X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/76c7e6c36368c3fc23dc4fab1fe5852023c78fac..f595de25e95a66b9cf0e31c1925500db0abdae08:/armsrc/lfops.c?ds=sidebyside

diff --git a/armsrc/lfops.c b/armsrc/lfops.c
index 11fc8c50..1a7c3224 100644
--- a/armsrc/lfops.c
+++ b/armsrc/lfops.c
@@ -17,6 +17,9 @@
 #include "crapto1.h"
 #include "mifareutil.h"
 
+#define SHORT_COIL()	LOW(GPIO_SSC_DOUT)
+#define OPEN_COIL()		HIGH(GPIO_SSC_DOUT)
+
 void LFSetupFPGAForADC(int divisor, bool lf_field)
 {
 	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
@@ -31,8 +34,10 @@ void LFSetupFPGAForADC(int divisor, bool lf_field)
 
 	// Connect the A/D to the peak-detected low-frequency path.
 	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+	
 	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(50);
+	SpinDelay(150);
+	
 	// Now set up the SSC to get the ADC samples that are now streaming at us.
 	FpgaSetupSsc();
 }
@@ -40,24 +45,23 @@ void LFSetupFPGAForADC(int divisor, bool lf_field)
 void AcquireRawAdcSamples125k(int divisor)
 {
 	LFSetupFPGAForADC(divisor, true);
-	DoAcquisition125k(-1);
+	DoAcquisition125k();
 }
 
 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
 {
 	LFSetupFPGAForADC(divisor, false);
-	DoAcquisition125k(trigger_threshold);
+	DoAcquisition125k_threshold(trigger_threshold);
 }
 
 // split into two routines so we can avoid timing issues after sending commands //
-void DoAcquisition125k(int trigger_threshold)
+void DoAcquisition125k_internal(int trigger_threshold, bool silent)
 {
-	uint8_t *dest = (uint8_t *)BigBuf;
-	int n = sizeof(BigBuf);
-	int i;
+	uint8_t *dest =  mifare_get_bigbufptr();
+	int n = 24000;
+	int i = 0;
+	memset(dest, 0x00, n);
 
-	memset(dest, 0, n);
-	i = 0;
 	for(;;) {
 		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
 			AT91C_BASE_SSC->SSC_THR = 0x43;
@@ -73,34 +77,38 @@ void DoAcquisition125k(int trigger_threshold)
 			if (++i >= n) break;
 		}
 	}
-	Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
+	if (!silent){
+		Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
 			dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
+	}
 }
-
+void DoAcquisition125k_threshold(int trigger_threshold) {
+	 DoAcquisition125k_internal(trigger_threshold, true);
+}
+void DoAcquisition125k() {
+	 DoAcquisition125k_internal(-1, true);
+}	
+	
 void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
 {
-	int at134khz;
 
 	/* Make sure the tag is reset */
 	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	SpinDelay(2500);
 
+	int divisor_used = 95; // 125 KHz
 	// see if 'h' was specified
-	if (command[strlen((char *) command) - 1] == 'h')
-		at134khz = TRUE;
-	else
-		at134khz = FALSE;
 
-	if (at134khz)
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-	else
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+	if (command[strlen((char *) command) - 1] == 'h')
+		divisor_used = 88; // 134.8 KHz
 
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); 
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-
 	// Give it a bit of time for the resonant antenna to settle.
 	SpinDelay(50);
+	
+	
 	// And a little more time for the tag to fully power up
 	SpinDelay(2000);
 
@@ -112,10 +120,7 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1,
 		FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 		LED_D_OFF();
 		SpinDelayUs(delay_off);
-		if (at134khz)
-			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-		else
-			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); 
 
 		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
 		LED_D_ON();
@@ -127,10 +132,7 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1,
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LED_D_OFF();
 	SpinDelayUs(delay_off);
-	if (at134khz)
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
-	else
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); 
 
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
 
@@ -289,17 +291,17 @@ void WriteTIbyte(uint8_t b)
 	{
 		if (b&(1<<i)) {
 			// stop modulating antenna
-			LOW(GPIO_SSC_DOUT);
+			SHORT_COIL();
 			SpinDelayUs(1000);
 			// modulate antenna
-			HIGH(GPIO_SSC_DOUT);
+			OPEN_COIL();
 			SpinDelayUs(1000);
 		} else {
 			// stop modulating antenna
-			LOW(GPIO_SSC_DOUT);
+			SHORT_COIL();
 			SpinDelayUs(300);
 			// modulate antenna
-			HIGH(GPIO_SSC_DOUT);
+			OPEN_COIL();
 			SpinDelayUs(1700);
 		}
 	}
@@ -449,58 +451,82 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 
 void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
 {
-	int i;
-	uint8_t *tab = (uint8_t *)BigBuf;
-    
+	int i = 0;
+	uint8_t *buf = (uint8_t *)BigBuf;
+
 	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
-    
-	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
-    
-	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
-	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
-    
-#define SHORT_COIL()	LOW(GPIO_SSC_DOUT)
-#define OPEN_COIL()		HIGH(GPIO_SSC_DOUT)
-    
-	i = 0;
-	for(;;) {
-		while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
-			if(BUTTON_PRESS()) {
-				DbpString("Stopped");
-				return;
-			}
-			WDT_HIT();
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+	//FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+	
+	// Connect the A/D to the peak-detected low-frequency path.
+	//SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+		
+	// Configure output and enable pin that is connected to the FPGA (for modulating)
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;    
+	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;    // (PIO_PER) PIO Enable Register , 
+	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;    // (PIO_OER) Output Enable Register
+	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;     // (PIO_ODR) Output Disable Register
+
+	// Give it a bit of time for the resonant antenna to settle.
+	SpinDelay(150);
+	
+	while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
+	while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK);    // wait for ssp_clk to go low
+	
+ 	while(!BUTTON_PRESS()) { 
+		WDT_HIT();
+
+		// PIO_PDSR = Pin Data Status Register  
+		// GPIO_SSC_CLK  = SSC Transmit Clock
+		while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {    // wait for ssp_clk to go high
+			 if(BUTTON_PRESS()) {
+				 DbpString("Stopped at 0");
+				 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+				 return;
+			 }
+			 WDT_HIT();
 		}
         
