X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/7ac59a82ab5d244407254febf5dc9b7be892d2ad..3458bb279b00048892e56cec6f0a13e8c03f97db:/armsrc/iso14443a.c diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index 76b82141..0de5ea6f 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -10,19 +10,80 @@ // Routines to support ISO 14443 type A. //----------------------------------------------------------------------------- +#include "iso14443a.h" + +#include +#include #include "proxmark3.h" #include "apps.h" #include "util.h" -#include "string.h" -#include "cmd.h" +#include "usb_cdc.h" #include "iso14443crc.h" -#include "iso14443a.h" #include "crapto1/crapto1.h" #include "mifareutil.h" +#include "mifaresniff.h" #include "BigBuf.h" #include "protocols.h" +#include "parity.h" +#include "fpgaloader.h" + +typedef struct { + enum { + DEMOD_UNSYNCD, + // DEMOD_HALF_SYNCD, + // DEMOD_MOD_FIRST_HALF, + // DEMOD_NOMOD_FIRST_HALF, + DEMOD_MANCHESTER_DATA + } state; + uint16_t twoBits; + uint16_t highCnt; + uint16_t bitCount; + uint16_t collisionPos; + uint16_t syncBit; + uint8_t parityBits; + uint8_t parityLen; + uint16_t shiftReg; + uint16_t samples; + uint16_t len; + uint32_t startTime, endTime; + uint8_t *output; + uint8_t *parity; +} tDemod; + +typedef enum { + MOD_NOMOD = 0, + MOD_SECOND_HALF, + MOD_FIRST_HALF, + MOD_BOTH_HALVES + } Modulation_t; + +typedef struct { + enum { + STATE_UNSYNCD, + STATE_START_OF_COMMUNICATION, + STATE_MILLER_X, + STATE_MILLER_Y, + STATE_MILLER_Z, + // DROP_NONE, + // DROP_FIRST_HALF, + } state; + uint16_t shiftReg; + int16_t bitCount; + uint16_t len; + uint16_t byteCntMax; + uint16_t posCnt; + uint16_t syncBit; + uint8_t parityBits; + uint8_t parityLen; + uint32_t fourBits; + uint32_t startTime, endTime; + uint8_t *output; + uint8_t *parity; +} tUart; static uint32_t iso14a_timeout; +#define MAX_ISO14A_TIMEOUT 524288 + int rsamples = 0; uint8_t trigger = 0; // the block number for the ISO14443-4 PCB @@ -33,9 +94,9 @@ static uint8_t iso14_pcb_blocknum = 0; // // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles #define REQUEST_GUARD_TIME (7000/16 + 1) -// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles -#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1) -// bool LastCommandWasRequest = FALSE; +// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles +#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1) +// bool LastCommandWasRequest = false; // // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz) @@ -46,8 +107,8 @@ static uint8_t iso14_pcb_blocknum = 0; // 8 ticks until bit_to_arm is assigned from curbit // 8*16 ticks for the transfer from FPGA to ARM // 4*16 ticks until we measure the time -// - 8*16 ticks because we measure the time of the previous transfer -#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16) +// - 8*16 ticks because we measure the time of the previous transfer +#define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16) // When the PM acts as a reader and is sending, it takes // 4*16 ticks until we can write data to the sending hold register @@ -64,10 +125,10 @@ static uint8_t iso14_pcb_blocknum = 0; // 8 ticks until the SSC samples the first data // 7*16 ticks to complete the transfer from FPGA to ARM // 8 ticks until the next ssp_clk rising edge -// 4*16 ticks until we measure the time -// - 8*16 ticks because we measure the time of the previous transfer +// 4*16 ticks until we measure the time +// - 8*16 ticks because we measure the time of the previous transfer #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16) - + // The FPGA will report its internal sending delay in uint16_t FpgaSendQueueDelay; // the 5 first bits are the number of bits buffered in mod_sig_buf @@ -75,13 +136,13 @@ uint16_t FpgaSendQueueDelay; #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1) // When the PM acts as tag and is sending, it takes -// 4*16 ticks until we can write data to the sending hold register +// 4*16 + 8 ticks until we can write data to the sending hold register // 8*16 ticks until the SHR is transferred to the Sending Shift Register -// 8 ticks until the first transfer starts -// 8 ticks later the FPGA samples the data -// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf) +// 8 ticks later the FPGA samples the first data +// + 16 ticks until assigned to mod_sig // + 1 tick to assign mod_sig_coil -#define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1) +// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf) +#define DELAY_ARM2AIR_AS_TAG (4*16 + 8 + 8*16 + 8 + 16 + 1 + DELAY_FPGA_QUEUE) // When the PM acts as sniffer and is receiving tag data, it takes // 3 ticks A/D conversion @@ -89,16 +150,16 @@ uint16_t FpgaSendQueueDelay; // 8 ticks (on average) until the result is stored in to_arm // + the delays in transferring data - which is the same for // sniffing reader and tag data and therefore not relevant -#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8) - +#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8) + // When the PM acts as sniffer and is receiving reader data, it takes -// 2 ticks delay in analogue RF receiver (for the falling edge of the +// 2 ticks delay in analogue RF receiver (for the falling edge of the // start bit, which marks the start of the communication) // 3 ticks A/D conversion // 8 ticks on average until the data is stored in to_arm. // + the delays in transferring data - which is the same for // sniffing reader and tag data and therefore not relevant -#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8) +#define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8) //variables used for timing purposes: //these are in ssp_clk cycles: @@ -116,32 +177,12 @@ static uint32_t LastProxToAirDuration; // Sequence X: 00001100 drop after half a period // Sequence Y: 00000000 no drop // Sequence Z: 11000000 drop at start -#define SEC_D 0xf0 -#define SEC_E 0x0f -#define SEC_F 0x00 -#define SEC_X 0x0c -#define SEC_Y 0x00 -#define SEC_Z 0xc0 - -const uint8_t OddByteParity[256] = { - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 -}; - +#define SEC_D 0xf0 +#define SEC_E 0x0f +#define SEC_F 0x00 +#define SEC_X 0x0c +#define SEC_Y 0x00 +#define SEC_Z 0xc0 void iso14a_set_trigger(bool enable) { trigger = enable; @@ -149,42 +190,20 @@ void iso14a_set_trigger(bool enable) { void iso14a_set_timeout(uint32_t timeout) { - iso14a_timeout = timeout; - if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106); + // adjust timeout by FPGA delays and 2 additional ssp_frames to detect SOF + iso14a_timeout = timeout + (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/(16*8) + 2; + if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", timeout, timeout / 106); } -void iso14a_set_ATS_timeout(uint8_t *ats) { - - uint8_t tb1; - uint8_t fwi; - uint32_t fwt; - - if (ats[0] > 1) { // there is a format byte T0 - if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1) - if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1) - tb1 = ats[3]; - } else { - tb1 = ats[2]; - } - fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI) - fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc - - iso14a_set_timeout(fwt/(8*16)); - } - } +uint32_t iso14a_get_timeout(void) { + return iso14a_timeout - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/(16*8) - 2; } - //----------------------------------------------------------------------------- // Generate the parity value for a byte sequence // //----------------------------------------------------------------------------- -byte_t oddparity (const byte_t bt) -{ - return OddByteParity[bt]; -} - void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) { uint16_t paritybit_cnt = 0; @@ -193,10 +212,10 @@ void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) for (uint16_t i = 0; i < iLen; i++) { // Generate the parity bits - parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt)); + parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt)); if (paritybit_cnt == 7) { - par[paritybyte_cnt] = parityBits; // save 8 Bits parity - parityBits = 0; // and advance to next Parity Byte + par[paritybyte_cnt] = parityBits; // save 8 Bits parity + parityBits = 0; // and advance to next Parity Byte paritybyte_cnt++; paritybit_cnt = 0; } else { @@ -206,7 +225,7 @@ void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) // save remaining parity bits par[paritybyte_cnt] = parityBits; - + } void AppendCrc14443a(uint8_t* data, int len) @@ -214,7 +233,7 @@ void AppendCrc14443a(uint8_t* data, int len) ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); } -void AppendCrc14443b(uint8_t* data, int len) +static void AppendCrc14443b(uint8_t* data, int len) { ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1); } @@ -225,14 +244,14 @@ void AppendCrc14443b(uint8_t* data, int len) //============================================================================= // Basics: // This decoder is used when the PM3 acts as a tag. -// The reader will generate "pauses" by temporarily switching of the field. -// At the PM3 antenna we will therefore measure a modulated antenna voltage. +// The reader will generate "pauses" by temporarily switching of the field. +// At the PM3 antenna we will therefore measure a modulated antenna voltage. // The FPGA does a comparison with a threshold and would deliver e.g.: // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 ....... // The Miller decoder needs to identify the following sequences: -// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0") -// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information") -// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1") +// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0") +// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information") +// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1") // Note 1: the bitstream may start at any time. We therefore need to sync. // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence. //----------------------------------------------------------------------------- @@ -245,48 +264,45 @@ static tUart Uart; // 0111 - a 2 tick wide pause shifted left // 1001 - a 2 tick wide pause shifted right const bool Mod_Miller_LUT[] = { - FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, - FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE + false, true, false, true, false, false, false, true, + false, true, false, false, false, false, false, false }; #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4]) #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)]) -void UartReset() -{ +static void UartReset() { Uart.state = STATE_UNSYNCD; Uart.bitCount = 0; - Uart.len = 0; // number of decoded data bytes - Uart.parityLen = 0; // number of decoded parity bytes - Uart.shiftReg = 0; // shiftreg to hold decoded data bits - Uart.parityBits = 0; // holds 8 parity bits - Uart.startTime = 0; - Uart.endTime = 0; + Uart.len = 0; // number of decoded data bytes + Uart.parityLen = 0; // number of decoded parity bytes + Uart.shiftReg = 0; // shiftreg to hold decoded data bits + Uart.parityBits = 0; // holds 8 parity bits } -void UartInit(uint8_t *data, uint8_t *parity) -{ +static void UartInit(uint8_t *data, uint8_t *parity) { Uart.output = data; Uart.parity = parity; - Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits + Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits + Uart.startTime = 0; + Uart.endTime = 0; UartReset(); } // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time -static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) -{ +static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) { Uart.fourBits = (Uart.fourBits << 8) | bit; - - if (Uart.state == STATE_UNSYNCD) { // not yet synced - - Uart.syncBit = 9999; // not set + + if (Uart.state == STATE_UNSYNCD) { // not yet synced + + Uart.syncBit = 9999; // not set // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111) - // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern + // we therefore look for a ...xx11111111111100x11111xxxxxx... pattern // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's) - #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000 - #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000 - if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7; + #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00000111 11111111 11101111 10000000 + #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00000111 11111111 10001111 10000000 + if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7; else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6; else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5; else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4; @@ -295,102 +311,107 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1; else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0; - if (Uart.syncBit != 9999) { // found a sync bit + if (Uart.syncBit != 9999) { // found a sync bit Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); Uart.startTime -= Uart.syncBit; Uart.endTime = Uart.startTime; Uart.state = STATE_START_OF_COMMUNICATION; + LED_B_ON(); } } else { - if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) { - if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error + if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) { + if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error + LED_B_OFF(); UartReset(); - } else { // Modulation in first half = Sequence Z = logic "0" - if (Uart.state == STATE_MILLER_X) { // error - must not follow after X + } else { // Modulation in first half = Sequence Z = logic "0" + if (Uart.state == STATE_MILLER_X) { // error - must not follow after X + LED_B_OFF(); UartReset(); } else { Uart.bitCount++; - Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg + Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg Uart.state = STATE_MILLER_Z; Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6; - if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) + if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); - Uart.parityBits <<= 1; // make room for the parity bit - Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit + Uart.parityBits <<= 1; // make room for the parity bit + Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit Uart.bitCount = 0; Uart.shiftReg = 0; - if((Uart.len&0x0007) == 0) { // every 8 data bytes - Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits + if((Uart.len&0x0007) == 0) { // every 8 data bytes + Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits Uart.parityBits = 0; } } } } } else { - if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1" + if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1" Uart.bitCount++; - Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg + Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg Uart.state = STATE_MILLER_X; Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2; - if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) + if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); - Uart.parityBits <<= 1; // make room for the new parity bit - Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit + Uart.parityBits <<= 1; // make room for the new parity bit + Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit Uart.bitCount = 0; Uart.shiftReg = 0; - if ((Uart.len&0x0007) == 0) { // every 8 data bytes - Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits + if ((Uart.len&0x0007) == 0) { // every 8 data bytes + Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits Uart.parityBits = 0; } } - } else { // no modulation in both halves - Sequence Y - if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication + } else { // no modulation in both halves - Sequence Y + if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication + LED_B_OFF(); Uart.state = STATE_UNSYNCD; - Uart.bitCount--; // last "0" was part of EOC sequence - Uart.shiftReg <<= 1; // drop it - if(Uart.bitCount > 0) { // if we decoded some bits - Uart.shiftReg >>= (9 - Uart.bitCount); // right align them - Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output - Uart.parityBits <<= 1; // add a (void) parity bit - Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits - Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it - return TRUE; - } else if (Uart.len & 0x0007) { // there are some parity bits to store - Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits - Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them + Uart.bitCount--; // last "0" was part of EOC sequence + Uart.shiftReg <<= 1; // drop it + if(Uart.bitCount > 0) { // if we decoded some bits + Uart.shiftReg >>= (9 - Uart.bitCount); // right align them + Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output + Uart.parityBits <<= 1; // add a (void) parity bit + Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits + Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it + return true; + } else if (Uart.len & 0x0007) { // there are some parity bits to store + Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits + Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them } if (Uart.len) { - return TRUE; // we are finished with decoding the raw data sequence + return true; // we are finished with decoding the raw data sequence } else { - UartReset(); // Nothing received - start over + UartReset(); // Nothing received - start over } } - if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC + if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC + LED_B_OFF(); UartReset(); - } else { // a logic "0" + } else { // a logic "0" Uart.bitCount++; - Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg + Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg Uart.state = STATE_MILLER_Y; - if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) + if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); - Uart.parityBits <<= 1; // make room for the parity bit - Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit + Uart.parityBits <<= 1; // make room for the parity bit + Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit Uart.bitCount = 0; Uart.shiftReg = 0; - if ((Uart.len&0x0007) == 0) { // every 8 data bytes - Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits + if ((Uart.len&0x0007) == 0) { // every 8 data bytes + Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits Uart.parityBits = 0; } } } } } - - } - return FALSE; // not finished yet, need more data + } + + return false; // not finished yet, need more data } @@ -404,10 +425,10 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following: // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ....... // The Manchester decoder needs to identify the following sequences: -// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication") -// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0 -// 8 ticks unmodulated: Sequence F = end of communication -// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D +// 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication") +// 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0 +// 8 ticks unmodulated: Sequence F = end of communication +// 8 ticks modulated: A collision. Save the collision position and treat as Sequence D // Note 1: the bitstream may start at any time. We therefore need to sync. // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only) static tDemod Demod; @@ -415,52 +436,49 @@ static tDemod Demod; // Lookup-Table to decide if 4 raw bits are a modulation. // We accept three or four "1" in any position const bool Mod_Manchester_LUT[] = { - FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, - FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE + false, false, false, false, false, false, false, true, + false, false, false, true, false, true, true, true }; #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4]) #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)]) -void DemodReset() -{ +static void DemodReset() { Demod.state = DEMOD_UNSYNCD; - Demod.len = 0; // number of decoded data bytes + Demod.len = 0; // number of decoded data bytes Demod.parityLen = 0; - Demod.shiftReg = 0; // shiftreg to hold decoded data bits - Demod.parityBits = 0; // - Demod.collisionPos = 0; // Position of collision bit - Demod.twoBits = 0xffff; // buffer for 2 Bits + Demod.shiftReg = 0; // shiftreg to hold decoded data bits + Demod.parityBits = 0; // + Demod.collisionPos = 0; // Position of collision bit + Demod.twoBits = 0xffff; // buffer for 2 Bits Demod.highCnt = 0; Demod.startTime = 0; Demod.endTime = 0; } -void DemodInit(uint8_t *data, uint8_t *parity) -{ +static void DemodInit(uint8_t *data, uint8_t *parity) { Demod.output = data; Demod.parity = parity; DemodReset(); } // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time -static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) -{ +static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) { Demod.twoBits = (Demod.twoBits << 8) | bit; - + if (Demod.state == DEMOD_UNSYNCD) { - if (Demod.highCnt < 2) { // wait for a stable unmodulated signal + if (Demod.highCnt < 2) { // wait for a stable unmodulated signal if (Demod.twoBits == 0x0000) { Demod.highCnt++; } else { Demod.highCnt = 0; } } else { - Demod.syncBit = 0xFFFF; // not set - if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7; + Demod.syncBit = 0xFFFF; // not set + if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7; else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6; else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5; else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4; @@ -471,72 +489,74 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non if (Demod.syncBit != 0xFFFF) { Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); Demod.startTime -= Demod.syncBit; - Demod.bitCount = offset; // number of decoded data bits + Demod.bitCount = offset; // number of decoded data bits Demod.state = DEMOD_MANCHESTER_DATA; + LED_C_ON(); } } } else { - if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half - if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision + if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half + if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision if (!Demod.collisionPos) { Demod.collisionPos = (Demod.len << 3) + Demod.bitCount; } - } // modulation in first half only - Sequence D = 1 + } // modulation in first half only - Sequence D = 1 Demod.bitCount++; - Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg - if(Demod.bitCount == 9) { // if we decoded a full byte (including parity) + Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg + if(Demod.bitCount == 9) { // if we decoded a full byte (including parity) Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); - Demod.parityBits <<= 1; // make room for the parity bit - Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit + Demod.parityBits <<= 1; // make room for the parity bit + Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit Demod.bitCount = 0; Demod.shiftReg = 0; - if((Demod.len&0x0007) == 0) { // every 8 data bytes - Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits + if((Demod.len&0x0007) == 0) { // every 8 data bytes + Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits Demod.parityBits = 0; } } Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4; - } else { // no modulation in first half - if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0 + } else { // no modulation in first half + if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0 Demod.bitCount++; - Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg - if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) + Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg + if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); - Demod.parityBits <<= 1; // make room for the new parity bit + Demod.parityBits <<= 1; // make room for the new parity bit Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit Demod.bitCount = 0; Demod.shiftReg = 0; - if ((Demod.len&0x0007) == 0) { // every 8 data bytes - Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1 + if ((Demod.len&0x0007) == 0) { // every 8 data bytes + Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1 Demod.parityBits = 0; } } Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1); - } else { // no modulation in both halves - End of communication - if(Demod.bitCount > 0) { // there are some remaining data bits - Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits - Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output - Demod.parityBits <<= 1; // add a (void) parity bit - Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits - Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them - return TRUE; - } else if (Demod.len & 0x0007) { // there are some parity bits to store - Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits - Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them + } else { // no modulation in both halves - End of communication + LED_C_OFF(); + if(Demod.bitCount > 0) { // there are some remaining data bits + Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits + Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output + Demod.parityBits <<= 1; // add a (void) parity bit + Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits + Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them + return true; + } else if (Demod.len & 0x0007) { // there are some parity bits to store + Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits + Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them } if (Demod.len) { - return TRUE; // we are finished with decoding the raw data sequence - } else { // nothing received. Start over + return true; // we are finished with decoding the raw data sequence + } else { // nothing received. Start over DemodReset(); } } } - - } - return FALSE; // not finished yet, need more data + } + + return false; // not finished yet, need more data } //============================================================================= @@ -553,8 +573,9 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // param: // bit 0 - trigger from first card answer // bit 1 - trigger from first reader 7-bit request - + LEDsoff(); + LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); @@ -565,49 +586,48 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // The command (reader -> tag) that we're receiving. uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); - + // The response (tag -> reader) that we're receiving. uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE); uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE); - + // The DMA buffer, used to stream samples from the FPGA uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); // init trace buffer clear_trace(); - set_tracing(TRUE); + set_tracing(true); uint8_t *data = dmaBuf; uint8_t previous_data = 0; int maxDataLen = 0; int dataLen = 0; - bool TagIsActive = FALSE; - bool ReaderIsActive = FALSE; - + bool TagIsActive = false; + bool ReaderIsActive = false; + // Set up the demodulator for tag -> reader responses. DemodInit(receivedResponse, receivedResponsePar); - + // Set up the demodulator for the reader -> tag commands UartInit(receivedCmd, receivedCmdPar); - + // Setup and start DMA. FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); - + // We won't start recording the frames that we acquire until we trigger; // a good trigger condition to get started is probably when we see a // response from the tag. - // triggered == FALSE -- to wait first for card - bool triggered = !