X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/839a53ae4c3fcbfc9c5bc71a49c46aeb1c7c4beb..a1689f417fc1a26be6f93f8e934d643fba51f3a7:/armsrc/iso14443a.c diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index e1ec477c..c7fc06ec 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -1,4 +1,4 @@ -//----------------------------------------------------------------------------- + //----------------------------------------------------------------------------- // Merlok - June 2011, 2012 // Gerhard de Koning Gans - May 2008 // Hagen Fritsch - June 2010 @@ -20,6 +20,8 @@ #include "crapto1.h" #include "mifareutil.h" #include "BigBuf.h" +#include "parity.h" + static uint32_t iso14a_timeout; int rsamples = 0; uint8_t trigger = 0; @@ -104,8 +106,6 @@ static uint32_t NextTransferTime; static uint32_t LastTimeProxToAirStart; static uint32_t LastProxToAirDuration; - - // CARD TO READER - manchester // Sequence D: 11110000 modulation with subcarrier during first half // Sequence E: 00001111 modulation with subcarrier during second half @@ -121,37 +121,15 @@ static uint32_t LastProxToAirDuration; #define SEC_Y 0x00 #define SEC_Z 0xc0 -const uint8_t OddByteParity[256] = { - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 -}; - - void iso14a_set_trigger(bool enable) { trigger = enable; } - void iso14a_set_timeout(uint32_t timeout) { iso14a_timeout = timeout; if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106); } - void iso14a_set_ATS_timeout(uint8_t *ats) { uint8_t tb1; @@ -160,29 +138,26 @@ void iso14a_set_ATS_timeout(uint8_t *ats) { if (ats[0] > 1) { // there is a format byte T0 if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1) - if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1) + + if ((ats[1] & 0x10) == 0x10) // there is an interface byte TA(1) preceding TB(1) tb1 = ats[3]; - } else { + else tb1 = ats[2]; - } + fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI) - fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc + //fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc + fwt = 4096 * (1 << fwi); - iso14a_set_timeout(fwt/(8*16)); + //iso14a_set_timeout(fwt/(8*16)); + iso14a_set_timeout(fwt/128); } } } - //----------------------------------------------------------------------------- // Generate the parity value for a byte sequence // //----------------------------------------------------------------------------- -byte_t oddparity (const byte_t bt) -{ - return OddByteParity[bt]; -} - void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) { uint16_t paritybit_cnt = 0; @@ -191,7 +166,7 @@ void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) for (uint16_t i = 0; i < iLen; i++) { // Generate the parity bits - parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt)); + parityBits |= ((oddparity8(pbtCmd[i])) << (7-paritybit_cnt)); if (paritybit_cnt == 7) { par[paritybyte_cnt] = parityBits; // save 8 Bits parity parityBits = 0; // and advance to next Parity Byte @@ -565,19 +540,18 @@ void RAMFUNC SniffIso14443a(uint8_t param) { // param: // bit 0 - trigger from first card answer // bit 1 - trigger from first reader 7-bit request - LEDsoff(); - // We won't start recording the frames that we acquire until we trigger; - // a good trigger condition to get started is probably when we see a - // response from the tag. - // triggered == FALSE -- to wait first for card - bool triggered = !(param & 0x03); + iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); // Allocate memory from BigBuf for some buffers // free all previous allocations first BigBuf_free(); - + + // init trace buffer + clear_trace(); + set_tracing(TRUE); + // The command (reader -> tag) that we're receiving. uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); @@ -589,10 +563,6 @@ void RAMFUNC SniffIso14443a(uint8_t param) { // The DMA buffer, used to stream samples from the FPGA uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); - // init trace buffer - clear_trace(); - set_tracing(TRUE); - uint8_t *data = dmaBuf; uint8_t previous_data = 0; int maxDataLen = 0; @@ -600,8 +570,6 @@ void RAMFUNC SniffIso14443a(uint8_t param) { bool TagIsActive = FALSE; bool ReaderIsActive = FALSE; - iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); - // Set up the demodulator for tag -> reader responses. DemodInit(receivedResponse, receivedResponsePar); @@ -611,6 +579,12 @@ void RAMFUNC SniffIso14443a(uint8_t param) { // Setup and start DMA. FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); + // We won't start recording the frames that we acquire until we trigger; + // a good trigger condition to get started is probably when we see a + // response from the tag. + // triggered == FALSE -- to wait first for card + bool triggered = !(param & 0x03); + // And now we loop, receiving samples. for(uint32_t rsamples = 0; TRUE; ) { @@ -673,7 +647,6 @@ void RAMFUNC SniffIso14443a(uint8_t param) { } /* And ready to receive another command. */ UartReset(); - //UartInit(receivedCmd, receivedCmdPar); /* And also reset the demod code, which might have been */ /* false-triggered by the commands from the reader. */ DemodReset(); @@ -715,12 +688,13 @@ void RAMFUNC SniffIso14443a(uint8_t param) { } } // main cycle - DbpString("COMMAND FINISHED"); - FpgaDisableSscDma(); + LEDsoff(); + Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); - LEDsoff(); + + set_tracing(FALSE); } //----------------------------------------------------------------------------- @@ -913,8 +887,9 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits // -> need 273 bytes buffer -// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits -#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 370 //273 +// 44 * 8 data bits, 44 * 1 parity bits, 9 start bits, 9 stop bits, 9 correction bits --370 +// 47 * 8 data bits, 47 * 1 parity bits, 10 start bits, 10 stop bits, 10 correction bits +#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 453 bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { // Retrieve and store the current buffer index @@ -937,9 +912,9 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { // Main loop of simulated tag: receive commands from reader, decide what // response to send, and send it. //----------------------------------------------------------------------------- -void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) +void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { - + uint32_t