-		if (ledcontrol)
-			LED_D_ON();
-        
-		if(tab[i])
-			OPEN_COIL();
-		else
-			SHORT_COIL();
-        
-		if (ledcontrol)
-			LED_D_OFF();
-        
-		while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
-			if(BUTTON_PRESS()) {
-				DbpString("Stopped");
+		// PIO_CODR = Clear Output Data Register
+		// PIO_SODR = Set Output Data Register
+		//#define LOW(x)	 AT91C_BASE_PIOA->PIO_CODR = (x)
+		//#define HIGH(x)	 AT91C_BASE_PIOA->PIO_SODR = (x)
+		
+		if ( buf[i] > 0 ){
+			HIGH(GPIO_SSC_DOUT);
+			//FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+			//FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
+		} else {
+			LOW(GPIO_SSC_DOUT);
+			//FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); 
+		}
+	   
+		 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {   // wait for ssp_clk to go low
+			 if(BUTTON_PRESS()) {
+				DbpString("Stopped at 1");
+				FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
 				return;
 			}
 			WDT_HIT();
-		}
-        
-		i++;
+		 }
+		
+		//SpinDelayUs(512);
+		
+		++i;
 		if(i == period) {
 			i = 0;
 			if (gap) {
-				SHORT_COIL();
-				SpinDelayUs(gap);
-			}
+				// turn of modulation
+				LOW(GPIO_SSC_DOUT);
+				// wait
+				SpinDelay(gap);
+			} 
 		}
 	}
+	DbpString("Stopped");
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+	return;
 }
 
 #define DEBUG_FRAME_CONTENTS 1
@@ -605,422 +631,213 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
 
 	if (ledcontrol)
 		LED_A_ON();
+	
 	SimulateTagLowFrequency(n, 0, ledcontrol);
 
 	if (ledcontrol)
 		LED_A_OFF();
 }
 
-
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
-void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+size_t fsk_demod(uint8_t * dest, size_t size)
 {
-	uint8_t *dest = (uint8_t *)BigBuf;
-	int m=0, n=0, i=0, idx=0, found=0, lastval=0;
-  uint32_t hi2=0, hi=0, lo=0;
+	uint32_t last_transition = 0;
+	uint32_t idx = 1;
 
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+	// we don't care about actual value, only if it's more or less than a
+	// threshold essentially we capture zero crossings for later analysis
+	uint8_t threshold_value = 127;
 
-	// Connect the A/D to the peak-detected low-frequency path.
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+	// sync to first lo-hi transition, and threshold
 
-	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(50);
+	//Need to threshold first sample
+	dest[0] = (dest[0] < threshold_value) ? 0 : 1;
 
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
+	size_t numBits = 0;
+	// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
+	// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
+	// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
+	for(idx = 1; idx < size; idx++) {
+		// threshold current value
+		dest[idx] = (dest[idx] < threshold_value) ? 0 : 1;
 
-	for(;;) {
-		WDT_HIT();
-		if (ledcontrol)
-			LED_A_ON();
-		if(BUTTON_PRESS()) {
-			DbpString("Stopped");
-			if (ledcontrol)
-				LED_A_OFF();
-			return;
-		}
+		// Check for 0->1 transition
+		if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
 
-		i = 0;
-		m = sizeof(BigBuf);
-		memset(dest,128,m);
-		for(;;) {
-			if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-				AT91C_BASE_SSC->SSC_THR = 0x43;
-				if (ledcontrol)
-					LED_D_ON();
-			}
-			if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-				dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-				// we don't care about actual value, only if it's more or less than a
-				// threshold essentially we capture zero crossings for later analysis
-				if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
-				i++;
-				if (ledcontrol)
-					LED_D_OFF();
-				if(i >= m) {
-					break;
-				}
-			}
+			dest[numBits] =  (idx-last_transition <  9) ? 1 : 0;
+			last_transition = idx;
+			numBits++;
 		}
+	}
+	return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
+}
 