(param & 0x03); - + // triggered == false -- to wait first for card + bool triggered = !(param & 0x03); + // And now we loop, receiving samples. - for(uint32_t rsamples = 0; TRUE; ) { + for (uint32_t rsamples = 0; true; ) { - if(BUTTON_PRESS()) { + if (BUTTON_PRESS()) { DbpString("cancelled by button"); break; } - LED_A_ON(); WDT_HIT(); int register readBufDataP = data - dmaBuf; @@ -639,57 +659,47 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; } - LED_A_OFF(); - - if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder + if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder - if(!TagIsActive) { // no need to try decoding reader data if the tag is sending + if(!TagIsActive) { // no need to try decoding reader data if the tag is sending uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); if (MillerDecoding(readerdata, (rsamples-1)*4)) { - LED_C_ON(); - // check - if there is a short 7bit request from reader - if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE; - + if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) { + triggered = true; + } if(triggered) { - if (!LogTrace(receivedCmd, - Uart.len, + if (!LogTrace(receivedCmd, + Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, - Uart.parity, - TRUE)) break; + Uart.parity, + true)) break; } /* And ready to receive another command. */ UartReset(); /* And also reset the demod code, which might have been */ /* false-triggered by the commands from the reader. */ DemodReset(); - LED_B_OFF(); } ReaderIsActive = (Uart.state != STATE_UNSYNCD); } - if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time + if (!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); - if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) { - LED_B_ON(); - - if (!LogTrace(receivedResponse, - Demod.len, - Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, + if (ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) { + if (!LogTrace(receivedResponse, + Demod.len, + Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parity, - FALSE)) break; - - if ((!triggered) && (param & 0x01)) triggered = TRUE; - + false)) break; + if ((!triggered) && (param & 0x01)) triggered = true; // And ready to receive another response. DemodReset(); // And reset the Miller decoder including itS (now outdated) input buffer UartInit(receivedCmd, receivedCmdPar); - - LED_C_OFF(); - } + } TagIsActive = (Demod.state != DEMOD_UNSYNCD); } } @@ -702,19 +712,18 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { } } // main cycle - DbpString("COMMAND FINISHED"); - FpgaDisableSscDma(); + LEDsoff(); + + DbpString("COMMAND FINISHED"); Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); - LEDsoff(); } //----------------------------------------------------------------------------- // Prepare tag messages //----------------------------------------------------------------------------- -static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) -{ +static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) { ToSendReset(); // Correction bit, might be removed when not needed @@ -726,16 +735,16 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *par ToSendStuffBit(0); ToSendStuffBit(0); ToSendStuffBit(0); - + // Send startbit ToSend[++ToSendMax] = SEC_D; LastProxToAirDuration = 8 * ToSendMax - 4; - for(uint16_t i = 0; i < len; i++) { + for (uint16_t i = 0; i < len; i++) { uint8_t b = cmd[i]; // Data bits - for(uint16_t j = 0; j < 8; j++) { + for (uint16_t j = 0; j < 8; j++) { if(b & 1) { ToSend[++ToSendMax] = SEC_D; } else { @@ -761,17 +770,8 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *par ToSendMax++; } -static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) -{ - uint8_t par[MAX_PARITY_SIZE]; - - GetParity(cmd, len, par); - CodeIso14443aAsTagPar(cmd, len, par); -} - -static void Code4bitAnswerAsTag(uint8_t cmd) -{ +static void Code4bitAnswerAsTag(uint8_t cmd) { int i; ToSendReset(); @@ -790,7 +790,7 @@ static void Code4bitAnswerAsTag(uint8_t cmd) ToSend[++ToSendMax] = SEC_D; uint8_t b = cmd; - for(i = 0; i < 4; i++) { + for (i = 0; i < 4; i++) { if(b & 1) { ToSend[++ToSendMax] = SEC_D; LastProxToAirDuration = 8 * ToSendMax - 4; @@ -808,61 +808,80 @@ static void Code4bitAnswerAsTag(uint8_t cmd) ToSendMax++; } + +static uint8_t *LastReaderTraceTime = NULL; + +static void EmLogTraceReader(void) { + // remember last reader trace start to fix timing info later + LastReaderTraceTime = BigBuf_get_addr() + BigBuf_get_traceLen(); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true); +} + + +static void FixLastReaderTraceTime(uint32_t tag_StartTime) { + uint32_t reader_EndTime = Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG; + uint32_t reader_StartTime = Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG; + uint16_t reader_modlen = reader_EndTime - reader_StartTime; + uint16_t approx_fdt = tag_StartTime - reader_EndTime; + uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; + reader_StartTime = tag_StartTime - exact_fdt - reader_modlen; + LastReaderTraceTime[0] = (reader_StartTime >> 0) & 0xff; + LastReaderTraceTime[1] = (reader_StartTime >> 8) & 0xff; + LastReaderTraceTime[2] = (reader_StartTime >> 16) & 0xff; + LastReaderTraceTime[3] = (reader_StartTime >> 24) & 0xff; +} + + +static void EmLogTraceTag(uint8_t *tag_data, uint16_t tag_len, uint8_t *tag_Parity, uint32_t ProxToAirDuration) { + uint32_t tag_StartTime = LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG; + uint32_t tag_EndTime = (LastTimeProxToAirStart + ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG; + LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, false); + FixLastReaderTraceTime(tag_StartTime); +} + + //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed -// Or return TRUE when command is captured +// Or return true when command is captured //----------------------------------------------------------------------------- -static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) -{ - // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen - // only, since we are receiving, not transmitting). - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); +static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) { + // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen + // only, since we are receiving, not transmitting). + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); - // Now run a `software UART' on the stream of incoming samples. + // Now run a `software UART' on the stream of incoming samples. UartInit(received, parity); // clear RXRDY: - uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + + for (;;) { + WDT_HIT(); - for(;;) { - WDT_HIT(); + if(BUTTON_PRESS()) return false; - if(BUTTON_PRESS()) return FALSE; - - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; if(MillerDecoding(b, 0)) { *len = Uart.len; - return TRUE; + EmLogTraceReader(); + return true; } - } - } + } + } } -static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded); -int EmSend4bitEx(uint8_t resp, bool correctionNeeded); + int EmSend4bit(uint8_t resp); -int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par); -int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded); +static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par); int EmSendCmd(uint8_t *resp, uint16_t respLen); -int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par); -bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, - uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity); +int EmSendPrecompiledCmd(tag_response_info_t *response_info); -static uint8_t* free_buffer_pointer; -typedef struct { - uint8_t* response; - size_t response_n; - uint8_t* modulation; - size_t modulation_n; - uint32_t ProxToAirDuration; -} tag_response_info_t; - -bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { +static bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes // This will need the following byte array for a modulation sequence // 144 data bits (18 * 8) @@ -873,49 +892,49 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe // ----------- + // 166 bytes, since every bit that needs to be send costs us a byte // - - + + // Prepare the tag modulation bits from the message - CodeIso14443aAsTag(response_info->response,response_info->response_n); - + GetParity(response_info->response, response_info->response_n, &(response_info->par)); + CodeIso14443aAsTagPar(response_info->response,response_info->response_n, &(response_info->par)); + // Make sure we do not exceed the free buffer space if (ToSendMax > max_buffer_size) { - Dbprintf("Out of memory, when modulating bits for tag answer:"); - Dbhexdump(response_info->response_n,response_info->response,false); - return false; + Dbprintf("Out of memory, when modulating bits for tag answer:"); + Dbhexdump(response_info->response_n, response_info->response, false); + return false; } - + // Copy the byte array, used for this modulation to the buffer position - memcpy(response_info->modulation,ToSend,ToSendMax); - + memcpy(response_info->modulation, ToSend, ToSendMax); + // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them response_info->modulation_n = ToSendMax; response_info->ProxToAirDuration = LastProxToAirDuration; - + return true; } // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit. -// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) -// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits +// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) +// 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits for the modulation // -> need 273 bytes buffer #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273 -bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { +bool prepare_allocated_tag_modulation(tag_response_info_t* response_info, uint8_t **buffer, size_t *max_buffer_size) { + // Retrieve and store the current buffer index - response_info->modulation = free_buffer_pointer; - - // Determine the maximum size we can use from our buffer - size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; - + response_info->modulation = *buffer; + // Forward the prepare tag modulation function to the inner function - if (prepare_tag_modulation(response_info, max_buffer_size)) { - // Update the free buffer offset - free_buffer_pointer += ToSendMax; - return true; + if (prepare_tag_modulation(response_info, *max_buffer_size)) { + // Update the free buffer offset and the remaining buffer size + *buffer += ToSendMax; + *max_buffer_size -= ToSendMax; + return true; } else { - return false; + return false; } } @@ -923,13 +942,13 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { // Main loop of simulated tag: receive commands from reader, decide what // response to send, and send it. //----------------------------------------------------------------------------- -void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) -{ +void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, uint8_t* data) { + uint8_t sak; // The first response contains the ATQA (note: bytes are transmitted in reverse order). uint8_t response1[2]; - + switch (tagType) { case 1: { // MIFARE Classic // Says: I am Mifare 1k - original line @@ -960,19 +979,19 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) response1[0] = 0x01; response1[1] = 0x0f; sak = 0x01; - } break; + } break; default: { Dbprintf("Error: unkown tagtype (%d)",tagType); return; } break; } - + // The second response contains the (mandatory) first 24 bits of the UID uint8_t response2[5] = {0x00}; // Check if the uid uses the (optional) part uint8_t response2a[5] = {0x00}; - + if (uid_2nd) { response2[0] = 0x88; num_to_bytes(uid_1st,3,response2+1); @@ -1003,8 +1022,8 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce - uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: - // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, + uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: + // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us) // TC(1) = 0x02: CID supported, NAD not supported @@ -1033,7 +1052,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) .modulation = dynamic_modulation_buffer, .modulation_n = 0 }; - + // We need to listen to the high-frequency, peak-detected path. iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); @@ -1042,16 +1061,16 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) // allocate buffers: uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); - free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); - + uint8_t *free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); + size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; // clear trace clear_trace(); - set_tracing(TRUE); + set_tracing(true); // Prepare the responses of the anticollision phase // there will