counters[] = {0,0,0}; //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2 // This can be used in a reader-only attack. // (it can also be retrieved via 'hf 14a list', but hey... @@ -947,15 +922,12 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) uint8_t ar_nr_collected = 0; uint8_t sak; - - uint8_t blockzeros[512]; - memset(blockzeros, 0x00, sizeof(blockzeros)); // PACK response to PWD AUTH for EV1/NTAG - uint8_t response8[4]; + uint8_t response8[4] = {0,0,0,0}; // The first response contains the ATQA (note: bytes are transmitted in reverse order). - uint8_t response1[2]; + uint8_t response1[2] = {0,0}; switch (tagType) { case 1: { // MIFARE Classic @@ -1003,6 +975,15 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) response8[0] = 0x80; response8[1] = 0x80; ComputeCrc14443(CRC_14443_A, response8, 2, &response8[2], &response8[3]); + // uid not supplied then get from emulator memory + if (data[0]==0) { + uint16_t start = 4 * (0+12); + uint8_t emdata[8]; + emlGetMemBt( emdata, start, sizeof(emdata)); + memcpy(data, emdata, 3); //uid bytes 0-2 + memcpy(data+3, emdata+4, 4); //uid bytes 3-7 + flags |= FLAG_7B_UID_IN_DATA; + } } break; default: { Dbprintf("Error: unkown tagtype (%d)",tagType); @@ -1052,7 +1033,7 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) response3a[0] = sak & 0xFB; ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); - uint8_t response5[] = { 0x01, 0x01, 0x01, 0x01 }; // Very random tag nonce + uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1 @@ -1060,11 +1041,14 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) // TC(1) = 0x02: CID supported, NAD not supported ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); - // Prepare GET_VERSION (different for EV-1 / NTAG) + // Prepare GET_VERSION (different for UL EV-1 / NTAG) //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION. - uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215 + //uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215 - #define TAG_RESPONSE_COUNT 9 + // Prepare CHK_TEARING + //uint8_t response9[] = {0xBD,0x90,0x3f}; + + #define TAG_RESPONSE_COUNT 10 tag_response_info_t responses[TAG_RESPONSE_COUNT] = { { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid @@ -1073,9 +1057,12 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS - { .response = response7_NTAG, .response_n = sizeof(response7_NTAG) }, // EV1/NTAG GET_VERSION response - { .response = response8, .response_n = sizeof(response8) }, // EV1/NTAG PACK response - }; + + { .response = response8, .response_n = sizeof(response8) } // EV1/NTAG PACK response + }; + //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response + //{ .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response + // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it // Such a response is less time critical, so we can prepare them on the fly @@ -1090,6 +1077,9 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) .modulation_n = 0 }; + // We need to listen to the high-frequency, peak-detected path. + iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); + BigBuf_free_keep_EM(); // allocate buffers: @@ -1103,9 +1093,8 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) // Prepare the responses of the anticollision phase // there will be not enough time to do this at the moment the reader sends it REQA - for (size_t i=0; i 0) { + num_to_bytes(counters[index], 3, data); + AppendCrc14443a(data, sizeof(data)-2); } + EmSendCmdEx(data,sizeof(data),false); + p_response = NULL; + } else if (receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER -- + // number of counter + uint8_t counter = receivedCmd[1]; + uint32_t val = bytes_to_num(receivedCmd+2,4); + counters[counter] = val; + + // send ACK + uint8_t ack[] = {0x0a}; + EmSendCmdEx(ack,sizeof(ack),false); + p_response = NULL; + + } else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT -- + //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature] + uint8_t emdata[3]; + uint8_t counter=0; + if (receivedCmd[1]<3) counter = receivedCmd[1]; + emlGetMemBt( emdata, 10+counter, 1); + AppendCrc14443a(emdata, sizeof(emdata)-2); + EmSendCmdEx(emdata, sizeof(emdata), false); + p_response = NULL; + //p_response = &responses[9]; + + } else if(receivedCmd[0] == 0x50) { // Received a HALT + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); p_response = NULL; } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request. - p_response = &responses[7]; + uint8_t emdata[10]; + emlGetMemBt( emdata, 0, 8 ); + AppendCrc14443a(emdata, sizeof(emdata)-2); + EmSendCmdEx(emdata, sizeof(emdata), false); + p_response = NULL; + //p_response = &responses[7]; } else { p_response = &responses[5]; order = 7; } @@ -1222,9 +1236,7 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) p_response = &responses[6]; order = 70; } } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication) - if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - } + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); uint32_t nonce = bytes_to_num(response5,4); uint32_t nr = bytes_to_num(receivedCmd,4); uint32_t ar = bytes_to_num(receivedCmd+4,4); @@ -1257,6 +1269,16 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) ar_nr_responses[8], // AR2 ar_nr_responses[9] // NR2 ); + Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x", + ar_nr_responses[0], // UID1 + ar_nr_responses[1], // UID2 + ar_nr_responses[2], // NT1 + ar_nr_responses[3], // AR1 + ar_nr_responses[4], // NR1 + ar_nr_responses[7], // NT2 + ar_nr_responses[8], // AR2 + ar_nr_responses[9] // NR2 + ); } uint8_t len = ar_nr_collected*5*4; cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len); @@ -1271,15 +1293,29 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) else if (receivedCmd[0] == 0x1b) // NTAG / EV-1 authentication { if ( tagType == 7 ) { - p_response = &responses[8]; // PACK response + uint16_t start = 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00] + uint8_t emdata[4]; + emlGetMemBt( emdata, start, 2); + AppendCrc14443a(emdata, 2); + EmSendCmdEx(emdata, sizeof(emdata), false); + p_response = NULL; + //p_response = &responses[8]; // PACK response + uint32_t pwd = bytes_to_num(receivedCmd+1,4); + + if ( MF_DBGLEVEL >= 3) Dbprintf("Auth attempt: %08x", pwd); } - } - else { + } else { // Check for ISO 14443A-4 compliant commands, look at left nibble switch (receivedCmd[0]) { - + case 0x02: + case 0x03: { // IBlock (command no CID) + dynamic_response_info.response[0] = receivedCmd[0]; + dynamic_response_info.response[1] = 