-		// FSK demodulator
 
-		// sync to first lo-hi transition
-		for( idx=1; idx<m; idx++) {
-			if (dest[idx-1]<dest[idx])
-				lastval=idx;
-				break;
-		}
-		WDT_HIT();
+size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits )
+{
+	uint8_t lastval=dest[0];
+	uint32_t idx=0;
+	size_t numBits=0;
+	uint32_t n=1;
 
-		// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
-		// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
-		// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
-		for( i=0; idx<m; idx++) {
-			if (dest[idx-1]<dest[idx]) {
-				dest[i]=idx-lastval;
-				if (dest[i] <= 8) {
-						dest[i]=1;
-				} else {
-						dest[i]=0;
-				}
+	for( idx=1; idx < size; idx++) {
 
-				lastval=idx;
-				i++;
-			}
+		if (dest[idx]==lastval) {
+			n++;
+			continue;
+		}
+		//if lastval was 1, we have a 1->0 crossing
+		if ( dest[idx-1] ) {
+			n=(n+1) / h2l_crossing_value;
+		} else {// 0->1 crossing
+			n=(n+1) / l2h_crossing_value;
+		}
+		if (n == 0) n = 1;
+
+		if(n < maxConsequtiveBits)
+		{
+			memset(dest+numBits, dest[idx-1] , n);
+			numBits += n;
 		}
-		m=i;
+		n=0;
+		lastval=dest[idx];
+	}//end for
+
+	return numBits;
+
+}
+// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
+void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+	uint8_t *dest = (uint8_t *)BigBuf;
+
+	size_t size=0,idx=0; //, found=0;
+  uint32_t hi2=0, hi=0, lo=0;
+
+	// Configure to go in 125Khz listen mode
+	LFSetupFPGAForADC(0, true);
+
+	while(!BUTTON_PRESS()) {
+
 		WDT_HIT();
+		if (ledcontrol) LED_A_ON();
+
+		DoAcquisition125k_internal(-1,true);
+		size  = sizeof(BigBuf);
+
+		// FSK demodulator
+		size = fsk_demod(dest, size);
 
 		// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-		lastval=dest[0];
-		idx=0;
-		i=0;
-		n=0;
-		for( idx=0; idx<m; idx++) {
-			if (dest[idx]==lastval) {
-				n++;
-			} else {
-				// a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
-				// an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
-				// swallowed up by rounding
-				// expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
-				// special start of frame markers use invalid manchester states (no transitions) by using sequences
-				// like 111000
-				if (dest[idx-1]) {
-					n=(n+1)/6;			// fc/8 in sets of 6
-				} else {
-					n=(n+1)/5;			// fc/10 in sets of 5
-				}
-				switch (n) {			// stuff appropriate bits in buffer
-					case 0:
-					case 1:	// one bit
-						dest[i++]=dest[idx-1];
-						break;
-					case 2: // two bits
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						break;
-					case 3: // 3 bit start of frame markers
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						break;
-					// When a logic 0 is immediately followed by the start of the next transmisson
-					// (special pattern) a pattern of 4 bit duration lengths is created.
-					case 4:
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						dest[i++]=dest[idx-1];
-						break;
-					default:	// this shouldn't happen, don't stuff any bits
-						break;
-				}
-				n=0;
-				lastval=dest[idx];
-			}
-		}
-		m=i;
+		// 1->0 : fc/8 in sets of 6
+		// 0->1 : fc/10 in sets of 5
+		size = aggregate_bits(dest,size, 6,5,5);
+
 		WDT_HIT();
 