be not enough time to do this at the moment the reader sends it REQA for (size_t i=0; i 0) { // Copy the CID from the reader query dynamic_response_info.response[1] = receivedCmd[1]; @@ -1174,12 +1183,9 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) // Add CRC bytes, always used in ISO 14443A-4 compliant cards AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n); dynamic_response_info.response_n += 2; - + if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { Dbprintf("Error preparing tag response"); - if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - } break; } p_response = &dynamic_response_info; @@ -1199,24 +1205,10 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) cmdsRecvd++; if (p_response != NULL) { - EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); - // do the tracing for the previous reader request and this tag answer: - uint8_t par[MAX_PARITY_SIZE]; - GetParity(p_response->response, p_response->response_n, par); - - EmLogTrace(Uart.output, - Uart.len, - Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.parity, - p_response->response, - p_response->response_n, - LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, - (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, - par); - } - - if (!tracing) { + EmSendPrecompiledCmd(p_response); + } + + if (!get_tracing()) { Dbprintf("Trace Full. Simulation stopped."); break; } @@ -1230,12 +1222,11 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) // prepare a delayed transfer. This simply shifts ToSend[] by a number // of bits specified in the delay parameter. -void PrepareDelayedTransfer(uint16_t delay) -{ +static void PrepareDelayedTransfer(uint16_t delay) { uint8_t bitmask = 0; uint8_t bits_to_shift = 0; uint8_t bits_shifted = 0; - + delay &= 0x07; if (delay) { for (uint16_t i = 0; i < delay; i++) { @@ -1256,38 +1247,35 @@ void PrepareDelayedTransfer(uint16_t delay) // Transmit the command (to the tag) that was placed in ToSend[]. // Parameter timing: // if NULL: transfer at next possible time, taking into account -// request guard time and frame delay time -// if == 0: transfer immediately and return time of transfer +// request guard time, startup frame guard time and frame delay time +// if == 0: transfer immediately and return time of transfer // if != 0: delay transfer until time specified //------------------------------------------------------------------------------------- -static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) -{ - +static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) { + LED_B_ON(); + LED_D_ON(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); uint32_t ThisTransferTime = 0; if (timing) { - if(*timing == 0) { // Measure time + if (*timing == 0) { // Measure time *timing = (GetCountSspClk() + 8) & 0xfffffff8; } else { - PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks) + PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks) } - if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); - while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) + if (MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); + while (GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) LastTimeProxToAirStart = *timing; } else { ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8); - while(GetCountSspClk() < ThisTransferTime); + while (GetCountSspClk() < ThisTransferTime); LastTimeProxToAirStart = ThisTransferTime; } - - // clear TXRDY - AT91C_BASE_SSC->SSC_THR = SEC_Y; uint16_t c = 0; - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + for (;;) { + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = cmd[c]; c++; if(c >= len) { @@ -1295,16 +1283,16 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing } } } - + NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME); + LED_B_OFF(); } //----------------------------------------------------------------------------- // Prepare reader command (in bits, support short frames) to send to FPGA //----------------------------------------------------------------------------- -void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) -{ +static void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) { int i, j; int last; uint8_t b; @@ -1381,288 +1369,250 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8 ToSendMax++; } -//----------------------------------------------------------------------------- -// Prepare reader command to send to FPGA -//----------------------------------------------------------------------------- -void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) -{ - CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); -} - //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed (return 1) or field was gone (return 2) // Or return 0 when command is captured //----------------------------------------------------------------------------- -static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) -{ +int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) { + uint32_t field_off_time = -1; + uint32_t samples = 0; + int ret = 0; + uint8_t b = 0;; + uint8_t dmaBuf[DMA_BUFFER_SIZE]; + uint8_t *upTo = dmaBuf; + *len = 0; - uint32_t timer = 0, vtime = 0; - int analogCnt = 0; - int analogAVG = 0; + // Run a 'software UART' on the stream of incoming samples. + UartInit(received, parity); + + // start ADC + AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; + + // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN + while (GetCountSspClk() < LastTimeProxToAirStart + LastProxToAirDuration + (FpgaSendQueueDelay>>3) - 8 - 3) /* wait */ ; // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen // only, since we are receiving, not transmitting). - // Signal field is off with the appropriate LED - LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); - // Set ADC to read field strength - AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; - AT91C_BASE_ADC->ADC_MR = - ADC_MODE_PRESCALE(63) | - ADC_MODE_STARTUP_TIME(1) | - ADC_MODE_SAMPLE_HOLD_TIME(15); - AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); - // start ADC - AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; - - // Now run a 'software UART' on the stream of incoming samples. - UartInit(received, parity); + // clear receive register, measure time of next transfer + uint32_t temp = AT91C_BASE_SSC->SSC_RHR; (void) temp; + while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ; + uint32_t start_time = GetCountSspClk() & 0xfffffff8; + + // Setup and start DMA. + FpgaSetupSscDma(dmaBuf, DMA_BUFFER_SIZE); - // Clear RXRDY: - uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - for(;;) { - WDT_HIT(); + uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE-1); + + if (behindBy == 0) continue; - if (BUTTON_PRESS()) return 1; - - // test if the field exists - if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) { - analogCnt++; - analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; - AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; - if (analogCnt >= 32) { - if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { - vtime = GetTickCount(); - if (!timer) timer = vtime; - // 50ms no field --> card to idle state - if (vtime - timer > 50) return 2; - } else - if (timer) timer = 0; - analogCnt = 0; - analogAVG = 0; + b = *upTo++; + + if(upTo >= dmaBuf + DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. + upTo = dmaBuf; // start reading the circular buffer from the beginning + if(behindBy > (9*DMA_BUFFER_SIZE/10)) { + Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy); + ret = 1; + break; } } + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. + AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and + AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; // DMA Next Counter registers + } - // receive and test the miller decoding - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - if(MillerDecoding(b, 0)) { - *len = Uart.len; - return 0; + if (BUTTON_PRESS()) { + ret = 1; + break; + } + + // check reader's HF field + if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF_LOW)) { + if ((MAX_ADC_HF_VOLTAGE_LOW * AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF_LOW]) >> 10 < MF_MINFIELDV) { + if (GetTickCount() - field_off_time > 50) { + ret = 2; // reader has switched off HF field for more than 50ms. Timeout + break; + } + } else { + field_off_time = GetTickCount(); // HF field is still there. Reset timer } - } + AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; // restart ADC + } + + if (MillerDecoding(b, start_time + samples*8)) { + *len = Uart.len; + EmLogTraceReader(); + ret = 0; + break; + } + samples++; } + + FpgaDisableSscDma(); + return ret; } -static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) -{ +static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen) { + LED_C_ON(); + uint8_t b; uint16_t i = 0; - uint32_t ThisTransferTime; - + bool correctionNeeded; + // Modulate Manchester FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); // include correction bit if necessary - if (Uart.parityBits & 0x01) { - correctionNeeded = TRUE; + if (Uart.bitCount == 7) + { + // Short tags (7 bits) don't have parity, determine the correct value from MSB + correctionNeeded = Uart.output[0] & 0x40; } - if(correctionNeeded) { + else + { + // Look at the last parity bit + correctionNeeded = Uart.parity[(Uart.len-1)/8] & (0x80 >> ((Uart.len-1) & 7)); + } + + if (correctionNeeded) { // 1236, so correction bit needed i = 0; } else { i = 1; } - // clear receiving shift register and holding register - while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); + // clear receiving shift register and holding register b = AT91C_BASE_SSC->SSC_RHR; (void) b; - while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); + while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); b = AT91C_BASE_SSC->SSC_RHR; (void) b; - + // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line) - for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never - while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); + for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never + while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); if (AT91C_BASE_SSC->SSC_RHR) break; } - while ((ThisTransferTime = GetCountSspClk()) & 0x00000007); - - // Clear TXRDY: - AT91C_BASE_SSC->SSC_THR = SEC_F; + LastTimeProxToAirStart = (GetCountSspClk() & 0xfffffff8) + (correctionNeeded?8:0); // send cycle - for(; i < respLen; ) { + for (; i < respLen; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = resp[i++]; FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; } - + if(BUTTON_PRESS()) { break; } } - // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: - uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; - for (i = 0; i <= fpga_queued_bits/8 + 1; ) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = SEC_F; - FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - i++; - } - } - - LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0); - + LED_C_OFF(); return 0; } -int EmSend4bitEx(uint8_t resp, bool correctionNeeded){ + +int EmSend4bit(uint8_t resp){ Code4bitAnswerAsTag(resp); - int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); - // do the tracing for the previous reader request and this tag answer: - uint8_t par[1]; - GetParity(&resp, 1, par); - EmLogTrace(Uart.output, - Uart.len, - Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.parity, - &resp, - 1, - LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, - (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, - par); + int res = EmSendCmd14443aRaw(ToSend, ToSendMax); + // Log this tag answer and fix timing of previous reader command: + EmLogTraceTag(&resp, 1, NULL, LastProxToAirDuration); return res; } -int EmSend4bit(uint8_t resp){ - return EmSend4bitEx(resp, false); -} -int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){ +static int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ CodeIso14443aAsTagPar(resp, respLen, par); - int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); - // do the tracing for the previous reader request and this tag answer: - EmLogTrace(Uart.output, - Uart.len, - Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.parity, - resp, - respLen, - LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, - (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, - par); + int res = EmSendCmd14443aRaw(ToSend, ToSendMax); + // Log this tag answer and fix timing of previous reader command: + EmLogTraceTag(resp, respLen, par, LastProxToAirDuration); return res; } -int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){ - uint8_t par[MAX_PARITY_SIZE]; - GetParity(resp, respLen, par); - return EmSendCmdExPar(resp, respLen, correctionNeeded, par); -} int EmSendCmd(uint8_t *resp, uint16_t respLen){ uint8_t par[MAX_PARITY_SIZE]; GetParity(resp, respLen, par); - return EmSendCmdExPar(resp, respLen, false, par); + return EmSendCmdExPar(resp, respLen, par); } + int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ - return EmSendCmdExPar(resp, respLen, false, par); + return EmSendCmdExPar(resp, respLen, par); } -bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, - uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity) -{ - if (tracing) { - // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from - // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. - // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: - uint16_t