0x90; + dynamic_response_info.response[2] = 0x00; + dynamic_response_info.response_n = 3; + } break; case 0x0B: - case 0x0A: { // IBlock (command) + case 0x0A: { // IBlock (command CID) dynamic_response_info.response[0] = receivedCmd[0]; dynamic_response_info.response[1] = 0x00; dynamic_response_info.response[2] = 0x90; @@ -1299,22 +1335,22 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) dynamic_response_info.response_n = 2; } break; - case 0xBA: { // - memcpy(dynamic_response_info.response,"\xAB\x00",2); - dynamic_response_info.response_n = 2; + case 0xBA: { // ping / pong + dynamic_response_info.response[0] = 0xAB; + dynamic_response_info.response[1] = 0x00; + dynamic_response_info.response_n = 2; } break; case 0xCA: case 0xC2: { // Readers sends deselect command - memcpy(dynamic_response_info.response,"\xCA\x00",2); - dynamic_response_info.response_n = 2; + dynamic_response_info.response[0] = 0xCA; + dynamic_response_info.response[1] = 0x00; + dynamic_response_info.response_n = 2; } break; default: { // Never seen this command before - if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - } + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); Dbprintf("Received unknown command (len=%d):",len); Dbhexdump(len,receivedCmd,false); // Do not respond @@ -1332,9 +1368,7 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { Dbprintf("Error preparing tag response"); - if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - } + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } p_response = &dynamic_response_info; @@ -1356,7 +1390,7 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) if (p_response != NULL) { EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); // do the tracing for the previous reader request and this tag answer: - uint8_t par[MAX_PARITY_SIZE]; + uint8_t par[MAX_PARITY_SIZE] = {0x00}; GetParity(p_response->response, p_response->response_n, par); EmLogTrace(Uart.output, @@ -1378,10 +1412,15 @@ void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - - Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); - LED_A_OFF(); + set_tracing(FALSE); BigBuf_free_keep_EM(); + LED_A_OFF(); + + if (MF_DBGLEVEL >= 4){ + Dbprintf("-[ Wake ups after halt [%d]", happened); + Dbprintf("-[ Messages after halt [%d]", happened2); + Dbprintf("-[ Num of received cmd [%d]", cmdsRecvd); + } } @@ -1392,13 +1431,13 @@ void PrepareDelayedTransfer(uint16_t delay) uint8_t bitmask = 0; uint8_t bits_to_shift = 0; uint8_t bits_shifted = 0; - + delay &= 0x07; if (delay) { for (uint16_t i = 0; i < delay; i++) { - bitmask |= (0x01 << i); + bitmask |= (1 << i); } - ToSend[ToSendMax++] = 0x00; + ToSend[++ToSendMax] = 0x00; for (uint16_t i = 0; i < ToSendMax; i++) { bits_to_shift = ToSend[i] & bitmask; ToSend[i] = ToSend[i] >> delay; @@ -1419,7 +1458,6 @@ void PrepareDelayedTransfer(uint16_t delay) //------------------------------------------------------------------------------------- static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) { - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); uint32_t ThisTransferTime = 0; @@ -1431,6 +1469,7 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks) } if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); + while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) LastTimeProxToAirStart = *timing; } else { @@ -1446,10 +1485,9 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = cmd[c]; - c++; - if(c >= len) { + ++c; + if(c >= len) break; - } } } @@ -1463,7 +1501,7 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) { int i, j; - int last; + int last = 0; uint8_t b; ToSendReset(); @@ -1471,7 +1509,6 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8 // Start of Communication (Seq. Z) ToSend[++ToSendMax] = SEC_Z; LastProxToAirDuration = 8 * (ToSendMax+1) - 6; - last = 0; size_t bytecount = nbytes(bits); // Generate send structure for the data bits @@ -1535,7 +1572,7 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8 ToSend[++ToSendMax] = SEC_Y; // Convert to length of command: - ToSendMax++; + ++ToSendMax; } //----------------------------------------------------------------------------- @@ -1543,7 +1580,8 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8 //----------------------------------------------------------------------------- void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) { - CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); + //CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); + CodeIso14443aBitsAsReaderPar(cmd, len<<3, parity); } @@ -1662,13 +1700,11 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; } - if(BUTTON_PRESS()) { - break; - } + if(BUTTON_PRESS()) break; } // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: - uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; + uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; // twich /8 ?? >>3, for (i = 0; i <= fpga_queued_bits/8 + 1; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = SEC_F; @@ -1686,7 +1722,7 @@ int EmSend4bitEx(uint8_t resp, bool correctionNeeded){ Code4bitAnswerAsTag(resp); int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); // do the tracing for the previous reader request and this tag answer: - uint8_t par[1]; + uint8_t par[1] = {0x00}; GetParity(&resp, 1, par); EmLogTrace(Uart.output, Uart.len, @@ -1723,13 +1759,13 @@ int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8 } int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){ - uint8_t par[MAX_PARITY_SIZE]; + uint8_t par[MAX_PARITY_SIZE] = {0x00}; GetParity(resp, respLen, par); return EmSendCmdExPar(resp, respLen, correctionNeeded, par); } int EmSendCmd(uint8_t *resp, uint16_t respLen){ - uint8_t par[MAX_PARITY_SIZE]; + uint8_t par[MAX_PARITY_SIZE] = {0x00}; GetParity(resp, respLen, par); return EmSendCmdExPar(resp, respLen, false, par); } @@ -1741,21 +1777,20 @@ int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity) { - if (tracing) { - // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from - // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. - // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: - uint16_t reader_modlen = reader_EndTime - reader_StartTime; - uint16_t approx_fdt = tag_StartTime - reader_EndTime; - uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; - reader_EndTime = tag_StartTime - exact_fdt; - reader_StartTime = reader_EndTime - reader_modlen; - if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) { - return FALSE; - } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE)); - } else { - return TRUE; - } + // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from + // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. + // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: + uint16_t reader_modlen = reader_EndTime - reader_StartTime; + uint16_t approx_fdt = tag_StartTime - reader_EndTime; + uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; + reader_EndTime = tag_StartTime - exact_fdt; + reader_StartTime = reader_EndTime - reader_modlen; + + if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) + return FALSE; + else + return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE)); + } //----------------------------------------------------------------------------- @@ -1794,7 +1829,6 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive } } - void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) { CodeIso14443aBitsAsReaderPar(frame, bits, par); @@ -1805,72 +1839,75 @@ void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t LED_A_ON(); // Log reader command in trace buffer - if (tracing) { - LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); - } + //LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); + LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE); } - void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) { - ReaderTransmitBitsPar(frame, len*8, par, timing); + //ReaderTransmitBitsPar(frame, len*8, par, timing); + ReaderTransmitBitsPar(frame, len<<3, par, timing); } - void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) { // Generate parity and redirect - uint8_t par[MAX_PARITY_SIZE]; - GetParity(frame, len/8, par); + uint8_t par[MAX_PARITY_SIZE] = {0x00}; + //GetParity(frame, len/8, par); + GetParity(frame, len >> 3, par); ReaderTransmitBitsPar(frame, len, par, timing); } - void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) { // Generate parity and redirect - uint8_t par[MAX_PARITY_SIZE]; + uint8_t par[MAX_PARITY_SIZE] = {0x00}; GetParity(frame, len, par); - ReaderTransmitBitsPar(frame, len*8, par, timing); + //ReaderTransmitBitsPar(frame, len*8, par, timing); + ReaderTransmitBitsPar(frame, len<<3, par, timing); } int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) { - if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE; - if (tracing) { - LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); - } + if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) + return FALSE; + + //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); + LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE); return Demod.len; } int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) { - if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE; - if (tracing) { - LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); - } + if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) + return FALSE; + + //LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); + LogTrace(receivedAnswer, Demod.len, (Demod.startTime<<4) - DELAY_AIR2ARM_AS_READER, (Demod.endTime<<4) - DELAY_AIR2ARM_AS_READER, parity, FALSE); return Demod.len; } -/* performs iso14443a anticollision procedure - * fills the uid pointer unless NULL - * fills resp_data unless NULL */ -int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) { +// performs iso14443a anticollision (optional) and card select procedure +// fills the uid and cuid pointer unless NULL +// fills the card info record unless NULL +// if anticollision is false, then the UID must be provided in uid_ptr[] +// and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID) +int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) { uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP uint8_t sel_all[] = { 0x93,0x20 }; uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 - uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller - uint8_t resp_par[MAX_PARITY_SIZE]; - byte_t uid_resp[4]; - size_t uid_resp_len; + uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller + uint8_t resp_par[MAX_PARITY_SIZE] = {0}; + byte_t uid_resp[4] = {0}; + size_t uid_resp_len = 0; uint8_t sak = 0x04; // cascade uid int cascade_level = 0; int len; // Broadcast for a card, WUPA (0x52) will force response from all cards in the field - ReaderTransmitBitsPar(wupa,7,0, NULL); + ReaderTransmitBitsPar(wupa, 7, NULL, NULL); // Receive the ATQA if(!ReaderReceive(resp, resp_par)) return 0; @@ -1881,15 +1918,14 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u memset(p_hi14a_card->uid,0,10); } - // clear uid - if (uid_ptr) { - memset(uid_ptr,0,10); + if (anticollision) { + // clear uid + if (uid_ptr) + memset(uid_ptr,0,10); } // check for proprietary anticollision: - if ((resp[0] & 0x1F) == 0) { - return 3; - } + if ((resp[0] & 0x1F) == 0) return 3; // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in // which case we need to make a cascade 2 request and select - this is a long UID @@ -1898,73 +1934,81 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; + if (anticollision) { // SELECT_ALL - ReaderTransmit(sel_all, sizeof(sel_all), NULL); - if (!ReaderReceive(resp, resp_par)) return 0; - - if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit - memset(uid_resp, 0, 4); - uint16_t uid_resp_bits = 0; - uint16_t collision_answer_offset = 0; - // anti-collision-loop: - while (Demod.collisionPos) { - Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); - for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point - uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; - uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); + ReaderTransmit(sel_all, sizeof(sel_all), NULL); + if (!ReaderReceive(resp, resp_par)) return 0; + + if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit + memset(uid_resp, 0, 4); + uint16_t uid_resp_bits = 0; + uint16_t collision_answer_offset = 0; + // anti-collision-loop: + while (Demod.collisionPos) { + Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); + for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point + uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; + uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); + } + uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position + uid_resp_bits++; + // construct anticollosion command: + sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits + for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { + sel_uid[2+i] = uid_resp[i]; + } + collision_answer_offset = uid_resp_bits%8; + ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); + if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0; } - uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position - uid_resp_bits++; - // construct anticollosion command: - sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits - for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { - sel_uid[2+i] = uid_resp[i]; + // finally, add the last bits and BCC of the UID + for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { + uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; + uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); } - collision_answer_offset = uid_resp_bits%8; - ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); - if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0; + + } else { // no collision, use the response to SELECT_ALL as current uid + memcpy(uid_resp, resp, 4); } - // finally, add the last bits and BCC of the UID - for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { - uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; - uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); + + } else { + if (cascade_level < num_cascades - 1) { + uid_resp[0] = 0x88; + memcpy(uid_resp+1, uid_ptr+cascade_level*3, 3); + } else { + memcpy(uid_resp, uid_ptr+cascade_level*3, 4); } - - } else { // no collision, use the response to SELECT_ALL as current uid - memcpy(uid_resp, resp, 4); } uid_resp_len = 4; // calculate crypto UID. Always use last 4 Bytes. - if(cuid_ptr) { + if(cuid_ptr) *cuid_ptr = bytes_to_num(uid_resp, 4); - } // Construct SELECT UID command sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) - memcpy(sel_uid+2, uid_resp, 4); // the UID + memcpy(sel_uid+2, uid_resp, 4); // the UID received during anticollision, or the provided UID sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC AppendCrc14443a(sel_uid, 7); // calculate and add CRC ReaderTransmit(sel_uid, sizeof(sel_uid), NULL); // Receive the SAK if (!ReaderReceive(resp, resp_par)) return 0; + sak = resp[0]; - // Test if more parts of the uid are coming + // Test if more parts of the uid are coming if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: // http://www.nxp.com/documents/application_note/AN10927.pdf uid_resp[0] = uid_resp[1]; uid_resp[1] = uid_resp[2]; uid_resp[2] = uid_resp[3]; - uid_resp_len = 3; } - if(uid_ptr) { + if(uid_ptr && anticollision) memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); - } if(p_hi14a_card) { memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); @@ -1985,7 +2029,6 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u ReaderTransmit(rats, sizeof(rats), NULL); if (!(len = ReaderReceive(resp, resp_par))) return 0; - if(p_hi14a_card) { memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); @@ -2027,7 +2070,7 @@ void iso14443a_setup(uint8_t fpga_minor_mode) { } int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { - uint8_t parity[MAX_PARITY_SIZE]; + uint8_t parity[MAX_PARITY_SIZE] = {0x00}; uint8_t real_cmd[cmd_len+4]; real_cmd[0] = 0x0a; //I-Block // put block number into the PCB @@ -2066,38 +2109,36 @@ void ReaderIso14443a(UsbCommand *c) size_t lenbits = c->arg[1] >> 16; uint32_t timeout = c->arg[2]; uint32_t arg0 = 0; - byte_t buf[USB_CMD_DATA_SIZE]; - uint8_t par[MAX_PARITY_SIZE]; + byte_t buf[USB_CMD_DATA_SIZE] = {0x00}; + uint8_t par[MAX_PARITY_SIZE] = {0x00}; - if(param & ISO14A_CONNECT) { + if (param & ISO14A_CONNECT) clear_trace(); - } set_tracing(TRUE); - if(param & ISO14A_REQUEST_TRIGGER) { + if (param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(TRUE); - } - if(param & ISO14A_CONNECT) { + + if (param & ISO14A_CONNECT) { iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); if(!(param & ISO14A_NO_SELECT)) { iso14a_card_select_t *card = (iso14a_card_select_t*)buf; - arg0 = iso14443a_select_card(NULL,card,NULL); + arg0 = iso14443a_select_card(NULL,card,NULL, true, 0); cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t)); } } - if(param & ISO14A_SET_TIMEOUT) { + if (param & ISO14A_SET_TIMEOUT) iso14a_set_timeout(timeout); - } - if(param & ISO14A_APDU) { + if (param & ISO14A_APDU) { arg0 = iso14_apdu(cmd, len, buf); cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); } - if(param & ISO14A_RAW) { + if (param & ISO14A_RAW) { if(param & ISO14A_APPEND_CRC) { if(param & ISO14A_TOPAZMODE) { AppendCrc14443b(cmd,len); @@ -2136,15 +2177,15 @@ void ReaderIso14443a(UsbCommand *c) cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); } - if(param & ISO14A_REQUEST_TRIGGER) { + if (param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(FALSE); - } - if(param & ISO14A_NO_DISCONNECT) { + + if (param & ISO14A_NO_DISCONNECT) return; - } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + set_tracing(FALSE); LEDsoff(); } @@ -2156,16 +2197,34 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) { if (nt1 == nt2) return 0; - uint16_t i; uint32_t nttmp1 = nt1; uint32_t nttmp2 = nt2; - for (i = 1; i < 32768; i++) { - nttmp1 = prng_successor(nttmp1, 1); - if (nttmp1 == nt2) return i; - nttmp2 = prng_successor(nttmp2, 1); - if (nttmp2 == nt1) return -i; - } + for (uint16_t i = 1; i < 0xFFFF; i += 8) { + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i; + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -i; + + nttmp1 = prng_successor(nttmp1, 2); if (nttmp1 == nt2) return i+1; + nttmp2 = prng_successor(nttmp2, 2); if (nttmp2 == nt1) return -i-1; + + nttmp1 = prng_successor(nttmp1, 3); if (nttmp1 == nt2) return i+2; + nttmp2 = prng_successor(nttmp2, 3); if (nttmp2 == nt1) return -i-2; + + nttmp1 = prng_successor(nttmp1, 4); if (nttmp1 == nt2) return i+3; + nttmp2 = prng_successor(nttmp2, 4); if (nttmp2 == nt1) return -i-3; + + nttmp1 = prng_successor(nttmp1, 5); if (nttmp1 == nt2) return i+4; + nttmp2 = prng_successor(nttmp2, 5); if (nttmp2 == nt1) return -i-4; + + nttmp1 = prng_successor(nttmp1, 6); if (nttmp1 == nt2) return i+5; + nttmp2 = prng_successor(nttmp2, 6); if (nttmp2 == nt1) return -i-5; + + nttmp1 = prng_successor(nttmp1, 7); if (nttmp1 == nt2) return i+6; + nttmp2 = prng_successor(nttmp2, 7); if (nttmp2 == nt1) return -i-6; + + nttmp1 = prng_successor(nttmp1, 8); if (nttmp1 == nt2) return i+7; + nttmp2 = prng_successor(nttmp2, 8); if (nttmp2 == nt1) return -i-7; + } return(-99999); // either nt1 or nt2 are invalid nonces } @@ -2177,27 +2236,26 