 		// final loop, go over previously decoded manchester data and decode into usable tag ID
 		// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-		for( idx=0; idx<m-6; idx++) {
+		uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
+		int numshifts = 0;
+		idx = 0;
+		while( idx + sizeof(frame_marker_mask) < size) {
 			// search for a start of frame marker
-			if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
-			{
-				found=1;
-				idx+=6;
-        if (found && (hi2|hi|lo)) {
-          if (hi2 != 0){
-            Dbprintf("TAG ID: %x%08x%08x (%d)",
-                     (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-          }
-          else {
-            Dbprintf("TAG ID: %x%08x (%d)",
-                     (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-          }
-					/* if we're only looking for one tag */
-					if (findone)
-					{
-						*high = hi;
-						*low = lo;
-						return;
-					}
-          hi2=0;
-					hi=0;
-					lo=0;
-					found=0;
-				}
-			}
-			if (found) {
-				if (dest[idx] && (!dest[idx+1]) ) {
+			if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
+			{ // frame marker found
+				idx+=sizeof(frame_marker_mask);
+
+				while(dest[idx] != dest[idx+1] && idx < size-2)
+				{	
+					// Keep going until next frame marker (or error)
+					// Shift in a bit. Start by shifting high registers
           hi2=(hi2<<1)|(hi>>31);
 					hi=(hi<<1)|(lo>>31);
+					//Then, shift in a 0 or one into low
+					if (dest[idx] && !dest[idx+1])	// 1 0
 					lo=(lo<<1)|0;
-				} else if ( (!dest[idx]) && dest[idx+1]) {
-          hi2=(hi2<<1)|(hi>>31);
-					hi=(hi<<1)|(lo>>31);
-					lo=(lo<<1)|1;
-				} else {
-					found=0;
-          hi2=0;
-					hi=0;
-					lo=0;
+					else // 0 1
+						lo=(lo<<1)|
+								1;
+					numshifts ++;
+					idx += 2;
 				}
-				idx++;
-			}
-			if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) )
-			{
-				found=1;
-				idx+=6;
-				if (found && (hi|lo)) {
-          if (hi2 != 0){
-            Dbprintf("TAG ID: %x%08x%08x (%d)",
-                     (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-          }
-          else {
-            Dbprintf("TAG ID: %x%08x (%d)",
-                     (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
-          }
-					/* if we're only looking for one tag */
-					if (findone)
-					{
-						*high = hi;
-						*low = lo;
-						return;
+				//Dbprintf("Num shifts: %d ", numshifts);
+				// Hopefully, we read a tag and	 hit upon the next frame marker
+				if(idx + sizeof(frame_marker_mask) < size)
+				{
+				if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
+				{
+					if (hi2 != 0){
+						Dbprintf("TAG ID: %x%08x%08x (%d)",
+							 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+					}
+					else {
+						Dbprintf("TAG ID: %x%08x (%d)",
+						 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
 					}
-          hi2=0;
-					hi=0;
-					lo=0;
-					found=0;
 				}
+
+				}
+
+				// reset
+				hi2 = hi = lo = 0;
+				numshifts = 0;
+			}else
+			{
+				idx++;
 			}
 		}
 		WDT_HIT();
+
 	}
+	DbpString("Stopped");
+	if (ledcontrol) LED_A_OFF();
 }
 
-void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+uint32_t bytebits_to_byte(uint8_t* src, int numbits)
 {
-	uint8_t *dest = (uint8_t *)BigBuf;
-	int m=0, n=0, i=0, idx=0, lastval=0;
-	int found=0;
-	uint32_t code=0, code2=0;
-	//uint32_t hi2=0, hi=0, lo=0;
+	uint32_t num = 0;
+	for(int i = 0 ; i < numbits ; i++)
+	{
+		num = (num << 1) | (*src);
+		src++;
+	}
+	return num;
+}
 
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
 
-	// Connect the A/D to the peak-detected low-frequency path.
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+	uint8_t *dest = (uint8_t *)BigBuf;
 
-	// Give it a bit of time for the resonant antenna to settle.
-	SpinDelay(50);
+	size_t size=0, idx=0;
+	uint32_t code=0, code2=0;
 
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
+	// Configure to go in 125Khz listen mode
+	LFSetupFPGAForADC(0, true);
 
-	for(;;) {
+	while(!BUTTON_PRESS()) {
 		WDT_HIT();
-		if (ledcontrol)
-			LED_A_ON();
-		if(BUTTON_PRESS()) {
-			DbpString("Stopped");
-			if (ledcontrol)
-				LED_A_OFF();
-			return;
-		}
+		if (ledcontrol) LED_A_ON();
 
-		i = 0;
-		m = sizeof(BigBuf);
-		memset(dest,128,m);
-		for(;;) {
-			if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
-				AT91C_BASE_SSC->SSC_THR = 0x43;
-				if (ledcontrol)
-					LED_D_ON();
-			}
-			if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
-				dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-				// we don't care about actual value, only if it's more or less than a
-				// threshold essentially we capture zero crossings for later analysis
-				if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
-				i++;
-				if (ledcontrol)
-					LED_D_OFF();
-				if(i >= m) {
-					break;
-				}
-			}
-		}
+		DoAcquisition125k_internal(-1,true);
+		size  = sizeof(BigBuf);
 
 		// FSK demodulator
-
-		// sync to first lo-hi transition
-		for( idx=1; idx<m; idx++) {
-			if (dest[idx-1]<dest[idx])
-				lastval=idx;
-				break;
-		}
-		WDT_HIT();
-
-		// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
-		// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
-		// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
-		for( i=0; idx<m; idx++) {
-			if (dest[idx-1]<dest[idx]) {
-				dest[i]=idx-lastval;
-				if (dest[i] <= 8) {
-						dest[i]=1;
-				} else {
-						dest[i]=0;
-				}
-
-				lastval=idx;
-				i++;
-			}
-		}
-		m=i;
-		WDT_HIT();
+		size = fsk_demod(dest, size);
 