reader_modlen = reader_EndTime - reader_StartTime; - uint16_t approx_fdt = tag_StartTime - reader_EndTime; - uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; - reader_EndTime = tag_StartTime - exact_fdt; - reader_StartTime = reader_EndTime - reader_modlen; - if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) { - return FALSE; - } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE)); - } else { - return TRUE; - } + +int EmSendPrecompiledCmd(tag_response_info_t *response_info) { + int ret = EmSendCmd14443aRaw(response_info->modulation, response_info->modulation_n); + // Log this tag answer and fix timing of previous reader command: + EmLogTraceTag(response_info->response, response_info->response_n, &(response_info->par), response_info->ProxToAirDuration); + return ret; } + //----------------------------------------------------------------------------- // Wait a certain time for tag response -// If a response is captured return TRUE -// If it takes too long return FALSE +// If a response is captured return true +// If it takes too long return false //----------------------------------------------------------------------------- -static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) -{ +static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) { uint32_t c; - + // Set FPGA mode to "reader listen mode", no modulation (listen // only, since we are receiving, not transmitting). // Signal field is on with the appropriate LED LED_D_ON(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); - + // Now get the answer from the card DemodInit(receivedResponse, receivedResponsePar); // clear RXRDY: - uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; c = 0; - for(;;) { + for (;;) { WDT_HIT(); - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - if(ManchesterDecoding(b, offset, 0)) { + if (ManchesterDecoding(b, offset, 0)) { NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD); - return TRUE; + return true; } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) { - return FALSE; + return false; } } } } -void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) -{ +void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) { + CodeIso14443aBitsAsReaderPar(frame, bits, par); - + // Send command to tag TransmitFor14443a(ToSend, ToSendMax, timing); - if(trigger) + if (trigger) LED_A_ON(); - + // Log reader command in trace buffer - if (tracing) { - LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); - } + LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, true); } -void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) -{ - ReaderTransmitBitsPar(frame, len*8, par, timing); +void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) { + ReaderTransmitBitsPar(frame, len*8, par, timing); } -void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) -{ +static void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) { // Generate parity and redirect uint8_t par[MAX_PARITY_SIZE]; GetParity(frame, len/8, par); @@ -1670,112 +1620,181 @@ void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) } -void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) -{ +void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) { // Generate parity and redirect uint8_t par[MAX_PARITY_SIZE]; GetParity(frame, len, par); ReaderTransmitBitsPar(frame, len*8, par, timing); } -int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) -{ - if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE; - if (tracing) { - LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); - } + +static int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) { + if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return false; + LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false); return Demod.len; } -int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) -{ - if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE; - if (tracing) { - LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); - } + +int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) { + if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return false; + + LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, false); return Demod.len; } -/* performs iso14443a anticollision procedure - * fills the uid pointer unless NULL - * fills resp_data unless NULL */ -int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) { - uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP - uint8_t sel_all[] = { 0x93,0x20 }; - uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; - uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 - uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller - uint8_t resp_par[MAX_PARITY_SIZE]; - byte_t uid_resp[4]; - size_t uid_resp_len; - uint8_t sak = 0x04; // cascade uid - int cascade_level = 0; - int len; +static void iso14a_set_ATS_times(uint8_t *ats) { - // Broadcast for a card, WUPA (0x52) will force response from all cards in the field - ReaderTransmitBitsPar(wupa,7,0, NULL); - - // Receive the ATQA - if(!ReaderReceive(resp, resp_par)) return 0; + uint8_t tb1; + uint8_t fwi, sfgi; + uint32_t fwt, sfgt; - if(p_hi14a_card) { - memcpy(p_hi14a_card->atqa, resp, 2); - p_hi14a_card->uidlen = 0; - memset(p_hi14a_card->uid,0,10); + if (ats[0] > 1) { // there is a format byte T0 + if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1) + if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1) + tb1 = ats[3]; + } else { + tb1 = ats[2]; + } + fwi = (tb1 & 0xf0) >> 4; // frame waiting time integer (FWI) + if (fwi != 15) { + fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc + iso14a_set_timeout(fwt/(8*16)); + } + sfgi = tb1 & 0x0f; // startup frame guard time integer (SFGI) + if (sfgi != 0 && sfgi != 15) { + sfgt = 256 * 16 * (1 << sfgi); // startup frame guard time (SFGT) in 1/fc + NextTransferTime = MAX(NextTransferTime, Demod.endTime + (sfgt - DELAY_AIR2ARM_AS_READER - DELAY_ARM2AIR_AS_READER)/16); + } + } + } +} + + +static int GetATQA(uint8_t *resp, uint8_t *resp_par) { + +#define WUPA_RETRY_TIMEOUT 10 // 10ms + uint8_t wupa[] = {ISO14443A_CMD_WUPA}; // 0x26 - REQA 0x52 - WAKE-UP + + uint32_t save_iso14a_timeout = iso14a_get_timeout(); + iso14a_set_timeout(1236/(16*8)+1); // response to WUPA is expected at exactly 1236/fc. No need to wait longer. + + uint32_t start_time = GetTickCount(); + int len; + + // we may need several tries if we did send an unknown command or a wrong authentication before... + do { + // Broadcast for a card, WUPA (0x52) will force response from all cards in the field + ReaderTransmitBitsPar(wupa, 7, NULL, NULL); + // Receive the ATQA + len = ReaderReceive(resp, resp_par); + } while (len == 0 && GetTickCount() <= start_time + WUPA_RETRY_TIMEOUT); + + iso14a_set_timeout(save_iso14a_timeout); + return len; +} + + +// performs iso14443a anticollision (optional) and card select procedure +// fills the uid and cuid pointer unless NULL +// fills the card info record unless NULL +// if anticollision is false, then the UID must be provided in uid_ptr[] +// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID) +// requests ATS unless no_rats is true +int iso14443a_select_card(uint8_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades, bool no_rats) { + uint8_t sel_all[] = { 0x93,0x20 }; + uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; + uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 + uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller + uint8_t resp_par[MAX_PARITY_SIZE]; + uint8_t uid_resp[4]; + size_t uid_resp_len; + + uint8_t sak = 0x04; // cascade uid + int cascade_level = 0; + int len; + + // init card struct + if (p_hi14a_card) { + p_hi14a_card->uidlen = 0; + memset(p_hi14a_card->uid, 0, 10); + p_hi14a_card->ats_len = 0; + } + + if (!GetATQA(resp, resp_par)) { + return 0; + } + + if (p_hi14a_card) { + memcpy(p_hi14a_card->atqa, resp, 2); } - // clear uid - if (uid_ptr) { - memset(uid_ptr,0,10); + if (anticollision) { + // clear uid + if (uid_ptr) { + memset(uid_ptr,0,10); + } } // check for proprietary anticollision: if ((resp[0] & 0x1F) == 0) { return 3; } - + // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in // which case we need to make a cascade 2 request and select - this is a long UID - // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. - for(; sak & 0x04; cascade_level++) { + // While the UID is not complete, the 3rd bit (from the right) is set in the SAK. + for (; sak & 0x04; cascade_level++) { // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; - // SELECT_ALL - ReaderTransmit(sel_all, sizeof(sel_all), NULL); - if (!ReaderReceive(resp, resp_par)) return 0; - - if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit - memset(uid_resp, 0, 4); - uint16_t uid_resp_bits = 0; - uint16_t collision_answer_offset = 0; - // anti-collision-loop: - while (Demod.collisionPos) { - Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); - for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point - uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; - uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); + if (anticollision) { + // SELECT_ALL + ReaderTransmit(sel_all, sizeof(sel_all), NULL); + if (!ReaderReceive(resp, resp_par)) { + return 0; + } + + if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit + memset(uid_resp, 0, 4); + uint16_t uid_resp_bits = 0; + uint16_t collision_answer_offset = 0; + // anti-collision-loop: + while (Demod.collisionPos) { + Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); + for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point + uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; + uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); + } + uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position + uid_resp_bits++; + // construct anticollosion command: + sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits + for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { + sel_uid[2+i] = uid_resp[i]; + } + collision_answer_offset = uid_resp_bits%8; + ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); + if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) { + return 0; + } } - uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position - uid_resp_bits++; - // construct anticollosion command: - sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits - for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { - sel_uid[2+i] = uid_resp[i]; + // finally, add the last bits and BCC of the UID + for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { + uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; + uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); } - collision_answer_offset = uid_resp_bits%8; - ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); - if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0; + + } else { // no collision, use the response to SELECT_ALL as current uid + memcpy(uid_resp, resp, 4); } - // finally, add the last bits and BCC of the UID - for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { - uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; - uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); + } else { + if (cascade_level < num_cascades - 1) { + uid_resp[0] = 0x88; + memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3); + } else { + memcpy(uid_resp, uid_ptr+cascade_level*3, 4); } - - } else { // no collision, use the response to SELECT_ALL as current uid - memcpy(uid_resp, resp, 4); } uid_resp_len = 4; @@ -1785,28 +1804,29 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u } // Construct SELECT UID command - sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) - memcpy(sel_uid+2, uid_resp, 4); // the UID - sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC - AppendCrc14443a(sel_uid, 7); // calculate and add CRC + sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) + memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID + sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC + AppendCrc14443a(sel_uid, 7); // calculate and add CRC ReaderTransmit(sel_uid, sizeof(sel_uid), NULL); // Receive the SAK - if (!ReaderReceive(resp, resp_par)) return 0; + if (!ReaderReceive(resp, resp_par)) { + return 0; + } sak = resp[0]; - // Test if more parts of the uid are coming + // Test if more parts of the uid are coming if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: // http://www.nxp.com/documents/application_note/AN10927.pdf uid_resp[0] = uid_resp[1]; uid_resp[1] = uid_resp[2]; - uid_resp[2] = uid_resp[3]; - + uid_resp[2] = uid_resp[3]; uid_resp_len = 3; } - if(uid_ptr) { + if(uid_ptr && anticollision) { memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); } @@ -1818,37 +1838,40 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u if(p_hi14a_card) { p_hi14a_card->sak = sak; - p_hi14a_card->ats_len = 0; } - // non iso14443a compliant tag - if( (sak & 0x20) == 0) return 2; + // PICC compilant with iso14443a-4 ---> (SAK & 0x20 != 0) + if( (sak & 0x20) == 0) return 2; - // Request for answer to select - AppendCrc14443a(rats, 2); - ReaderTransmit(rats, sizeof(rats), NULL); + if (!no_rats) { + // Request for answer to select + AppendCrc14443a(rats, 2); + ReaderTransmit(rats, sizeof(rats), NULL); - if (!(len = ReaderReceive(resp, resp_par))) return 0; + if (!