X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/7d5ebac99397fe7661760259377a4f222fdb92cb..0853ffa29c28b82cebdeaccdad273df6bd453c76:/armsrc/iso14443a.c?ds=inline

diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c
index 336250ed..f2fa1ff2 100644
--- a/armsrc/iso14443a.c
+++ b/armsrc/iso14443a.c
@@ -20,7 +20,7 @@
 #include "iso14443a.h"
 #include "crapto1.h"
 #include "mifareutil.h"
-
+#include "BigBuf.h"
 static uint32_t iso14a_timeout;
 int rsamples = 0;
 uint8_t trigger = 0;
@@ -141,16 +141,40 @@ const uint8_t OddByteParity[256] = {
   1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
 };
 
+
 void iso14a_set_trigger(bool enable) {
 	trigger = enable;
 }
 
 
-
 void iso14a_set_timeout(uint32_t timeout) {
 	iso14a_timeout = timeout;
+	if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
+}
+
+
+void iso14a_set_ATS_timeout(uint8_t *ats) {
+
+	uint8_t tb1;
+	uint8_t fwi; 
+	uint32_t fwt;
+	
+	if (ats[0] > 1) {							// there is a format byte T0
+		if ((ats[1] & 0x20) == 0x20) {			// there is an interface byte TB(1)
+			if ((ats[1] & 0x10) == 0x10) {		// there is an interface byte TA(1) preceding TB(1)
+				tb1 = ats[3];
+			} else {
+				tb1 = ats[2];
+			}
+			fwi = (tb1 & 0xf0) >> 4;			// frame waiting indicator (FWI)
+			fwt = 256 * 16 * (1 << fwi);		// frame waiting time (FWT) in 1/fc
+			
+			iso14a_set_timeout(fwt/(8*16));
+		}
+	}
 }
 
+
 //-----------------------------------------------------------------------------
 // Generate the parity value for a byte sequence
 //
@@ -243,26 +267,27 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 
 	Uart.twoBits = (Uart.twoBits << 8) | bit;
 	
-	if (Uart.state == STATE_UNSYNCD) {												// not yet synced
+	if (Uart.state == STATE_UNSYNCD) {											// not yet synced
 	
-		if (Uart.highCnt < 7) {													// wait for a stable unmodulated signal
+		if (Uart.highCnt < 2) {													// wait for a stable unmodulated signal
 			if (Uart.twoBits == 0xffff) {
 				Uart.highCnt++;
 			} else {
 				Uart.highCnt = 0;
 			}
 		} else {	
-			Uart.syncBit = 0xFFFF; // not set
-			// look for 00xx1111 (the start bit)
-			if 		((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; 
-			else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
-			else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
-			else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
-			else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
-			else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
-			else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
-			else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
-			if (Uart.syncBit != 0xFFFF) {
+			Uart.syncBit = 0xFFFF; 												// not set
+																				// we look for a ...1111111100x11111xxxxxx pattern (the start bit)
+			if 		((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8;   	// mask is   11x11111 xxxxxxxx, 
+																				// check for 00x11111 xxxxxxxx
+			else if	((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7;		// both masks shifted right one bit, left padded with '1'
+			else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6;		// ...
+			else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5;
+			else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4;
+			else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3;
+			else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2;
+			else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1;
+			if (Uart.syncBit != 0xFFFF) {										// found a sync bit
 				Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
 				Uart.startTime -= Uart.syncBit;
 				Uart.endTime = Uart.startTime;
@@ -275,11 +300,9 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 		if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {			
 			if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {		// Modulation in both halves - error
 				UartReset();
-				Uart.highCnt = 6;
 			} else {															// Modulation in first half = Sequence Z = logic "0"
 				if (Uart.state == STATE_MILLER_X) {								// error - must not follow after X
 					UartReset();
-					Uart.highCnt = 6;
 				} else {
 					Uart.bitCount++;
 					Uart.shiftReg = (Uart.shiftReg >> 1);						// add a 0 to the shiftreg
@@ -334,12 +357,13 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 					if (Uart.len) {
 						return TRUE;											// we are finished with decoding the raw data sequence
 					} else {
-						UartReset();					// Nothing receiver - start over
+						UartReset();											// Nothing received - start over
+						Uart.highCnt = 1;
 					}
 				}
 				if (Uart.state == STATE_START_OF_COMMUNICATION) {				// error - must not follow directly after SOC
 					UartReset();
-					Uart.highCnt = 6;
+					Uart.highCnt = 1;
 				} else {														// a logic "0"
 					Uart.bitCount++;
 					Uart.shiftReg = (Uart.shiftReg >> 1);						// add a 0 to the shiftreg
@@ -549,8 +573,8 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 	uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
 
 	// init trace buffer
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
+	clear_trace();
+	set_tracing(TRUE);
 
 	uint8_t *data = dmaBuf;
 	uint8_t previous_data = 0;
@@ -674,7 +698,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 
 	FpgaDisableSscDma();
 	Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
-	Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
+	Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
 	LEDsoff();
 }
 
@@ -1010,8 +1034,8 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
 
 	// clear trace
-    iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
+	clear_trace();
+	set_tracing(TRUE);
 