 		// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-		lastval=dest[0];
-		idx=0;
-		i=0;
-		n=0;
-		for( idx=0; idx<m; idx++) {
-			if (dest[idx]==lastval) {
-				n++;
-			} else {
-				// a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents,
-				// an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets
-				// swallowed up by rounding
-				// expected results are 1 or 2 bits, any more and it's an invalid manchester encoding
-				// special start of frame markers use invalid manchester states (no transitions) by using sequences
-				// like 111000
-				if (dest[idx-1]) {
-					n=(n+1)/7;			// fc/8 in sets of 7
-				} else {
-					n=(n+1)/6;			// fc/10 in sets of 6
-				}
-				switch (n) {			// stuff appropriate bits in buffer
-					case 0:
-					case 1:	// one bit
-						dest[i++]=dest[idx-1]^1;
-						//Dbprintf("%d",dest[idx-1]);
-						break;
-					case 2: // two bits
-						dest[i++]=dest[idx-1]^1;
-						dest[i++]=dest[idx-1]^1;
-						//Dbprintf("%d",dest[idx-1]);
-						//Dbprintf("%d",dest[idx-1]);
-						break;
-					case 3: // 3 bit start of frame markers
-						for(int j=0; j<3; j++){
-						  dest[i++]=dest[idx-1]^1;
-						//  Dbprintf("%d",dest[idx-1]);
-						}
-						break;
-					case 4:
-						for(int j=0; j<4; j++){
-						  dest[i++]=dest[idx-1]^1;
-						//  Dbprintf("%d",dest[idx-1]);
-						}
-						break;
-					case 5:
-						for(int j=0; j<5; j++){
-						  dest[i++]=dest[idx-1]^1;
-						//  Dbprintf("%d",dest[idx-1]);
-						}
-						break;
-					case 6:
-						for(int j=0; j<6; j++){
-						  dest[i++]=dest[idx-1]^1;
-						//  Dbprintf("%d",dest[idx-1]);
-						}
-						break;
-					case 7:
-						for(int j=0; j<7; j++){
-						  dest[i++]=dest[idx-1]^1;
-						//  Dbprintf("%d",dest[idx-1]);
-						}
-						break;
-					case 8:
-						for(int j=0; j<8; j++){
-						  dest[i++]=dest[idx-1]^1;
-						//  Dbprintf("%d",dest[idx-1]);
-						}
-						break;
-					case 9:
-						for(int j=0; j<9; j++){
-						  dest[i++]=dest[idx-1]^1;
-						//  Dbprintf("%d",dest[idx-1]);
-						}
-						break;
-					case 10:
-						for(int j=0; j<10; j++){
-						  dest[i++]=dest[idx-1]^1;
-						//  Dbprintf("%d",dest[idx-1]);
-						}
-						break;
-					case 11:
-						for(int j=0; j<11; j++){
-						  dest[i++]=dest[idx-1]^1;
-						//  Dbprintf("%d",dest[idx-1]);
-						}
-						break;
-					case 12:
-						for(int j=0; j<12; j++){
-						  dest[i++]=dest[idx-1]^1;
-						 // Dbprintf("%d",dest[idx-1]);
-						}
-						break;
-					default:	// this shouldn't happen, don't stuff any bits
-						//Dbprintf("%d",dest[idx-1]);
-						break;
-				}
-				n=0;
-				lastval=dest[idx];
-			}
-		}//end for
-		/*for(int j=0; j<64;j+=8){
-		  Dbprintf("%d%d%d%d%d%d%d%d",dest[j],dest[j+1],dest[j+2],dest[j+3],dest[j+4],dest[j+5],dest[j+6],dest[j+7]);
-		}
-		Dbprintf("\n");*/
-		m=i;
+		// 1->0 : fc/8 in sets of 7
+		// 0->1 : fc/10 in sets of 6
+		size = aggregate_bits(dest, size, 7,6,13);
+
 		WDT_HIT();
 		
-        for( idx=0; idx<m-9; idx++) {
-	  if ( !(dest[idx]) && !(dest[idx+1]) && !(dest[idx+2]) && !(dest[idx+3]) && !(dest[idx+4]) && !(dest[idx+5]) && !(dest[idx+6]) && !(dest[idx+7]) && !(dest[idx+8])&& (dest[idx+9])){
-		found=1;
-		//idx+=9;
-		if (found) {
+		//Handle the data
+ 	    uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
+		for( idx=0; idx < size - 64; idx++) {
+
+ 	    	if ( memcmp(dest + idx, mask, sizeof(mask)) ) continue;
+
 		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]);
 		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]);			  
 		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]);
@@ -1030,58 +847,26 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
 		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]);
 		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
 		
-		    short version='\x00';
-		    char unknown='\x00';
-		    uint16_t number=0;
-		    for(int j=14;j<18;j++){
-		       //Dbprintf("%d",dest[idx+j]);
-		       version <<=1;
-		       if (dest[idx+j]) version |= 1;
-		    }
-		    for(int j=19;j<27;j++){
-		       //Dbprintf("%d",dest[idx+j]);
-		       unknown <<=1;
-		       if (dest[idx+j]) unknown |= 1;
-		    }
-		    for(int j=36;j<45;j++){
-		       //Dbprintf("%d",dest[idx+j]);
-		       number <<=1;
-		       if (dest[idx+j]) number |= 1;
-		    }
-		    for(int j=46;j<53;j++){
-		       //Dbprintf("%d",dest[idx+j]);
-		       number <<=1;
-		       if (dest[idx+j]) number |= 1;
-		    }
-		    for(int j=0; j<32; j++){
-			code <<=1;
-			if(dest[idx+j]) code |= 1;
-		    }
-		    for(int j=32; j<64; j++){
-			code2 <<=1;
-			if(dest[idx+j]) code2 |= 1;
-		    }
+		    code = bytebits_to_byte(dest+idx,32);
+		    code2 = bytebits_to_byte(dest+idx+32,32); 
+			
+		    short version = bytebits_to_byte(dest+idx+14,4); 
+		    char unknown = bytebits_to_byte(dest+idx+19,8) ;
+		    uint16_t number = bytebits_to_byte(dest+idx+36,9); 
 		    