(len = ReaderReceive(resp, resp_par))) { + return 0; + } - - if(p_hi14a_card) { - memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); - p_hi14a_card->ats_len = len; - } + if(p_hi14a_card) { + memcpy(p_hi14a_card->ats, resp, len); + p_hi14a_card->ats_len = len; + } - // reset the PCB block number - iso14_pcb_blocknum = 0; + // reset the PCB block number + iso14_pcb_blocknum = 0; - // set default timeout based on ATS - iso14a_set_ATS_timeout(resp); + // set default timeout and delay next transfer based on ATS + iso14a_set_ATS_times(resp); - return 1; + } + return 1; } + void iso14443a_setup(uint8_t fpga_minor_mode) { FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // Set up the synchronous serial port - FpgaSetupSsc(); + FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); // connect Demodulated Signal to ADC: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); @@ -1861,88 +1884,190 @@ void iso14443a_setup(uint8_t fpga_minor_mode) { } FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); + // Set ADC to read field strength + AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; + AT91C_BASE_ADC->ADC_MR = + ADC_MODE_PRESCALE(63) | + ADC_MODE_STARTUP_TIME(1) | + ADC_MODE_SAMPLE_HOLD_TIME(15); + AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF_LOW); + // Start the timer StartCountSspClk(); - + DemodReset(); UartReset(); + LastTimeProxToAirStart = 0; + FpgaSendQueueDelay = 0; + LastProxToAirDuration = 20; // arbitrary small value. Avoid lock in EmGetCmd() NextTransferTime = 2*DELAY_ARM2AIR_AS_READER; - iso14a_set_timeout(1050); // 10ms default + iso14a_set_timeout(1060); // 10ms default } -int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { +/* Peter Fillmore 2015 +Added card id field to the function + info from ISO14443A standard +b1 = Block Number +b2 = RFU (always 1) +b3 = depends on block +b4 = Card ID following if set to 1 +b5 = depends on block type +b6 = depends on block type +b7,b8 = block type. +Coding of I-BLOCK: +b8 b7 b6 b5 b4 b3 b2 b1 +0 0 0 x x x 1 x +b5 = chaining bit +Coding of R-block: +b8 b7 b6 b5 b4 b3 b2 b1 +1 0 1 x x 0 1 x +b5 = ACK/NACK +Coding of S-block: +b8 b7 b6 b5 b4 b3 b2 b1 +1 1 x x x 0 1 0 +b5,b6 = 00 - DESELECT + 11 - WTX +*/ +int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, bool send_chaining, void *data, uint8_t *res) { uint8_t parity[MAX_PARITY_SIZE]; - uint8_t real_cmd[cmd_len+4]; - real_cmd[0] = 0x0a; //I-Block - // put block number into the PCB - real_cmd[0] |= iso14_pcb_blocknum; - real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards - memcpy(real_cmd+2, cmd, cmd_len); - AppendCrc14443a(real_cmd,cmd_len+2); - - ReaderTransmit(real_cmd, cmd_len+4, NULL); + uint8_t real_cmd[cmd_len + 4]; + + if (cmd_len) { + // ISO 14443 APDU frame: PCB [CID] [NAD] APDU CRC PCB=0x02 + real_cmd[0] = 0x02; // bnr,nad,cid,chn=0; i-block(0x00) + if (send_chaining) { + real_cmd[0] |= 0x10; + } + // put block number into the PCB + real_cmd[0] |= iso14_pcb_blocknum; + memcpy(real_cmd + 1, cmd, cmd_len); + } else { + // R-block. ACK + real_cmd[0] = 0xA2; // r-block + ACK + real_cmd[0] |= iso14_pcb_blocknum; + } + AppendCrc14443a(real_cmd, cmd_len + 1); + + ReaderTransmit(real_cmd, cmd_len + 3, NULL); + size_t len = ReaderReceive(data, parity); uint8_t *data_bytes = (uint8_t *) data; - if (!len) + + if (!len) { return 0; //DATA LINK ERROR - // if we received an I- or R(ACK)-Block with a block number equal to the - // current block number, toggle the current block number - else if (len >= 4 // PCB+CID+CRC = 4 bytes - && ((data_bytes[0] & 0xC0) == 0 // I-Block - || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0 - && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers - { - iso14_pcb_blocknum ^= 1; + } else { + // S-Block WTX + while (len && ((data_bytes[0] & 0xF2) == 0xF2)) { + uint32_t save_iso14a_timeout = iso14a_get_timeout(); + // temporarily increase timeout + iso14a_set_timeout(MAX((data_bytes[1] & 0x3f) * save_iso14a_timeout, MAX_ISO14A_TIMEOUT)); + // Transmit WTX back + // byte1 - WTXM [1..59]. command FWT=FWT*WTXM + data_bytes[1] = data_bytes[1] & 0x3f; // 2 high bits mandatory set to 0b + // now need to fix CRC. + AppendCrc14443a(data_bytes, len - 2); + // transmit S-Block + ReaderTransmit(data_bytes, len, NULL); + // retrieve the result again (with increased timeout) + len = ReaderReceive(data, parity); + data_bytes = data; + // restore timeout + iso14a_set_timeout(save_iso14a_timeout); + } + + // if we received an I- or R(ACK)-Block with a block number equal to the + // current block number, toggle the current block number + if (len >= 3 // PCB+CRC = 3 bytes + && ((data_bytes[0] & 0xC0) == 0 // I-Block + || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0 + && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers + { + iso14_pcb_blocknum ^= 1; + } + + // if we received I-block with chaining we need to send ACK and receive another block of data + if (res) + *res = data_bytes[0]; + + // crc check + if (len >= 3 && !CheckCrc14443(CRC_14443_A, data_bytes, len)) { + return -1; + } + + } + + if (len) { + // cut frame byte + len -= 1; + // memmove(data_bytes, data_bytes + 1, len); + for (int i = 0; i < len; i++) + data_bytes[i] = data_bytes[i + 1]; } return len; } + //----------------------------------------------------------------------------- // Read an ISO 14443a tag. Send out commands and store answers. // //----------------------------------------------------------------------------- -void ReaderIso14443a(UsbCommand *c) -{ +void ReaderIso14443a(UsbCommand *c) { + iso14a_command_t param = c->arg[0]; uint8_t *cmd = c->d.asBytes; size_t len = c->arg[1] & 0xffff; size_t lenbits = c->arg[1] >> 16; uint32_t timeout = c->arg[2]; uint32_t arg0 = 0; - byte_t buf[USB_CMD_DATA_SIZE]; + uint8_t buf[USB_CMD_DATA_SIZE] = {0}; uint8_t par[MAX_PARITY_SIZE]; - - if(param & ISO14A_CONNECT) { + bool cantSELECT = false; + + set_tracing(true); + + if (param & ISO14A_CLEAR_TRACE) { clear_trace(); } - set_tracing(TRUE); - - if(param & ISO14A_REQUEST_TRIGGER) { - iso14a_set_trigger(TRUE); + if (param & ISO14A_REQUEST_TRIGGER) { + iso14a_set_trigger(true); } - if(param & ISO14A_CONNECT) { + if (param & ISO14A_CONNECT) { + LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); if(!(param & ISO14A_NO_SELECT)) { iso14a_card_select_t *card = (iso14a_card_select_t*)buf; - arg0 = iso14443a_select_card(NULL,card,NULL); - cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t)); + arg0 = iso14443a_select_card(NULL, card, NULL, true, 0, param & ISO14A_NO_RATS); + + // if we cant select then we cant send data + if (arg0 != 1 && arg0 != 2) { + // 1 - all is OK with ATS, 2 - without ATS + cantSELECT = true; + } + FpgaDisableTracing(); + LED_B_ON(); + cmd_send(CMD_NACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t)); + LED_B_OFF(); } } - if(param & ISO14A_SET_TIMEOUT) { + if (param & ISO14A_SET_TIMEOUT) { iso14a_set_timeout(timeout); } - if(param & ISO14A_APDU) { - arg0 = iso14_apdu(cmd, len, buf); - cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); + if (param & ISO14A_APDU && !cantSELECT) { + uint8_t res; + arg0 = iso14_apdu(cmd, len, (param & ISO14A_SEND_CHAINING), buf, &res); + FpgaDisableTracing(); + LED_B_ON(); + cmd_send(CMD_ACK, arg0, res, 0, buf, sizeof(buf)); + LED_B_OFF(); } - if(param & ISO14A_RAW) { - if(param & ISO14A_APPEND_CRC) { + if (param & ISO14A_RAW && !cantSELECT) { + if (param & ISO14A_APPEND_CRC) { if(param & ISO14A_TOPAZMODE) { AppendCrc14443b(cmd,len); } else { @@ -1951,40 +2076,44 @@ void ReaderIso14443a(UsbCommand *c) len += 2; if (lenbits) lenbits += 16; } - if(lenbits>0) { // want to send a specific number of bits (e.g. short commands) - if(param & ISO14A_TOPAZMODE) { + if (lenbits > 0) { // want to send a specific number of bits (e.g. short commands) + if (param & ISO14A_TOPAZMODE) { int bits_to_send = lenbits; uint16_t i = 0; - ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity + ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity bits_to_send -= 7; while (bits_to_send > 0) { - ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity + ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity bits_to_send -= 8; } } else { GetParity(cmd, lenbits/8, par); - ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity + ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity } - } else { // want to send complete bytes only - if(param & ISO14A_TOPAZMODE) { + } else { // want to send complete bytes only + if (param & ISO14A_TOPAZMODE) { uint16_t i = 0; - ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy + ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy while (i < len) { - ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy + ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy } } else { - ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity + ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity } } arg0 = ReaderReceive(buf, par); - cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); + FpgaDisableTracing(); + + LED_B_ON(); + cmd_send(CMD_ACK, arg0, 0, 0, buf, sizeof(buf)); + LED_B_OFF(); } - if(param & ISO14A_REQUEST_TRIGGER) { - iso14a_set_trigger(FALSE); + if (param & ISO14A_REQUEST_TRIGGER) { + iso14a_set_trigger(false); } - if(param & ISO14A_NO_DISCONNECT) { + if (param & ISO14A_NO_DISCONNECT) { return; } @@ -1996,7 +2125,7 @@ void ReaderIso14443a(UsbCommand *c) // Determine the distance between two nonces. // Assume that the difference is small, but we don't know which is first. // Therefore try in alternating directions. -int32_t dist_nt(uint32_t nt1, uint32_t nt2) { +static int32_t dist_nt(uint32_t nt1, uint32_t nt2) { uint16_t i; uint32_t nttmp1, nttmp2; @@ -2005,14 +2134,14 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) { nttmp1 = nt1; nttmp2 = nt2; - + for (i = 1; i < 32768; i++) { nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i; nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -i; } - + return(-99999); // either nt1 or nt2 are invalid nonces } @@ -2033,31 +2162,29 @@ void ReaderMifare(bool first_try) uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; - if (first_try) { - iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); - } - + iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); + // free eventually allocated BigBuf memory. We want all for tracing. BigBuf_free(); - + clear_trace(); - set_tracing(TRUE); + set_tracing(true); - byte_t nt_diff = 0; - uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough - static byte_t par_low = 0; - bool led_on = TRUE; + uint8_t nt_diff = 0; + uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough + static uint8_t par_low = 0; + bool led_on = true; uint8_t uid[10] ={0}; uint32_t cuid; uint32_t nt = 0; uint32_t previous_nt = 0; static uint32_t nt_attacked = 0; - byte_t par_list[8] = {0x00}; - byte_t ks_list[8] = {0x00}; + uint8_t par_list[8] = {0x00}; + uint8_t ks_list[8] = {0x00}; #define PRNG_SEQUENCE_LENGTH (1 << 16); - static uint32_t sync_time; + uint32_t sync_time = GetCountSspClk() & 0xfffffff8; static int32_t sync_cycles; int catch_up_cycles = 0; int last_catch_up = 0; @@ -2065,12 +2192,11 @@ void ReaderMifare(bool first_try) uint16_t consecutive_resyncs = 0; int isOK = 0; - if (first_try) { + if (first_try) { mf_nr_ar3 = 0; - sync_time = GetCountSspClk() & 0xfffffff8; - sync_cycles = PRNG_SEQUENCE_LENGTH; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces). + par[0] = par_low = 0; + sync_cycles = PRNG_SEQUENCE_LENGTH; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the tag nonces). nt_attacked = 0; - par[0] = 0; } else { // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) @@ -2082,12 +2208,13 @@ void ReaderMifare(bool first_try) LED_A_ON(); LED_B_OFF(); LED_C_OFF(); - - #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up. - #define MAX_SYNC_TRIES 32 - #define NUM_DEBUG_INFOS 8 // per strategy - #define MAX_STRATEGY 3 + + #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up. + #define MAX_SYNC_TRIES 32 + #define SYNC_TIME_BUFFER 16 // if there is only SYNC_TIME_BUFFER left before next planned sync, wait for next PRNG cycle + #define NUM_DEBUG_INFOS 8 // per strategy + #define MAX_STRATEGY 3 uint16_t unexpected_random = 0; uint16_t sync_tries = 0; int16_t debug_info_nr = -1; @@ -2095,9 +2222,9 @@ void ReaderMifare(bool first_try) int32_t debug_info[MAX_STRATEGY][NUM_DEBUG_INFOS]; uint32_t select_time; uint32_t halt_time; - - for(uint16_t i = 0; TRUE; i++) { - + + for (uint16_t i = 0; true; i++) { + LED_C_ON(); WDT_HIT(); @@ -2106,7 +2233,7 @@ void ReaderMifare(bool first_try) isOK = -1; break; } - + if (strategy == 2) { // test with additional hlt command halt_time = 0; @@ -2123,9 +2250,9 @@ void ReaderMifare(bool first_try) iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); SpinDelay(100); } - - if(!iso14443a_select_card(uid, NULL, &cuid)) { - if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); + + if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { + if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); continue; } select_time = GetCountSspClk(); @@ -2135,17 +2262,17 @@ void ReaderMifare(bool first_try) sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; catch_up_cycles = 0; - // if we missed the sync time already, advance to the next nonce repeat - while(GetCountSspClk() > sync_time) { + // if we missed the sync time already or are about to miss it, advance to the next nonce repeat + while(sync_time < GetCountSspClk() + SYNC_TIME_BUFFER) { elapsed_prng_sequences++; sync_time = (sync_time & 