 	// Prepare the responses of the anticollision phase
 	// there will be not enough time to do this at the moment the reader sends it REQA
@@ -1358,6 +1382,7 @@ void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *p
   CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
 }
 
+
 //-----------------------------------------------------------------------------
 // Wait for commands from reader
 // Stop when button is pressed (return 1) or field was gone (return 2)
@@ -1380,9 +1405,9 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 	// Set ADC to read field strength
 	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
 	AT91C_BASE_ADC->ADC_MR =
-				ADC_MODE_PRESCALE(32) |
-				ADC_MODE_STARTUP_TIME(16) |
-				ADC_MODE_SAMPLE_HOLD_TIME(8);
+				ADC_MODE_PRESCALE(63) |
+				ADC_MODE_STARTUP_TIME(1) |
+				ADC_MODE_SAMPLE_HOLD_TIME(15);
 	AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
 	// start ADC
 	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
@@ -1392,7 +1417,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 
 	// Clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
+	
 	for(;;) {
 		WDT_HIT();
 
@@ -1404,7 +1429,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 			analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
 			AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
 			if (analogCnt >= 32) {
-				if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+				if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
 					vtime = GetTickCount();
 					if (!timer) timer = vtime;
 					// 50ms no field --> card to idle state
@@ -1479,14 +1504,15 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe
 	}
 
 	// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
-	for (i = 0; i < 2 ; ) {
+	uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
+	for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
 		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 			AT91C_BASE_SSC->SSC_THR = SEC_F;
 			FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
 			i++;
 		}
 	}
-	
+
 	LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
 
 	return 0;
@@ -1588,7 +1614,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
 
 	// clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-	
+
 	c = 0;
 	for(;;) {
 		WDT_HIT();
@@ -1598,7 +1624,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
 			if(ManchesterDecoding(b, offset, 0)) {
 				NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
 				return TRUE;
-			} else if (c++ > iso14a_timeout) {
+			} else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
 				return FALSE; 
 			}
 		}
@@ -1796,6 +1822,10 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 
 	// reset the PCB block number
 	iso14_pcb_blocknum = 0;
+
+	// set default timeout based on ATS
+	iso14a_set_ATS_timeout(resp);
+
 	return 1;	
 }
 
@@ -1867,10 +1897,10 @@ void ReaderIso14443a(UsbCommand *c)
 	uint8_t par[MAX_PARITY_SIZE];
   
 	if(param & ISO14A_CONNECT) {
-		iso14a_clear_trace();
+		clear_trace();
 	}
 
-	iso14a_set_tracing(TRUE);
+	set_tracing(TRUE);
 
 	if(param & ISO14A_REQUEST_TRIGGER) {
 		iso14a_set_trigger(TRUE);
@@ -1966,8 +1996,8 @@ void ReaderMifare(bool first_try)
 	// free eventually allocated BigBuf memory. We want all for tracing.
 	BigBuf_free();
 	
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
+	clear_trace();
+	set_tracing(TRUE);
 
 	byte_t nt_diff = 0;
 	uint8_t par[1] = {0};	// maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
@@ -2140,7 +2170,7 @@ void ReaderMifare(bool first_try)
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LEDsoff();
 
-	iso14a_set_tracing(FALSE);
+	set_tracing(FALSE);
 }
 
 /**
@@ -2197,9 +2227,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 
 	// free eventually allocated BigBuf memory but keep Emulator Memory
 	BigBuf_free_keep_EM();
+
 	// clear trace
-    iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
+	clear_trace();
+	set_tracing(TRUE);
 
 	// Authenticate response - nonce
 	uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
@@ -2261,10 +2292,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 		WDT_HIT();
 
 		// find reader field
-		// Vref = 3300mV, and an 10:1 voltage divider on the input
-		// can measure voltages up to 33000 mV
 		if (cardSTATE == MFEMUL_NOFIELD) {
-			vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+			vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
 			if (vHf > MF_MINFIELDV) {
 				cardSTATE_TO_IDLE();
 				LED_A_ON();
@@ -2339,6 +2368,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
+
 				uint32_t ar = bytes_to_num(receivedCmd, 4);
 				uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
 
@@ -2445,6 +2475,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 						ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
 						num_to_bytes(ans, 4, rAUTH_AT);
 					}
+
 					EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
 					//Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
 					cardSTATE = MFEMUL_AUTH1;
@@ -2625,7 +2656,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 		if(ar_nr_collected > 1) {
 			Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
 			Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
-					 ar_nr_responses[0], // UID
+					ar_nr_responses[0], // UID
 					ar_nr_responses[1], //NT
 					ar_nr_responses[2], //AR1
 					ar_nr_responses[3], //NR1
@@ -2644,7 +2675,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 			}
 		}
 	}
-	if (MF_DBGLEVEL >= 1)	Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",	tracing, traceLen);
+	if (MF_DBGLEVEL >= 1)	Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",	tracing, BigBuf_get_traceLen());
+	
 }
 
 
@@ -2661,8 +2693,8 @@ void RAMFUNC SniffMifare(uint8_t param) {
 	// C(red) A(yellow) B(green)
 	LEDsoff();
 	// init trace buffer
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
+	clear_trace();
+	set_tracing(TRUE);
 
 	// The command (reader -> tag) that we're receiving.
 	// The length of a received command will in most cases be no more than 18 bytes.