 		    Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2);
-		    if (ledcontrol)
-			LED_D_OFF();
-		}
+		    if (ledcontrol)	LED_D_OFF();
+		
 		// if we're only looking for one tag 
 		if (findone){
-			//*high = hi;
-			//*low = lo;
 			LED_A_OFF();
 			return;
 		}
-      
-		//hi=0;
-		//lo=0;
-		found=0;
-	  }
-		
-	}
 	}
 	WDT_HIT();
+	}
+	DbpString("Stopped");
+	if (ledcontrol) LED_A_OFF();
 }
 
 /*------------------------------
@@ -1090,14 +875,14 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
  */
 
 /* T55x7 configuration register definitions */
-#define T55x7_POR_DELAY			0x00000001
-#define T55x7_ST_TERMINATOR		0x00000008
-#define T55x7_PWD			0x00000010
+#define T55x7_POR_DELAY				0x00000001
+#define T55x7_ST_TERMINATOR			0x00000008
+#define T55x7_PWD					0x00000010
 #define T55x7_MAXBLOCK_SHIFT		5
-#define T55x7_AOR			0x00000200
-#define T55x7_PSKCF_RF_2		0
-#define T55x7_PSKCF_RF_4		0x00000400
-#define T55x7_PSKCF_RF_8		0x00000800
+#define T55x7_AOR					0x00000200
+#define T55x7_PSKCF_RF_2			0
+#define T55x7_PSKCF_RF_4			0x00000400
+#define T55x7_PSKCF_RF_8			0x00000800
 #define T55x7_MODULATION_DIRECT		0
 #define T55x7_MODULATION_PSK1		0x00001000
 #define T55x7_MODULATION_PSK2		0x00002000
@@ -1108,17 +893,17 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
 #define T55x7_MODULATION_FSK2a		0x00007000
 #define T55x7_MODULATION_MANCHESTER	0x00008000
 #define T55x7_MODULATION_BIPHASE	0x00010000
-#define T55x7_BITRATE_RF_8		0
-#define T55x7_BITRATE_RF_16		0x00040000
-#define T55x7_BITRATE_RF_32		0x00080000
-#define T55x7_BITRATE_RF_40		0x000C0000
-#define T55x7_BITRATE_RF_50		0x00100000
-#define T55x7_BITRATE_RF_64		0x00140000
+#define T55x7_BITRATE_RF_8			0
+#define T55x7_BITRATE_RF_16			0x00040000
+#define T55x7_BITRATE_RF_32			0x00080000
+#define T55x7_BITRATE_RF_40			0x000C0000
+#define T55x7_BITRATE_RF_50			0x00100000
+#define T55x7_BITRATE_RF_64			0x00140000
 #define T55x7_BITRATE_RF_100		0x00180000
 #define T55x7_BITRATE_RF_128		0x001C0000
 
 /* T5555 (Q5) configuration register definitions */
-#define T5555_ST_TERMINATOR		0x00000001
+#define T5555_ST_TERMINATOR			0x00000001
 #define T5555_MAXBLOCK_SHIFT		0x00000001
 #define T5555_MODULATION_MANCHESTER	0
 #define T5555_MODULATION_PSK1		0x00000010
@@ -1128,34 +913,35 @@ void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
 #define T5555_MODULATION_FSK2		0x00000050
 #define T5555_MODULATION_BIPHASE	0x00000060
 #define T5555_MODULATION_DIRECT		0x00000070
-#define T5555_INVERT_OUTPUT		0x00000080
-#define T5555_PSK_RF_2			0
-#define T5555_PSK_RF_4			0x00000100
-#define T5555_PSK_RF_8			0x00000200
-#define T5555_USE_PWD			0x00000400
-#define T5555_USE_AOR			0x00000800
-#define T5555_BITRATE_SHIFT		12
-#define T5555_FAST_WRITE		0x00004000
-#define T5555_PAGE_SELECT		0x00008000
+#define T5555_INVERT_OUTPUT			0x00000080
+#define T5555_PSK_RF_2				0
+#define T5555_PSK_RF_4				0x00000100
+#define T5555_PSK_RF_8				0x00000200
+#define T5555_USE_PWD				0x00000400
+#define T5555_USE_AOR				0x00000800
+#define T5555_BITRATE_SHIFT			12
+#define T5555_FAST_WRITE			0x00004000
+#define T5555_PAGE_SELECT			0x00008000
 