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) { // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime" // (article by Nicolas T. Courtois, 2009) //----------------------------------------------------------------------------- -void ReaderMifare(bool first_try) { - // free eventually allocated BigBuf memory. We want all for tracing. - BigBuf_free(); - - clear_trace(); - set_tracing(TRUE); - +void ReaderMifare(bool first_try, uint8_t block ) +{ // Mifare AUTH - uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; - uint8_t mf_nr_ar[8] = { 0x00 }; //{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 }; + //uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; + //uint8_t mf_auth[] = { 0x60,0x05, 0x58, 0x2c }; + uint8_t mf_auth[] = { 0x60,0x00, 0x00, 0x00 }; + uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; static uint8_t mf_nr_ar3 = 0; - uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = { 0x00 }; - uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = { 0x00 }; + mf_auth[1] = block; + AppendCrc14443a(mf_auth, 2); + + uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; + uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; byte_t nt_diff = 0; uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough static byte_t par_low = 0; - bool led_on = TRUE; - uint8_t uid[10] = {0x00}; - //uint32_t cuid = 0x00; + uint8_t uid[10] = {0}; + //uint32_t cuid = 0; uint32_t nt = 0; uint32_t previous_nt = 0; @@ -2206,133 +2264,181 @@ void ReaderMifare(bool first_try) { byte_t ks_list[8] = {0x00}; static uint32_t sync_time = 0; - static uint32_t sync_cycles = 0; + static int32_t sync_cycles = 0; int catch_up_cycles = 0; int last_catch_up = 0; + uint16_t elapsed_prng_sequences = 1; uint16_t consecutive_resyncs = 0; int isOK = 0; - int numWrongDistance = 0; + #define PRNG_SEQUENCE_LENGTH (1 << 16); + #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up. + #define MAX_SYNC_TRIES 32 + #define NUM_DEBUG_INFOS 8 // per strategy + #define MAX_STRATEGY 3 + + uint16_t unexpected_random = 0; + uint16_t sync_tries = 0; + uint16_t strategy = 0; + uint32_t halt_time = 0; + + clear_trace(); + set_tracing(TRUE); - if (first_try) { - mf_nr_ar3 = 0; + LED_A_ON(); + LED_B_OFF(); + LED_C_OFF(); + + if (first_try) iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); + + // free eventually allocated BigBuf memory. We want all for tracing. + BigBuf_free(); + + if (first_try) { sync_time = GetCountSspClk() & 0xfffffff8; - sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). + sync_cycles = PRNG_SEQUENCE_LENGTH; //65536; //0x10000 // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). + mf_nr_ar3 = 0; nt_attacked = 0; - nt = 0; par[0] = 0; - } - else { + } else { // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) mf_nr_ar3++; mf_nr_ar[3] = mf_nr_ar3; par[0] = par_low; } - - LED_A_ON(); - LED_B_OFF(); - LED_C_OFF(); - LED_C_ON(); - - for(uint16_t i = 0; TRUE; i++) { + LED_C_ON(); + for(uint16_t i = 0; TRUE; ++i) { + WDT_HIT(); // Test if the action was cancelled - if(BUTTON_PRESS()) break; - - if (numWrongDistance > 1000) { - isOK = 0; + if(BUTTON_PRESS()) { + isOK = -1; break; } - //if(!iso14443a_select_card(uid, NULL, &cuid)) { - if(!iso14443a_select_card(uid, NULL, NULL)) { - if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); - continue; + if (strategy == 2) { + // test with additional halt command + halt_time = 0; + int len = mifare_sendcmd_short(NULL, false, 0x50, 0x00, receivedAnswer, receivedAnswerPar, &halt_time); + + if (len && MF_DBGLEVEL >= 3) + Dbprintf("Unexpected response of %d bytes to halt command.", len); } + if (strategy == 3) { + // test with FPGA power off/on + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelay(200); + iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); + SpinDelay(100); + sync_time = GetCountSspClk() & 0xfffffff8; + WDT_HIT(); + } + + if (!iso14443a_select_card(uid, NULL, NULL, true, 0)) { + if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card\n"); + continue; + } + sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; catch_up_cycles = 0; - + // if we missed the sync time already, advance to the next nonce repeat while(GetCountSspClk() > sync_time) { + ++elapsed_prng_sequences; sync_time = (sync_time & 0xfffffff8) + sync_cycles; } - // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) - ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); + ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); // Receive the (4 Byte) "random" nonce - if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) { - if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); + if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) continue; - } - - previous_nt = nt; - nt = bytes_to_num(receivedAnswer, 4); // Transmit reader nonce with fake par ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); + previous_nt = nt; + nt = bytes_to_num(receivedAnswer, 4); + if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet int nt_distance = dist_nt(previous_nt, nt); if (nt_distance == 0) { nt_attacked = nt; - } - else { + } else { + if (nt_distance == -99999) { // invalid nonce received + unexpected_random++; + if (unexpected_random > MAX_UNEXPECTED_RANDOM) { + isOK = -3; // Card has an unpredictable PRNG. Give up + break; + } else { + continue; // continue trying... + } + } - // invalid nonce received, try again - if (nt_distance == -99999) { - numWrongDistance++; - if (MF_DBGLEVEL >= 3) Dbprintf("The two nonces has invalid distance, tag could have good PRNG\n"); - continue; + if (++sync_tries > MAX_SYNC_TRIES) { + if (strategy > MAX_STRATEGY || MF_DBGLEVEL < 3) { + isOK = -4; // Card's PRNG runs at an unexpected frequency or resets unexpectedly + break; + } else { + continue; + } } - sync_cycles = (sync_cycles - nt_distance); - if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles); + sync_cycles = (sync_cycles - nt_distance)/elapsed_prng_sequences; + if (sync_cycles <= 0) + sync_cycles += PRNG_SEQUENCE_LENGTH; + + if (MF_DBGLEVEL >= 3) + Dbprintf("calibrating in cycle %d. nt_distance=%d, elapsed_prng_sequences=%d, new sync_cycles: %d\n", i, nt_distance, elapsed_prng_sequences, sync_cycles); + continue; } } if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... + catch_up_cycles = -dist_nt(nt_attacked, nt); - if (catch_up_cycles >= 99999) { // invalid nonce received. Don't resync on that one. + if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one. catch_up_cycles = 