_sig_buf_empty && ~((mod_type == 3'b100) || (mod_type == 3'b011) || (mod_type == 3'b010))) // last condition to prevent reset + if (adc_d_filtered > 0) begin - fdt_counter <= 11'd0; - fdt_elapsed = 1'b0; - fdt_indicator = 1'b0; - temp_buffer_reset = 1'b0; - mod_sig_ptr <= 6'b000000; + rx_mod_falling_edge_max <= adc_d_filtered; + rx_mod_rising_edge_max <= 0; + end + else + begin + rx_mod_falling_edge_max <= 0; + rx_mod_rising_edge_max <= -adc_d_filtered; end - - lavg <= avg; - - if(stepsize<16) stepsize = 8'd16; - - if(dif>0) + end + else // detect modulation + begin + if (adc_d_filtered > 0) begin - step1 = dif*3; - step2 = stepsize*2; // 3:2 - if(step1>step2) - begin - curbit = 1'b0; - stepsize = dif; - end + if (adc_d_filtered > rx_mod_falling_edge_max) + rx_mod_falling_edge_max <= adc_d_filtered; end else begin - step1 = dif*3; - step1 = -step1; - step2 = stepsize*2; - if(step1>step2) - begin - curbit = 1'b1; - stepsize = -dif; - end + if (-adc_d_filtered > rx_mod_rising_edge_max) + rx_mod_rising_edge_max <= -adc_d_filtered; end - - if(curbit) + end + + // detect modulation signal: if modulating, there must be a falling and a rising edge + if (rx_mod_falling_edge_max > 6 && rx_mod_rising_edge_max > 6) + curbit <= 1'b1; // modulation + else + curbit <= 1'b0; // no modulation + + + // store previous samples for filtering and edge detection: + adc_d_4 <= adc_d_3; + adc_d_3 <= adc_d_2; + adc_d_2 <= adc_d_1; + adc_d_1 <= adc_d; + + + // Relevant for TAGSIM_MOD only (timing the Tag's answer. See above) + // When we see end of a modulation and we are emulating a Tag, start fdt_counter. + // Reset fdt_counter when modulation is detected. + if(~after_hysteresis /* && mod_sig_buf_empty */ && mod_type == `TAGSIM_LISTEN) + begin + fdt_counter <= 11'd0; + fdt_elapsed = 1'b0; + fdt_indicator <= 1'b0; + temp_buffer_reset = 1'b0; + mod_sig_ptr <= 5'b00000; + mod_sig = 1'b0; + end + + + if(negedge_cnt[3:0] == 4'd1) + begin + // What do we communicate to the ARM + if(mod_type == `TAGSIM_LISTEN) + sendbit = after_hysteresis; + else if(mod_type == `TAGSIM_MOD) + /* if(fdt_counter > 11'd772) sendbit = mod_sig_coil; // huh? + else */ + sendbit = fdt_indicator; + else if (mod_type == `READER_LISTEN) + sendbit = curbit; + else + sendbit = 1'b0; + end + + + + // check timing of a falling edge in reader signal + if (pre_after_hysteresis && ~after_hysteresis) + reader_falling_edge_time[3:0] <= negedge_cnt[3:0]; + + + + // sync clock to external reader's clock: + if (negedge_cnt[3:0] == 4'd13 && (mod_type == `SNIFFER || mod_type == `TAGSIM_MOD || mod_type == `TAGSIM_LISTEN)) + begin + // adjust clock if necessary: + if (reader_falling_edge_time < 4'd8 && reader_falling_edge_time > 4'd1) begin - count_zeros <= 4'd0; - if(& count_ones[3:2]) - begin - curbit = 1'b0; // suppressed signal - stepsize = 8'd24; // just a fine number - end - else - begin - count_ones <= count_ones + 1; - end + negedge_cnt <= negedge_cnt; // freeze time + end + else if (reader_falling_edge_time == 4'd8) + begin + negedge_cnt <= negedge_cnt + 1; // the desired state. Advance as usual; end else begin - count_ones <= 4'd0; - if(& count_zeros[3:0]) + negedge_cnt[3:0] <= 4'd15; // time warp + end + reader_falling_edge_time <= 4'd8; // only once per detected rising edge + end + + + + //------------------------------------------------------------------------------------------------------------------------------------------ + // Prepare 8 Bits to communicate to ARM + if (negedge_cnt == 7'd63) + begin + if (mod_type == `SNIFFER) + begin + if(deep_modulation) // a reader is sending (or there's no field at all) begin - stepsize = 8'd24; + to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis_prev4,1'b0,1'b0,1'b0,1'b0}; end else begin - count_zeros <= count_zeros + 1; - end + to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis_prev4,bit1,bit2,bit3,bit4}; + end + negedge_cnt <= 0; end - - // What do we communicate to the ARM - if(mod_type == 3'b001) sendbit = after_hysteresis; - else if(mod_type == 3'b010) + else begin - if(fdt_counter > 11'd772) sendbit = mod_sig_coil; - else sendbit = fdt_indicator; + negedge_cnt <= negedge_cnt + 1; end - else if(mod_type == 3'b011) sendbit = curbit; - else sendbit = 1'b0; - - end - - if(~(| negedge_cnt[3:0])) average <= adc_d; - else average <= average + adc_d; - - if(negedge_cnt == 7'd63) - begin - if(deep_modulation) + end + else if(negedge_cnt == 7'd127) + begin + if (mod_type == `TAGSIM_MOD) begin - to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis,1'b0,1'b0,1'b0,1'b0}; + to_arm[7:0] <= {mod_sig_ptr[4:0], mod_sig_flip[3:1]}; + negedge_cnt <= 0; end else begin - to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis,bit1,bit2,bit3,curbit}; + to_arm[7:0] <= 8'd0; + negedge_cnt <= negedge_cnt + 1; end + end + else + begin + negedge_cnt <= negedge_cnt + 1; + end - negedge_cnt <= 0; - end - else - begin - negedge_cnt <= negedge_cnt + 1; - end - - if(negedge_cnt == 6'd15) + if(negedge_cnt == 7'd1) begin after_hysteresis_prev1 <= after_hysteresis; bit1 <= curbit; end - if(negedge_cnt == 6'd31) + if(negedge_cnt == 7'd17) begin after_hysteresis_prev2 <= after_hysteresis; bit2 <= curbit; end - if(negedge_cnt == 6'd47) + if(negedge_cnt == 7'd33) begin after_hysteresis_prev3 <= after_hysteresis; bit3 <= curbit; end + if(negedge_cnt == 7'd49) + begin + after_hysteresis_prev4 <= after_hysteresis; + bit4 <= curbit; + end - - if(mod_type != 3'b000) + //-------------------------------------------------------------------------------------------------------------------------------------------------------------- + // Relevant in TAGSIM_MOD only. Delay-Line to buffer data and send it at the correct time + if(negedge_cnt[3:0] == 4'd0) // at rising edge of ssp_clk - ssp_dout changes at the falling edge. begin - if(negedge_cnt[3:0] == 4'b1000) + mod_sig_buf[31:0] <= {mod_sig_buf[30:1], ssp_dout, 1'b0}; // shift in new data starting at mod_sig_buf[1]. mod_sig_buf[0] = 0 always. + // asign the delayed signal to mod_sig, but don't modulate with the correction bit (which is sent as 00010000, all other bits will come with at least 2 consecutive 1s) + // side effect: when ptr = 1 it will cancel the first 1 of every block of ones. Note: this would only be the case if we received a 1 just before fdt_elapsed. + if((ssp_dout || (| mod_sig_ptr[4:0])) && ~fdt_elapsed) // buffer a 1 (and all subsequent data) until fdt_counter = 1148 adc_clk ticks. + //if(mod_sig_ptr == 6'b101110) // buffer overflow at 46 - this would mean data loss + //begin + // mod_sig_ptr <= 6'b000000; + //end + if (mod_sig_ptr == 5'd30) mod_sig_ptr <= 5'd0; + else mod_sig_ptr <= mod_sig_ptr + 1; // increase buffer (= increase delay by 16 adc_clk ticks). ptr always points to first 1. + else if(fdt_elapsed && ~temp_buffer_reset) + // fdt_elapsed. If we didn't receive a 1 yet, ptr will be at 9 and not yet fixed. Otherwise temp_buffer_reset will be 1 already. begin - // The modulation signal of the tag - mod_sig_buf[47:0] <= {mod_sig_buf[46:1], ssp_dout, 1'b0}; - if((ssp_dout || (| mod_sig_ptr[5:0])) && ~fdt_elapsed) - if(mod_sig_ptr == 6'b101110) - begin - mod_sig_ptr <= 6'b000000; - end - else mod_sig_ptr <= mod_sig_ptr + 1; - else if(fdt_elapsed && ~temp_buffer_reset) - begin - if(ssp_dout) temp_buffer_reset = 1'b1; - if(mod_sig_ptr == 6'b000010) mod_sig_ptr <= 6'b001001; - else mod_sig_ptr <= mod_sig_ptr - 1; - end - else - begin - // side effect: when ptr = 1 it will cancel the first 1 of every block of ones - if(~mod_sig_buf[mod_sig_ptr-1] && ~mod_sig_buf[mod_sig_ptr+1]) mod_sig = 1'b0; - else mod_sig = mod_sig_buf[mod_sig_ptr] & fdt_elapsed; // & fdt_elapsed was for direct relay to oe4 - end + // wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen + // at intervals of 8 * 16 = 128 adc_clk ticks intervals (as defined in ISO14443-3) + if(ssp_dout) temp_buffer_reset = 1'b1; + if(mod_sig_ptr == 