 /*
  * Relevant times in microsecond
  * To compensate antenna falling times shorten the write times
  * and enlarge the gap ones.
  */
-#define START_GAP 250
-#define WRITE_GAP 160
-#define WRITE_0   144 // 192
-#define WRITE_1   400 // 432 for T55x7; 448 for E5550
+#define START_GAP 30*8 // 10 - 50fc 250
+#define WRITE_GAP 20*8 //  8 - 30fc
+#define WRITE_0   24*8 // 16 - 31fc 24fc 192
+#define WRITE_1   54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
 
-// VALUES TAKEN FROM EM4x function: SendForward
-//  START_GAP = 440; //(55*8)
-//  WRITE_GAP = 128; //(16*8)
-//  WRITE_1 = 256 32*8; //32 cycles at 125Khz (8us each) 1
-//    //These timings work for 4469/4269/4305 (with the 55*8 above)
-//  WRITE_0 = 23*8 , 9*8  SpinDelayUs(23*8); // (8us each) 0
+//  VALUES TAKEN FROM EM4x function: SendForward
+//  START_GAP = 440;       (55*8) cycles at 125Khz (8us = 1cycle)
+//  WRITE_GAP = 128;       (16*8)
+//  WRITE_1   = 256 32*8;  (32*8) 
 
+//  These timings work for 4469/4269/4305 (with the 55*8 above)
+//  WRITE_0 = 23*8 , 9*8  SpinDelayUs(23*8); 
 
+#define T55xx_SAMPLES_SIZE		12000 // 32 x 32 x 10  (32 bit times numofblock (7), times clock skip..)
 
 // Write one bit to card
 void T55xxWriteBit(int bit)
@@ -1163,7 +949,7 @@ void T55xxWriteBit(int bit)
 	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
 	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-	if (bit == 0)
+	if (!bit)
 		SpinDelayUs(WRITE_0);
 	else
 		SpinDelayUs(WRITE_1);
@@ -1174,15 +960,11 @@ void T55xxWriteBit(int bit)
 // Write one card block in page 0, no lock
 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 {
-	unsigned int i;
-
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+	uint32_t i = 0;
 
-	// Give it a bit of time for the resonant antenna to settle.
-	// And for the tag to fully power up
-	SpinDelay(150);
+	// Set up FPGA, 125kHz
+	// Wait for config.. (192+8190xPOW)x8 == 67ms
+	LFSetupFPGAForADC(0, true);
 
 	// Now start writting
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
@@ -1191,11 +973,11 @@ void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMod
 	// Opcode
 	T55xxWriteBit(1);
 	T55xxWriteBit(0); //Page 0
-  if (PwdMode == 1){
-    // Pwd
-    for (i = 0x80000000; i != 0; i >>= 1)
-      T55xxWriteBit(Pwd & i);
-  }
+	if (PwdMode == 1){
+		// Pwd
+		for (i = 0x80000000; i != 0; i >>= 1)
+			T55xxWriteBit(Pwd & i);
+	}
 	// Lock bit
 	T55xxWriteBit(0);
 
@@ -1219,28 +1001,16 @@ void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMod
 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 {
 	uint8_t *dest =  mifare_get_bigbufptr();
-	uint16_t bufferlength = 16000;
+	uint16_t bufferlength = T55xx_SAMPLES_SIZE;
 	uint32_t i = 0;
 
 	// Clear destination buffer before sending the command  0x80 = average.
 	memset(dest, 0x80, bufferlength);
-  
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-	
-	// Connect the A/D to the peak-detected low-frequency path.
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
-  
-	LED_D_ON();
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-  
-	// Give it a bit of time for the resonant antenna to settle.
-	// And for the tag to fully power up
-	SpinDelay(150);
-  
-	// Now start writting
+
+	// Set up FPGA, 125kHz
+	// Wait for config.. (192+8190xPOW)x8 == 67ms
+	LFSetupFPGAForADC(0, true);
+
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	SpinDelayUs(START_GAP);
   
@@ -1258,9 +1028,8 @@ void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 	for (i = 0x04; i != 0; i >>= 1)
 		T55xxWriteBit(Block & i);
   
-  // Turn field on to read the response
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+	// Turn field on to read the response
+	TurnReadLFOn();
   
 	// Now do the acquisition
 	i = 0;
@@ -1271,43 +1040,28 @@ void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 		}
 		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
 			dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-			LED_D_OFF();
 			++i;
+			LED_D_OFF();
 			if (i > bufferlength) break;
 		}
 	}
  
 	cmd_send(CMD_ACK,0,0,0,0,0);
-  
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+    FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
 	LED_D_OFF();
 }
 
 // Read card traceability data (page 1)
 void T55xxReadTrace(void){
 	uint8_t *dest =  mifare_get_bigbufptr();
-	uint16_t bufferlength = 16000;
+	uint16_t bufferlength = T55xx_SAMPLES_SIZE;
 	int i=0;
 	
 	// Clear destination buffer before sending the command 0x80 = average
 	memset(dest, 0x80, bufferlength);  
   
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-		
-	// Connect the A/D to the peak-detected low-frequency path.
-	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-	// Now set up the SSC to get the ADC samples that are now streaming at us.
-	FpgaSetupSsc();
+	LFSetupFPGAForADC(0, true);
   