0xfffffff8) + sync_cycles; } - // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) + // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); } else { // collect some information on tag nonces for debugging: - #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH + #define DEBUG_FIXED_SYNC_CYCLES PRNG_SEQUENCE_LENGTH if (strategy == 0) { // nonce distances at fixed time after card select: sync_time = select_time + DEBUG_FIXED_SYNC_CYCLES; @@ -2160,11 +2287,11 @@ void ReaderMifare(bool first_try) sync_time = DEBUG_FIXED_SYNC_CYCLES; } ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); - } + } // Receive the (4 Byte) "random" nonce if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) { - if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); + if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); continue; } @@ -2182,17 +2309,17 @@ void ReaderMifare(bool first_try) if (nt_distance == -99999) { // invalid nonce received unexpected_random++; if (unexpected_random > MAX_UNEXPECTED_RANDOM) { - isOK = -3; // Card has an unpredictable PRNG. Give up + isOK = -3; // Card has an unpredictable PRNG. Give up break; } else { - continue; // continue trying... + continue; // continue trying... } } if (++sync_tries > MAX_SYNC_TRIES) { if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) { - isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly + isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly break; - } else { // continue for a while, just to collect some debug info + } else { // continue for a while, just to collect some debug info debug_info[strategy][debug_info_nr] = nt_distance; debug_info_nr++; if (debug_info_nr == NUM_DEBUG_INFOS) { @@ -2213,9 +2340,9 @@ void ReaderMifare(bool first_try) } } - if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... + if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... catch_up_cycles = -dist_nt(nt_attacked, nt); - if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one. + if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one. catch_up_cycles = 0; continue; } @@ -2225,12 +2352,12 @@ void ReaderMifare(bool first_try) } else { last_catch_up = catch_up_cycles; - consecutive_resyncs = 0; + consecutive_resyncs = 0; } if (consecutive_resyncs < 3) { if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs); } - else { + else { sync_cycles = sync_cycles + catch_up_cycles; if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles); last_catch_up = 0; @@ -2239,13 +2366,13 @@ void ReaderMifare(bool first_try) } continue; } - + consecutive_resyncs = 0; - + // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding if (ReaderReceive(receivedAnswer, receivedAnswerPar)) { - catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer - + catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer + if (nt_diff == 0) { par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change } @@ -2269,7 +2396,7 @@ void ReaderMifare(bool first_try) if (nt_diff == 0 && first_try) { par[0]++; - if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK. + if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK. isOK = -2; break; } @@ -2285,732 +2412,35 @@ void ReaderMifare(bool first_try) if (isOK == -4) { if (MF_DBGLEVEL >= 3) { for (uint16_t i = 0; i <= MAX_STRATEGY; i++) { - for(uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) { + for (uint16_t j = 0; j < NUM_DEBUG_INFOS; j++) { Dbprintf("collected debug info[%d][%d] = %d", i, j, debug_info[i][j]); } } } } - - byte_t buf[28]; + + FpgaDisableTracing(); + + uint8_t buf[32]; memcpy(buf + 0, uid, 4); num_to_bytes(nt, 4, buf + 4); memcpy(buf + 8, par_list, 8); memcpy(buf + 16, ks_list, 8); - memcpy(buf + 24, mf_nr_ar, 4); - - cmd_send(CMD_ACK, isOK, 0, 0, buf, 28); + memcpy(buf + 24, mf_nr_ar, 8); - // Thats it... - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - LEDsoff(); - - set_tracing(FALSE); -} - -typedef struct { - uint32_t cuid; - uint8_t sector; - uint8_t keytype; - uint32_t nonce; - uint32_t ar; - uint32_t nr; - uint32_t nonce2; - uint32_t ar2; - uint32_t nr2; -} nonces_t; - -/** - *MIFARE 1K simulate. - * - *@param flags : - * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK - * FLAG_4B_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that - * FLAG_7B_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that - * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section not finished - * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later - * FLAG_RANDOM_NONCE - means we should generate some pseudo-random nonce data (only allows moebius attack) - *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ... - * (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted) - */ -void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) -{ - int cardSTATE = MFEMUL_NOFIELD; - int _UID_LEN = 0; // 4, 7, 10 - int vHf = 0; // in mV - int res; - uint32_t selTimer = 0; - uint32_t authTimer = 0; - uint16_t len = 0; - uint8_t cardWRBL = 0; - uint8_t cardAUTHSC = 0; - uint8_t cardAUTHKEY = 0xff; // no authentication - uint32_t cardRr = 0; - uint32_t cuid = 0; - //uint32_t rn_enc = 0; - uint32_t ans = 0; - uint32_t cardINTREG = 0; - uint8_t cardINTBLOCK = 0; - struct Crypto1State mpcs = {0, 0}; - struct Crypto1State *pcs; - pcs = &mpcs; - uint32_t numReads = 0;//Counts numer of times reader read a block - uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; - uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE]; - uint8_t response[MAX_MIFARE_FRAME_SIZE]; - uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; - - uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID - uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; - uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!! - uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; - - uint8_t rSAKfinal[]= {0x08, 0xb6, 0xdd}; // mifare 1k indicated - uint8_t rSAK1[] = {0x04, 0xda, 0x17}; // indicate UID not finished - - uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; - uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; - - //Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2 - // This will be used in the reader-only attack. - - //allow collecting up to 8 sets of nonces to allow recovery of up to 8 keys - #define ATTACK_KEY_COUNT 8 // keep same as define in cmdhfmf.c -> readerAttack() - nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; //*2 for 2 separate attack types (nml, moebius) - memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp)); - - uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; //*2 for 2nd attack type (moebius) - memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected)); - uint8_t nonce1_count = 0; - uint8_t nonce2_count = 0; - uint8_t moebius_n_count = 0; - bool gettingMoebius = false; - uint8_t mM = 0; //moebius_modifier for collection storage - - // Authenticate response - nonce - uint32_t nonce; - if (flags & FLAG_RANDOM_NONCE) { - nonce = prand(); - } else { - nonce = bytes_to_num(rAUTH_NT, 4); - } - - //-- Determine the UID - // Can be set from emulator memory, incoming data - // and can be 7 or 4 bytes long - if (flags & FLAG_4B_UID_IN_DATA) - { - // 4B uid comes from data-portion of packet - memcpy(rUIDBCC1,datain,4); - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - _UID_LEN = 4; - } else if (flags & FLAG_7B_UID_IN_DATA) { - // 7B uid comes from data-portion of packet - memcpy(&rUIDBCC1[1],datain,3); - memcpy(rUIDBCC2, datain+3, 4); - _UID_LEN = 7; - } else if (flags & FLAG_10B_UID_IN_DATA) { - memcpy(&rUIDBCC1[1], datain, 3); - memcpy(&rUIDBCC2[1], datain+3, 3); - memcpy( rUIDBCC3, datain+6, 4); - _UID_LEN = 10; - } else { - // get UID from emul memory - guess at length - emlGetMemBt(receivedCmd, 7, 1); - if (receivedCmd[0] == 0x00) { // ---------- 4BUID - emlGetMemBt(rUIDBCC1, 0, 4); - _UID_LEN = 4; - } else { // ---------- 7BUID - emlGetMemBt(&rUIDBCC1[1], 0, 3); - emlGetMemBt(rUIDBCC2, 3, 4); - _UID_LEN = 7; - } - } - - switch (_UID_LEN) { - case 4: - // save CUID - cuid = bytes_to_num(rUIDBCC1, 4); - // BCC - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - if (MF_DBGLEVEL >= 2) { - Dbprintf("4B UID: %02x%02x%02x%02x", - rUIDBCC1[0], - rUIDBCC1[1], - rUIDBCC1[2], - rUIDBCC1[3] - ); - } - break; - case 7: - rATQA[0] |= 0x40; - // save CUID - cuid = bytes_to_num(rUIDBCC2, 4); - // CascadeTag, CT - rUIDBCC1[0] = 0x88; - // BCC - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; - if (MF_DBGLEVEL >= 2) { - Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x", - rUIDBCC1[1], - rUIDBCC1[2], - rUIDBCC1[3], - rUIDBCC2[0], - rUIDBCC2[1], - rUIDBCC2[2], - rUIDBCC2[3] - ); - } - break; - case 10: - rATQA[0] |= 0x80; - //sak_10[0] &= 0xFB; - // save CUID - cuid = bytes_to_num(rUIDBCC3, 4); - // CascadeTag, CT - rUIDBCC1[0] = 0x88; - rUIDBCC2[0] = 0x88; - // BCC - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; - rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3]; - - if (MF_DBGLEVEL >= 2) { - Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", - rUIDBCC1[1], - rUIDBCC1[2], - rUIDBCC1[3], - rUIDBCC2[1], - rUIDBCC2[2], - rUIDBCC2[3], - rUIDBCC3[0], - rUIDBCC3[1], - rUIDBCC3[2], - rUIDBCC3[3] - ); - } - break; - default: - break; - } - - // We need to listen to the high-frequency, peak-detected path. - iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); - - // free eventually allocated BigBuf memory but keep Emulator Memory - BigBuf_free_keep_EM(); - - // clear trace - clear_trace(); - set_tracing(TRUE); - - bool finished = FALSE; - bool button_pushed = BUTTON_PRESS(); - while (!button_pushed && !finished && !usb_poll_validate_length()) { - WDT_HIT(); - - // find reader field - if (cardSTATE == MFEMUL_NOFIELD) { - vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; - if (vHf > MF_MINFIELDV) { - cardSTATE_TO_IDLE(); - LED_A_ON(); - } - } - if (cardSTATE == MFEMUL_NOFIELD) continue; - - //Now, get data - res = EmGetCmd(receivedCmd, &len, receivedCmd_par); - if (res == 2) { //Field is off! - cardSTATE = MFEMUL_NOFIELD; - LEDsoff(); - continue; - } else if (res == 1) { - break; //return value 1 means button press - } - - // REQ or WUP request in ANY state and WUP in HALTED state - if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) { - selTimer = GetTickCount(); - EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == ISO14443A_CMD_WUPA)); - cardSTATE = MFEMUL_SELECT1; - - // init crypto block - LED_B_OFF(); - LED_C_OFF(); - crypto1_destroy(pcs); - cardAUTHKEY = 0xff; - if (flags & FLAG_RANDOM_NONCE) { - nonce = prand(); - } - continue; - } - - switch (cardSTATE) { - case MFEMUL_NOFIELD: - case MFEMUL_HALTED: - case MFEMUL_IDLE:{ - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - break; - } - case MFEMUL_SELECT1:{ - // select all - 0x93 0x20 - if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) { - if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received"); - EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1)); - break; - } - - // select card - 0x93 0x70 ... - if (len == 9 && - (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { - if (MF_DBGLEVEL >= 4) - Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]); - - switch(_UID_LEN) { - case 4: - cardSTATE = MFEMUL_WORK; - LED_B_ON(); - if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); - EmSendCmd(rSAKfinal, sizeof(rSAKfinal)); - break; - case 7: - cardSTATE = MFEMUL_SELECT2; - EmSendCmd(rSAK1, sizeof(rSAK1)); - break; - case 10: - cardSTATE = MFEMUL_SELECT2; - EmSendCmd(rSAK1, sizeof(rSAK1)); - break; - default:break; - } - } else { - cardSTATE_TO_IDLE(); - } - break; - } - case MFEMUL_SELECT3:{ - if (!len) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - break; - } - // select all cl3 - 0x97 0x20 - if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) { - EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3)); - break; - } - // select card cl3 - 0x97 0x70 - if (len == 9 && - (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && - receivedCmd[1] == 0x70 && - memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) { - - EmSendCmd(rSAKfinal, sizeof(rSAKfinal)); - cardSTATE = MFEMUL_WORK; - LED_B_ON(); - if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer); - break; - } - cardSTATE_TO_IDLE(); - break; - } - case MFEMUL_AUTH1:{ - if( len != 8) { - cardSTATE_TO_IDLE(); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - break; - } - - uint32_t nr = bytes_to_num(receivedCmd, 4); - uint32_t ar = bytes_to_num(&receivedCmd[4], 4); - - // Collect AR/NR per keytype & sector - if(flags & FLAG_NR_AR_ATTACK) { - for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { - if ( ar_nr_collected[i+mM]==0 || ((cardAUTHSC == ar_nr_resp[i+mM].sector) && (cardAUTHKEY == ar_nr_resp[i+mM].keytype) && (ar_nr_collected[i+mM] > 0)) ) { - // if first auth for sector, or matches sector and keytype of previous auth - if (ar_nr_collected[i+mM] < 2) { - // if we haven't already collected 2 nonces for this sector - if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) { - // Avoid duplicates... probably not necessary, ar should vary. - if (ar_nr_collected[i+mM]==0) { - // first nonce collect - ar_nr_resp[i+mM].cuid = cuid; - ar_nr_resp[i+mM].sector = cardAUTHSC; - ar_nr_resp[i+mM].keytype = cardAUTHKEY; - ar_nr_resp[i+mM].nonce = nonce; - ar_nr_resp[i+mM].nr = nr; - ar_nr_resp[i+mM].ar = ar; - nonce1_count++; - // add this nonce to first moebius nonce - ar_nr_resp[i+ATTACK_KEY_COUNT].cuid = cuid; - ar_nr_resp[i+ATTACK_KEY_COUNT].sector = cardAUTHSC; - ar_nr_resp[i+ATTACK_KEY_COUNT].keytype = cardAUTHKEY; - ar_nr_resp[i+ATTACK_KEY_COUNT].nonce = nonce; - ar_nr_resp[i+ATTACK_KEY_COUNT].nr = nr; - ar_nr_resp[i+ATTACK_KEY_COUNT].ar = ar; - ar_nr_collected[i+ATTACK_KEY_COUNT]++; - } else { // second nonce collect (std and moebius) - ar_nr_resp[i+mM].nonce2 = nonce; - ar_nr_resp[i+mM].nr2 = nr; - ar_nr_resp[i+mM].ar2 = ar; - if (!gettingMoebius) { - nonce2_count++; - // check if this was the last second nonce we need for std attack - if ( nonce2_count == nonce1_count ) { - // done collecting std test switch to moebius - // first finish incrementing last sample - ar_nr_collected[i+mM]++; - // switch to moebius collection - gettingMoebius = true; - mM = ATTACK_KEY_COUNT; - if (flags & FLAG_RANDOM_NONCE) { - nonce = prand(); - } else { - nonce = nonce*7; - } - break; - } - } else { - moebius_n_count++; - // if we've collected all the nonces we need - finish. - if (nonce1_count == moebius_n_count) finished = true; - } - } - ar_nr_collected[i+mM]++; - } - } - // we found right spot for this nonce stop looking - break; - } - } - } - - // --- crypto - crypto1_word(pcs, nr , 1); - cardRr = ar ^ crypto1_word(pcs, 0, 0); - - // test if auth OK - if (cardRr != prng_successor(nonce, 64)){ - if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", - cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', - cardRr, prng_successor(nonce, 64)); - // Shouldn't we respond anything here? - // Right now, we don't nack or anything, which causes the - // reader to do a WUPA after a while. /Martin - // -- which is the correct response. /piwi - cardSTATE_TO_IDLE(); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - break; - } - - //auth successful - ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); - - num_to_bytes(ans, 4, rAUTH_AT); - // --- crypto - EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); - LED_C_ON(); - cardSTATE = MFEMUL_WORK; - if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", - cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', - GetTickCount() - authTimer); - break; - } - case MFEMUL_SELECT2:{ - if (!len) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - break; - } - // select all cl2 - 0x95 0x20 - if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) { - EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); - break; - } - - // select cl2 card - 0x95 0x70 xxxxxxxxxxxx - if (len == 9 && - (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { - switch(_UID_LEN) { - case 7: - EmSendCmd(rSAKfinal, sizeof(rSAKfinal)); - cardSTATE = MFEMUL_WORK; - LED_B_ON(); - if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); - break; - case 10: - EmSendCmd(rSAK1, sizeof(rSAK1)); - cardSTATE = MFEMUL_SELECT3; - break; - default:break; - } - break; - } - - // i guess there is a command). go into the work state. - if (len != 4) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - break; - } - cardSTATE = MFEMUL_WORK; - //goto lbWORK; - //intentional fall-through to the next case-stmt - } - - case MFEMUL_WORK:{ - if (len == 0) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - break; - } - - bool encrypted_data = (cardAUTHKEY != 0xFF) ; - - if(encrypted_data) { - // decrypt seqence - mf_crypto1_decrypt(pcs, receivedCmd, len); - } - - if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { - - // if authenticating to a block that shouldn't exist - as long as we are not doing the reader attack - if (receivedCmd[1] >= 16 * 4 && !(flags & FLAG_NR_AR_ATTACK)) { - //is this the correct response to an auth on a out of range block? marshmellow - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); - break; - } - - authTimer = GetTickCount(); - cardAUTHSC = receivedCmd[1] / 4; // received block num - cardAUTHKEY = receivedCmd[0] - 0x60; - crypto1_destroy(pcs);//Added by martin - crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); - //uint64_t key=emlGetKey(cardAUTHSC, cardAUTHKEY); - //Dbprintf("key: %04x%08x",(uint32_t)(key>>32)&0xFFFF,(uint32_t)(key&0xFFFFFFFF)); - - if (!encrypted_data) { // first authentication - if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); - - crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state - num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce - } else { // nested authentication - if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); - ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); - num_to_bytes(ans, 4, rAUTH_AT); - } - - EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); - //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]); - cardSTATE = MFEMUL_AUTH1; - break; - } - - // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued - // BUT... ACK --> NACK - if (len == 1 && receivedCmd[0] == CARD_ACK) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - break; - } - - // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK) - if (len == 1 && receivedCmd[0] == CARD_NACK_NA) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - break; - } - - if(len != 4) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - break; - } - - if(receivedCmd[0] == 0x30 // read block - || receivedCmd[0] == 0xA0 // write block - || receivedCmd[0] == 0xC0 // inc - || receivedCmd[0] == 0xC1 // dec - || receivedCmd[0] == 0xC2 // restore - || receivedCmd[0] == 0xB0) { // transfer - if (receivedCmd[1] >= 16 * 4) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); - break; - } - - if (receivedCmd[1] / 4 != cardAUTHSC) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02x) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); - break; - } - } - // read block - if (receivedCmd[0] == 0x30) { - if (MF_DBGLEVEL >= 4) { - Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]); - } - emlGetMem(response, receivedCmd[1], 1); - AppendCrc14443a(response, 16); - mf_crypto1_encrypt(pcs, response, 18, response_par); - EmSendCmdPar(response, 18, response_par); - numReads++; - if(exitAfterNReads > 0 && numReads == exitAfterNReads) { - Dbprintf("%d reads done, exiting", numReads); - finished = true; - } - break; - } - // write block - if (receivedCmd[0] == 0xA0) { - if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]); - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - cardSTATE = MFEMUL_WRITEBL2; - cardWRBL = receivedCmd[1]; - break; - } - // increment, decrement, restore - if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) { - if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); - if (emlCheckValBl(receivedCmd[1])) { - if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - break; - } - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - if (receivedCmd[0] == 0xC1) - cardSTATE = MFEMUL_INTREG_INC; - if (receivedCmd[0] == 0xC0) - cardSTATE = MFEMUL_INTREG_DEC; - if (receivedCmd[0] == 0xC2) - cardSTATE = MFEMUL_INTREG_REST; - cardWRBL = receivedCmd[1]; - break; - } - // transfer - if (receivedCmd[0] == 0xB0) { - if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); - if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - else - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - break; - } - // halt - if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) { - LED_B_OFF(); - LED_C_OFF(); - cardSTATE = MFEMUL_HALTED; - if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - break; - } - // RATS - if (receivedCmd[0] == 0xe0) {//RATS - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - break; - } - // command not allowed - if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking"); - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - break; - } - case MFEMUL_WRITEBL2:{ - if (len == 18){ - mf_crypto1_decrypt(pcs, receivedCmd, len); - emlSetMem(receivedCmd, cardWRBL, 1); - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - cardSTATE = MFEMUL_WORK; - } else { - cardSTATE_TO_IDLE(); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - } - break; - } - - case MFEMUL_INTREG_INC:{ - mf_crypto1_decrypt(pcs, receivedCmd, len); - memcpy(&ans, receivedCmd, 4); - if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - cardSTATE_TO_IDLE(); - break; - } - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - cardINTREG = cardINTREG + ans; - cardSTATE = MFEMUL_WORK; - break; - } - case MFEMUL_INTREG_DEC:{ - mf_crypto1_decrypt(pcs, receivedCmd, len); - memcpy(&ans, receivedCmd, 4); - if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - cardSTATE_TO_IDLE(); - break; - } - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - cardINTREG = cardINTREG - ans; - cardSTATE = MFEMUL_WORK; - break; - } - case MFEMUL_INTREG_REST:{ - mf_crypto1_decrypt(pcs, receivedCmd, len); - memcpy(&ans, receivedCmd, 4); - if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - cardSTATE_TO_IDLE(); - break; - } - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - cardSTATE = MFEMUL_WORK; - break; - } - } - button_pushed = BUTTON_PRESS(); - } + cmd_send(CMD_ACK, isOK, 0, 0, buf, 32); + // Thats it... FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); - if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) { - for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { - if (ar_nr_collected[i] == 2) { - Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen()); - - if(flags & FLAG_INTERACTIVE) { // Interactive mode flag, means we need to send ACK - //Send the collected ar_nr in the response - cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,button_pushed,0,&ar_nr_resp,sizeof(ar_nr_resp)); - } + set_tracing(false); } //----------------------------------------------------------------------------- -// MIFARE sniffer. -// +// MIFARE sniffer. +// //----------------------------------------------------------------------------- void RAMFUNC SniffMifare(uint8_t param) { // param: @@ -3019,9 +2449,11 @@ void RAMFUNC SniffMifare(uint8_t param) { // C(red) A(yellow) B(green) LEDsoff(); + LED_A_ON(); + // init trace buffer clear_trace(); - set_tracing(TRUE); + set_tracing(true); // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. @@ -3042,8 +2474,8 @@ void RAMFUNC SniffMifare(uint8_t param) { uint8_t previous_data = 0; int maxDataLen = 0; int dataLen = 0; - bool ReaderIsActive = FALSE; - bool TagIsActive = FALSE; + bool ReaderIsActive = false; + bool TagIsActive = false; // Set up the demodulator for tag -> reader responses. DemodInit(receivedResponse, receivedResponsePar); @@ -3054,46 +2486,43 @@ void RAMFUNC SniffMifare(uint8_t param) { // Setup for the DMA. FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. - LED_D_OFF(); - // init sniffer MfSniffInit(); // And now we loop, receiving samples. - for(uint32_t sniffCounter = 0; TRUE; ) { - + for (uint32_t sniffCounter = 0; true; ) { + if(BUTTON_PRESS()) { - DbpString("cancelled by button"); + DbpString("Canceled by button."); break; } - LED_A_ON(); WDT_HIT(); - - if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time + + if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time // check if a transaction is completed (timeout after 2000ms). // if yes, stop the DMA transfer and send what we have so far to the client - if (MfSniffSend(2000)) { + if (MfSniffSend(2000)) { // Reset everything - we missed some sniffed data anyway while the DMA was stopped sniffCounter = 0; data = dmaBuf; maxDataLen = 0; - ReaderIsActive = FALSE; - TagIsActive = FALSE; + ReaderIsActive = false; + TagIsActive = false; FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. } } - - int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far + + int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred - if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred - dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed - } else { + if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred + dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed + } else { dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed } // test for length of buffer - if(dataLen > maxDataLen) { // we are more behind than ever... - maxDataLen = dataLen; + if(dataLen > maxDataLen) { // we are more behind than ever... + maxDataLen = dataLen; if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); break; @@ -3113,31 +2542,28 @@ void RAMFUNC SniffMifare(uint8_t param) { AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; } - LED_A_OFF(); - if (sniffCounter & 0x01) { - if(!TagIsActive) { // no need to try decoding tag data if the reader is sending + if(!TagIsActive) { // no need to try decoding tag data if the reader is sending uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { - LED_C_INV(); - if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break; + + if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, true)) break; /* And ready to receive another command. */ UartInit(receivedCmd, receivedCmdPar); - + /* And also reset the demod code */ DemodReset(); } ReaderIsActive = (Uart.state != STATE_UNSYNCD); } - - if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending + + if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { - LED_C_INV(); - if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break; + if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, false)) break; // And ready to receive another response. DemodReset(); @@ -3157,11 +2583,13 @@ void RAMFUNC SniffMifare(uint8_t param) { } // main cycle - DbpString("COMMAND FINISHED"); - + FpgaDisableTracing(); FpgaDisableSscDma(); + LEDsoff(); + + DbpString("COMMAND FINISHED."); + MfSniffEnd(); - + Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); - LEDsoff(); }