0; continue; } + + // average? + catch_up_cycles /= elapsed_prng_sequences; + if (catch_up_cycles == last_catch_up) { - consecutive_resyncs++; - } - else { + ++consecutive_resyncs; + } else { last_catch_up = catch_up_cycles; consecutive_resyncs = 0; - } + } + if (consecutive_resyncs < 3) { - if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs); - } - else { - sync_cycles = sync_cycles + catch_up_cycles; - if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles); + if (MF_DBGLEVEL >= 3) + Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs); + } else { + sync_cycles += catch_up_cycles; + + if (MF_DBGLEVEL >= 3) + Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles); + + last_catch_up = 0; + catch_up_cycles = 0; + consecutive_resyncs = 0; } continue; } - consecutive_resyncs = 0; - // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding - if (ReaderReceive(receivedAnswer, receivedAnswerPar)) - { + if (ReaderReceive(receivedAnswer, receivedAnswerPar)) { catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer if (nt_diff == 0) - { par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change - } - - led_on = !led_on; - if(led_on) LED_B_ON(); else LED_B_OFF(); par_list[nt_diff] = SwapBits(par[0], 8); ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; @@ -2346,20 +2452,36 @@ void ReaderMifare(bool first_try) { nt_diff = (nt_diff + 1) & 0x07; mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); par[0] = par_low; + } else { - if (nt_diff == 0 && first_try) - { + if (nt_diff == 0 && first_try) { par[0]++; + if (par[0] == 0x00) { // tried all 256 possible parities without success. Card doesn't send NACK. + isOK = -2; + break; + } } else { par[0] = ((par[0] & 0x1F) + 1) | par_low; } } + + consecutive_resyncs = 0; } mf_nr_ar[3] &= 0x1F; + + WDT_HIT(); - byte_t buf[28] = {0x00}; + // reset sync_time. + if ( isOK == 1) { + sync_time = 0; + sync_cycles = 0; + mf_nr_ar3 = 0; + nt_attacked = 0; + par[0] = 0; + } + byte_t buf[28] = {0x00}; memcpy(buf + 0, uid, 4); num_to_bytes(nt, 4, buf + 4); memcpy(buf + 8, par_list, 8); @@ -2368,13 +2490,12 @@ void ReaderMifare(bool first_try) { cmd_send(CMD_ACK,isOK,0,0,buf,28); - set_tracing(FALSE); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); + set_tracing(FALSE); } - - /* +/** *MIFARE 1K simulate. * *@param flags : @@ -2406,34 +2527,28 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * struct Crypto1State *pcs; pcs = &mpcs; uint32_t numReads = 0;//Counts numer of times reader read a block - uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; - uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE]; - uint8_t response[MAX_MIFARE_FRAME_SIZE]; - uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; + uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00}; + uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00}; + uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00}; + uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00}; uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!! - //uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic - uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini + uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic + //uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini uint8_t rSAK1[] = {0x04, 0xda, 0x17}; - uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01}; + //uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01}; + uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92}; uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; - //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2 + //Here, we collect UID1,UID2,NT,AR,NR,0,0,NT2,AR2,NR2 // This can be used in a reader-only attack. // (it can also be retrieved via 'hf 14a list', but hey... uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0}; uint8_t ar_nr_collected = 0; - // free eventually allocated BigBuf memory but keep Emulator Memory - BigBuf_free_keep_EM(); - - // clear trace - clear_trace(); - set_tracing(TRUE); - // Authenticate response - nonce uint32_t nonce = bytes_to_num(rAUTH_NT, 4); @@ -2480,10 +2595,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; } - // We need to listen to the high-frequency, peak-detected path. - iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); - - if (MF_DBGLEVEL >= 1) { if (!_7BUID) { Dbprintf("4B UID: %02x%02x%02x%02x", @@ -2495,8 +2606,19 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } } + // We need to listen to the high-frequency, peak-detected path. + iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); + + // free eventually allocated BigBuf memory but keep Emulator Memory + BigBuf_free_keep_EM(); + + // clear trace + clear_trace(); + set_tracing(TRUE); + + bool finished = FALSE; - while (!BUTTON_PRESS() && !finished) { + while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) { WDT_HIT(); // find reader field @@ -2569,8 +2691,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } case MFEMUL_AUTH1:{ - if( len != 8) - { + if( len != 8) { cardSTATE_TO_IDLE(); LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; @@ -2581,9 +2702,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * //Collect AR/NR //if(ar_nr_collected < 2 && cardAUTHSC == 2){ - if(ar_nr_collected < 2){ - if(ar_nr_responses[2] != ar) - {// Avoid duplicates... probably not necessary, ar should vary. + if(ar_nr_collected < 2) { + if(ar_nr_responses[2] != ar) { + // Avoid duplicates... probably not necessary, ar should vary. //ar_nr_responses[ar_nr_collected*5] = 0; //ar_nr_responses[ar_nr_collected*5+1] = 0; ar_nr_responses[ar_nr_collected*5+2] = nonce; @@ -2593,9 +2714,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } // Interactive mode flag, means we need to send ACK if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2) - { finished = true; - } } // --- crypto @@ -2624,9 +2743,13 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); LED_C_ON(); cardSTATE = MFEMUL_WORK; - if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", - cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', - GetTickCount() - authTimer); + if (MF_DBGLEVEL >= 4) { + Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", + cardAUTHSC, + cardAUTHKEY == 0 ? 'A' : 'B', + GetTickCount() - authTimer + ); + } break; } case MFEMUL_SELECT2:{ @@ -2641,7 +2764,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * // select 2 card if (len == 9 && - (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { + (receivedCmd[0] == 0x95 && + receivedCmd[1] == 0x70 && + memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0) ) { EmSendCmd(rSAK, sizeof(rSAK)); cuid = bytes_to_num(rUIDBCC2, 4); cardSTATE = MFEMUL_WORK; @@ -2668,10 +2793,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * bool encrypted_data = (cardAUTHKEY != 0xFF) ; - if(encrypted_data) { - // decrypt seqence + // decrypt seqence + if(encrypted_data) mf_crypto1_decrypt(pcs, receivedCmd, len); - } if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { authTimer = GetTickCount(); @@ -2735,9 +2859,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } // read block if (receivedCmd[0] == 0x30) { - if (MF_DBGLEVEL >= 4) { - Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]); - } + if (MF_DBGLEVEL >= 4) Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]); + emlGetMem(response, receivedCmd[1], 1); AppendCrc14443a(response, 16); mf_crypto1_encrypt(pcs, response, 18, response_par); @@ -2804,7 +2927,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } case MFEMUL_WRITEBL2:{ - if (len == 18){ + if (len == 18) { mf_crypto1_decrypt(pcs, receivedCmd, len); emlSetMem(receivedCmd, cardWRBL, 1); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); @@ -2860,15 +2983,14 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); - if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK - { + // Interactive mode flag, means we need to send ACK + if(flags & FLAG_INTERACTIVE) { //May just aswell send the collected ar_nr in the response aswell uint8_t len = ar_nr_collected*5*4; cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len); } - if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) - { + if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) { if(ar_nr_collected > 1 ) { Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x", @@ -2880,10 +3002,20 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * ar_nr_responses[8], // AR2 ar_nr_responses[9] // NR2 ); + Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x", + ar_nr_responses[0], // UID1 + ar_nr_responses[1], // UID2 + ar_nr_responses[2], // NT1 + ar_nr_responses[3], // AR1 + ar_nr_responses[4], // NR1 + ar_nr_responses[7], // NT2 + ar_nr_responses[8], // AR2 + ar_nr_responses[9] // NR2 + ); } else { Dbprintf("Failed to obtain two AR/NR pairs!"); if(ar_nr_collected > 0 ) { - Dbprintf("Only got these: UID=%07x%08x, nonce=%08x, AR1=%08x, NR1=%08x", + Dbprintf("Only got these: UID=%06x%08x, nonce=%08x, AR1=%08x, NR1=%08x", ar_nr_responses[0], // UID1 ar_nr_responses[1], // UID2 ar_nr_responses[2], // NT @@ -2894,6 +3026,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } } if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen()); + + set_tracing(FALSE); } @@ -2905,12 +3039,8 @@ void RAMFUNC SniffMifare(uint8_t param) { // param: // bit 0 - trigger from first card answer // bit 1 - trigger from first reader 7-bit request - - // free eventually allocated BigBuf memory - BigBuf_free(); - - // C(red) A(yellow) B(green) LEDsoff(); + // init trace buffer clear_trace(); set_tracing(TRUE); @@ -2918,12 +3048,18 @@ void RAMFUNC SniffMifare(uint8_t param) { // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! - uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; - uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE]; + uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00}; + uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; + // The response (tag -> reader) that we're receiving. - uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE]; - uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE]; + uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE] = {0x00}; + uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE] = {0x00}; + iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); + + // free eventually allocated BigBuf memory + BigBuf_free(); + // allocate the DMA buffer, used to stream samples from the FPGA uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); uint8_t *data = dmaBuf; @@ -2933,8 +3069,6 @@ void RAMFUNC SniffMifare(uint8_t param) { bool ReaderIsActive = FALSE; bool TagIsActive = FALSE; - iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); - // Set up the demodulator for tag -> reader responses. DemodInit(receivedResponse, receivedResponsePar); @@ -2976,11 +3110,12 @@ void RAMFUNC SniffMifare(uint8_t param) { int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred - if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred + + if (readBufDataP <= dmaBufDataP) // we are processing the same block of data which is currently being transferred dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed - } else { + else dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed - } + // test for length of buffer if(dataLen > maxDataLen) { // we are more behind than ever... maxDataLen = dataLen; @@ -3007,15 +3142,16 @@ void RAMFUNC SniffMifare(uint8_t param) { if (sniffCounter & 0x01) { - if(!TagIsActive) { // no need to try decoding tag data if the reader is sending + // no need to try decoding tag data if the reader is sending + if(!TagIsActive) { uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { LED_C_INV(); + if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break; /* And ready to receive another command. */ - //UartInit(receivedCmd, receivedCmdPar); - UartReset(); + UartInit(receivedCmd, receivedCmdPar); /* And also reset the demod code */ DemodReset(); @@ -3023,7 +3159,8 @@ void RAMFUNC SniffMifare(uint8_t param) { ReaderIsActive = (Uart.state != STATE_UNSYNCD); } - if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending + // no need to try decoding tag data if the reader is sending + if(!ReaderIsActive) { uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { LED_C_INV(); @@ -3032,7 +3169,7 @@ void RAMFUNC SniffMifare(uint8_t param) { // And ready to receive another response. DemodReset(); - + // And reset the Miller decoder including its (now outdated) input buffer UartInit(receivedCmd, receivedCmdPar); } @@ -3043,17 +3180,15 @@ void RAMFUNC SniffMifare(uint8_t param) { previous_data = *data; sniffCounter++; data++; - if(data == dmaBuf + DMA_BUFFER_SIZE) { + + if(data == dmaBuf + DMA_BUFFER_SIZE) data = dmaBuf; - } } // main cycle - DbpString("COMMAND FINISHED"); - FpgaDisableSscDma(); MfSniffEnd(); - - Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); LEDsoff(); + Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); + set_tracing(FALSE); }