5'd2) mod_sig_ptr <= 5'd9; // still nothing received, need to go for the next interval + else mod_sig_ptr <= mod_sig_ptr - 1; // decrease buffer. + end + else + begin + if(~mod_sig_buf[mod_sig_ptr-1] && ~mod_sig_buf[mod_sig_ptr+1]) mod_sig = 1'b0; + // finally, assign the delayed signal: + else mod_sig = mod_sig_buf[mod_sig_ptr]; end end - // SSP Clock and data - if(mod_type == 3'b000) + //----------------------------------------------------------------------------------------------------------------------------------------------------------------------- + // Communication to ARM (SSP Clock and data) + // SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)): + if(mod_type == `SNIFFER) begin if(negedge_cnt[2:0] == 3'b100) ssp_clk <= 1'b0; @@ -294,7 +380,7 @@ begin begin ssp_clk <= 1'b1; // Don't shift if we just loaded new data, obviously. - if(negedge_cnt != 7'd0) + if(negedge_cnt[5:0] != 6'd0) begin to_arm[7:1] <= to_arm[6:0]; end @@ -308,53 +394,66 @@ begin bit_to_arm = to_arm[7]; end else + //----------------------------------------------------------------------------------------------------------------------------------------------------------------------- + // Communication to ARM (SSP Clock and data) + // all other modes (ssp_clk = adc_clk / 16, ssp_frame clock = adc_clk / 128): begin if(negedge_cnt[3:0] == 4'b1000) ssp_clk <= 1'b0; if(negedge_cnt[3:0] == 4'b0111) begin - if(ssp_frame_counter == 3'd7) ssp_frame_counter <= 3'd0; - else ssp_frame_counter <= ssp_frame_counter + 1; + // if(ssp_frame_counter == 3'd7) ssp_frame_counter <= 3'd0; + // else ssp_frame_counter <= ssp_frame_counter + 1; + if (negedge_cnt[6:4] == 3'b000) ssp_frame = 1'b1; + else ssp_frame = 1'b0; end + // ssp_frame = (ssp_frame_counter == 3'd7); if(negedge_cnt[3:0] == 4'b0000) begin ssp_clk <= 1'b1; + // Don't shift if we just loaded new data, obviously. + if(negedge_cnt[6:0] != 7'd0) + begin + to_arm[7:1] <= to_arm[6:0]; + end end - ssp_frame = (ssp_frame_counter == 3'd7); - - bit_to_arm = sendbit; - end + if (mod_type == `TAGSIM_MOD && fdt_elapsed && temp_buffer_reset) + // transmit timing information + bit_to_arm = to_arm[7]; + else + // transmit data or fdt_indicator + bit_to_arm = sendbit; + end -end +end //always @(negedge adc_clk) assign ssp_din = bit_to_arm; -// Modulating carrier frequency is fc/16 -wire modulating_carrier; -assign modulating_carrier = (mod_sig_coil & negedge_cnt[3] & (mod_type == 3'b010)); -assign pwr_hi = (ck_1356megb & (((mod_type == 3'b100) & ~mod_sig_coil) || (mod_type == 3'b011))); -// This one is all LF, so doesn't matter -//assign pwr_oe2 = modulating_carrier; -assign pwr_oe2 = 1'b0; +// Subcarrier (adc_clk/16, for TAGSIM_MOD only). +wire sub_carrier; +assign sub_carrier = ~sub_carrier_cnt[3]; -// Toggle only one of these, since we are already producing much deeper -// modulation than a real tag would. -//assign pwr_oe1 = modulating_carrier; -assign pwr_oe1 = 1'b0; -assign pwr_oe4 = modulating_carrier; -//assign pwr_oe4 = 1'b0; +// in READER_MOD: drop carrier for mod_sig_coil==1 (pause); in READER_LISTEN: carrier always on; in other modes: carrier always off +assign pwr_hi = (ck_1356megb & (((mod_type == `READER_MOD) & ~mod_sig_coil) || (mod_type == `READER_LISTEN))); -// This one is always on, so that we can watch the carrier. -//assign pwr_oe3 = modulating_carrier; -assign pwr_oe3 = 1'b0; +// Enable HF antenna drivers: +assign pwr_oe1 = 1'b0; +assign pwr_oe3 = 1'b0; -assign dbg = negedge_cnt[3]; +// TAGSIM_MOD: short circuit antenna with different resistances (modulated by sub_carrier modulated by mod_sig_coil) +// for pwr_oe4 = 1 (tristate): antenna load = 10k || 33 = 32,9 Ohms +// for pwr_oe4 = 0 (active): antenna load = 10k || 33 || 33 = 16,5 Ohms +assign pwr_oe4 = ~(mod_sig_coil & sub_carrier & (mod_type == `TAGSIM_MOD)); -// Unused. +// This is all LF, so doesn't matter. +assign pwr_oe2 = 1'b0; assign pwr_lo = 1'b0; + +assign dbg = negedge_cnt[3]; + endmodule