-	LED_D_ON();
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-  
-	// Give it a bit of time for the resonant antenna to settle.
-	// And for the tag to fully power up
-	SpinDelay(150);
-  
-	// Now start writting
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	SpinDelayUs(START_GAP);
   
@@ -1315,12 +1069,10 @@ void T55xxReadTrace(void){
 	T55xxWriteBit(1);
 	T55xxWriteBit(1); //Page 1
   
-  // Turn field on to read the response
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+	// Turn field on to read the response
+	TurnReadLFOn();
   
 	// Now do the acquisition
-	i = 0;
 	for(;;) {
 		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
 			AT91C_BASE_SSC->SSC_THR = 0x43;
@@ -1328,18 +1080,26 @@ void T55xxReadTrace(void){
 		}
 		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
 			dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+			++i;
 			LED_D_OFF();
-			++i;			
+		
 			if (i >= bufferlength) break;
 		}
 	}
   
 	cmd_send(CMD_ACK,0,0,0,0,0);
-  
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
 	LED_D_OFF();
 }
 
+void TurnReadLFOn(){
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+	// Give it a bit of time for the resonant antenna to settle.
+	//SpinDelay(30);
+	SpinDelayUs(8*150);
+}
+
 /*-------------- Cloning routines -----------*/
 // Copy HID id to card and setup block 0 config
 void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
@@ -1453,7 +1213,7 @@ void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
   }
   
 	// Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
-	T55xxWriteBlock(T55x7_BITRATE_RF_50    |
+	T55xxWriteBlock(T55x7_BITRATE_RF_50  |
                   T55x7_MODULATION_FSK2a |
                   last_block << T55x7_MAXBLOCK_SHIFT,
                   0,0,0);
@@ -1596,7 +1356,6 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
 // Clone Indala 64-bit tag by UID to T55x7
 void CopyIndala64toT55x7(int hi, int lo)
 {
-
 	//Program the 2 data blocks for supplied 64bit UID
 	// and the block 0 for Indala64 format
 	T55xxWriteBlock(hi,1,0,0);
@@ -1607,15 +1366,13 @@ void CopyIndala64toT55x7(int hi, int lo)
 			2 << T55x7_MAXBLOCK_SHIFT,
 			0, 0, 0);
 	//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
-//	T5567WriteBlock(0x603E1042,0);
+	//	T5567WriteBlock(0x603E1042,0);
 
 	DbpString("DONE!");
-
 }	
 
 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
 {
-
 	//Program the 7 data blocks for supplied 224bit UID
 	// and the block 0 for Indala224 format
 	T55xxWriteBlock(uid1,1,0,0);
@@ -1631,10 +1388,9 @@ void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int
 			7 << T55x7_MAXBLOCK_SHIFT,
 			0,0,0);
 	//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
-//	T5567WriteBlock(0x603E10E2,0);
+	//	T5567WriteBlock(0x603E10E2,0);
 
 	DbpString("DONE!");
-
 }
 
 
@@ -2059,44 +1815,47 @@ void EM4xLogin(uint32_t Password) {
 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
   
   	uint8_t *dest =  mifare_get_bigbufptr();
-	uint16_t bufferlength = 16000;
+	uint16_t bufferlength = 12000;
 	uint32_t i = 0;
 
 	// Clear destination buffer before sending the command  0x80 = average.
 	memset(dest, 0x80, bufferlength);
 	
-  uint8_t fwd_bit_count;
+	uint8_t fwd_bit_count;
   
-  //If password mode do login
-  if (PwdMode == 1) EM4xLogin(Pwd);
+	//If password mode do login
+	if (PwdMode == 1) EM4xLogin(Pwd);
   
-  forward_ptr = forwardLink_data;
-  fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
-  fwd_bit_count += Prepare_Addr( Address );
+	forward_ptr = forwardLink_data;
+	fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+	fwd_bit_count += Prepare_Addr( Address );
   
-  // Connect the A/D to the peak-detected low-frequency path.
-  SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-  // Now set up the SSC to get the ADC samples that are now streaming at us.
-  FpgaSetupSsc();
+	// Connect the A/D to the peak-detected low-frequency path.
+	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+	// Now set up the SSC to get the ADC samples that are now streaming at us.
+	FpgaSetupSsc();
   
-  SendForward(fwd_bit_count);
+	SendForward(fwd_bit_count);
   
-  // Now do the acquisition
-  i = 0;
-  for(;;) {
-    if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-      AT91C_BASE_SSC->SSC_THR = 0x43;
-    }
-    if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-      dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-		++i;
-      if (i >= bufferlength) break;
-    }
-  }
+	// // Turn field on to read the response
+	// TurnReadLFOn();
+	
+	// Now do the acquisition
+	i = 0;
+	for(;;) {
+		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+			AT91C_BASE_SSC->SSC_THR = 0x43;
+		}
+		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+			dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+			++i;
+			if (i >= bufferlength) break;
+		}
+	}
   
 	cmd_send(CMD_ACK,0,0,0,0,0);
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-  LED_D_OFF();
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	LED_D_OFF();
 }
 
 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {