X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/91c7a7ccb72641f957d41e2c6b081a5ddec57f74..9a6bc2feb4f750e13f365c050f80b42194a3b797:/armsrc/iso14443a.c diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index 436065fb..3daab199 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -9,19 +9,7 @@ //----------------------------------------------------------------------------- // Routines to support ISO 14443 type A. //----------------------------------------------------------------------------- - -#include "proxmark3.h" -#include "apps.h" -#include "util.h" -#include "string.h" -#include "cmd.h" -#include "iso14443crc.h" #include "iso14443a.h" -#include "iso14443b.h" -#include "crapto1.h" -#include "mifareutil.h" -#include "BigBuf.h" -#include "parity.h" static uint32_t iso14a_timeout; int rsamples = 0; @@ -29,6 +17,8 @@ uint8_t trigger = 0; // the block number for the ISO14443-4 PCB static uint8_t iso14_pcb_blocknum = 0; +static uint8_t* free_buffer_pointer; + // // ISO14443 timing: // @@ -360,8 +350,6 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) { return FALSE; // not finished yet, need more data } - - //============================================================================= // ISO 14443 Type A - Manchester decoder //============================================================================= @@ -510,6 +498,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non // Record the sequence of commands sent by the reader to the tag, with // triggering so that we start recording at the point that the tag is moved // near the reader. +// "hf 14a sniff" //----------------------------------------------------------------------------- void RAMFUNC SniffIso14443a(uint8_t param) { // param: @@ -550,7 +539,10 @@ void RAMFUNC SniffIso14443a(uint8_t param) { UartInit(receivedCmd, receivedCmdPar); // Setup and start DMA. - FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); + if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){ + if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); + return; + } // We won't start recording the frames that we acquire until we trigger; // a good trigger condition to get started is probably when we see a @@ -660,13 +652,13 @@ void RAMFUNC SniffIso14443a(uint8_t param) { } } // main cycle + if (MF_DBGLEVEL >= 1) { + Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); + Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); + } FpgaDisableSscDma(); - LEDsoff(); - - Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); - Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LEDsoff(); set_tracing(FALSE); } @@ -727,7 +719,6 @@ static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) { } static void Code4bitAnswerAsTag(uint8_t cmd) { - int i; uint8_t b = cmd; ToSendReset(); @@ -745,7 +736,7 @@ static void Code4bitAnswerAsTag(uint8_t cmd) { // Send startbit ToSend[++ToSendMax] = SEC_D; - for(i = 0; i < 4; i++) { + for(uint8_t i = 0; i < 4; i++) { if(b & 1) { ToSend[++ToSendMax] = SEC_D; LastProxToAirDuration = 8 * ToSendMax - 4; @@ -796,26 +787,6 @@ static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int } } -static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded); -int EmSend4bitEx(uint8_t resp, bool correctionNeeded); -int EmSend4bit(uint8_t resp); -int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par); -int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded); -int EmSendCmd(uint8_t *resp, uint16_t respLen); -int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par); -bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, - uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity); - -static uint8_t* free_buffer_pointer; - -typedef struct { - uint8_t* response; - size_t response_n; - uint8_t* modulation; - size_t modulation_n; - uint32_t ProxToAirDuration; -} tag_response_info_t; - bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes // This will need the following byte array for a modulation sequence @@ -846,7 +817,6 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe return TRUE; } - // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit. // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits @@ -875,64 +845,69 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { //----------------------------------------------------------------------------- // Main loop of simulated tag: receive commands from reader, decide what // response to send, and send it. +// 'hf 14a sim' //----------------------------------------------------------------------------- void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { - uint32_t counters[] = {0,0,0}; - //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2 - // This can be used in a reader-only attack. - // (it can also be retrieved via 'hf 14a list', but hey... - uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0}; - uint8_t ar_nr_collected = 0; + + uint8_t sak = 0; + uint32_t cuid = 0; + uint32_t nonce = 0; - uint8_t sak; - // PACK response to PWD AUTH for EV1/NTAG - uint8_t response8[4] = {0,0,0,0}; + uint8_t response8[4] = {0,0,0,0}; + // Counter for EV1/NTAG + uint32_t counters[] = {0,0,0}; // The first response contains the ATQA (note: bytes are transmitted in reverse order). - uint8_t response1[2] = {0,0}; + uint8_t response1[] = {0,0}; + + // Here, we collect CUID, block1, keytype1, NT1, NR1, AR1, CUID, block2, keytyp2, NT2, NR2, AR2 + // it should also collect block, keytype. + uint8_t cardAUTHSC = 0; + uint8_t cardAUTHKEY = 0xff; // no authentication + // allow collecting up to 8 sets of nonces to allow recovery of up to 8 keys + #define ATTACK_KEY_COUNT 8 // keep same as define in cmdhfmf.c -> readerAttack() + nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; // for 2 separate attack types (nml, moebius) + memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp)); + + uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; // for 2nd attack type (moebius) + memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected)); + uint8_t nonce1_count = 0; + uint8_t nonce2_count = 0; + uint8_t moebius_n_count = 0; + bool gettingMoebius = false; + uint8_t mM = 0; // moebius_modifier for collection storage + switch (tagType) { - case 1: { // MIFARE Classic - // Says: I am Mifare 1k - original line + case 1: { // MIFARE Classic 1k response1[0] = 0x04; - response1[1] = 0x00; sak = 0x08; } break; case 2: { // MIFARE Ultralight - // Says: I am a stupid memory tag, no crypto response1[0] = 0x44; - response1[1] = 0x00; sak = 0x00; } break; case 3: { // MIFARE DESFire - // Says: I am a DESFire tag, ph33r me response1[0] = 0x04; response1[1] = 0x03; sak = 0x20; } break; - case 4: { // ISO/IEC 14443-4 - // Says: I am a javacard (JCOP) + case 4: { // ISO/IEC 14443-4 - javacard (JCOP) response1[0] = 0x04; - response1[1] = 0x00; sak = 0x28; } break; case 5: { // MIFARE TNP3XXX - // Says: I am a toy response1[0] = 0x01; response1[1] = 0x0f; sak = 0x01; } break; - case 6: { // MIFARE Mini - // Says: I am a Mifare Mini, 320b + case 6: { // MIFARE Mini 320b response1[0] = 0x44; - response1[1] = 0x00; sak = 0x09; } break; - case 7: { // NTAG? - // Says: I am a NTAG, + case 7: { // NTAG response1[0] = 0x44; - response1[1] = 0x00; sak = 0x00; // PACK response8[0] = 0x80; @@ -943,8 +918,8 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { uint16_t start = 4 * (0+12); uint8_t emdata[8]; emlGetMemBt( emdata, start, sizeof(emdata)); - memcpy(data, emdata, 3); //uid bytes 0-2 - memcpy(data+3, emdata+4, 4); //uid bytes 3-7 + memcpy(data, emdata, 3); // uid bytes 0-2 + memcpy(data+3, emdata+4, 4); // uid bytes 3-7 flags |= FLAG_7B_UID_IN_DATA; } } break; @@ -957,11 +932,11 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { // The second response contains the (mandatory) first 24 bits of the UID uint8_t response2[5] = {0x00}; - // Check if the uid uses the (optional) part + // For UID size 7, uint8_t response2a[5] = {0x00}; - if (flags & FLAG_7B_UID_IN_DATA) { - response2[0] = 0x88; + if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA ) { + response2[0] = 0x88; // Cascade Tag marker response2[1] = data[0]; response2[2] = data[1]; response2[3] = data[2]; @@ -975,20 +950,21 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { // Configure the ATQA and SAK accordingly response1[0] |= 0x40; sak |= 0x04; + + cuid = bytes_to_num(data+3, 4); } else { memcpy(response2, data, 4); - //num_to_bytes(uid_1st,4,response2); // Configure the ATQA and SAK accordingly response1[0] &= 0xBF; sak &= 0xFB; + cuid = bytes_to_num(data, 4); } // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID. response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; // Prepare the mandatory SAK (for 4 and 7 byte UID) - uint8_t response3[3] = {0x00}; - response3[0] = sak; + uint8_t response3[3] = {sak, 0x00, 0x00}; ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit @@ -996,20 +972,22 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { response3a[0] = sak & 0xFB; ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); - uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce - uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: + uint8_t response5[] = { 0x01, 0x01, 0x01, 0x01 }; // Very random tag nonce + uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1 // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us) // TC(1) = 0x02: CID supported, NAD not supported ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); - // Prepare GET_VERSION (different for UL EV-1 / NTAG) - //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION. - //uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215 + // the randon nonce + nonce = bytes_to_num(response5, 4); + // Prepare GET_VERSION (different for UL EV-1 / NTAG) + // uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION. + // uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215 // Prepare CHK_TEARING - //uint8_t response9[] = {0xBD,0x90,0x3f}; + // uint8_t response9[] = {0xBD,0x90,0x3f}; #define TAG_RESPONSE_COUNT 10 tag_response_info_t responses[TAG_RESPONSE_COUNT] = { @@ -1023,8 +1001,8 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { { .response = response8, .response_n = sizeof(response8) } // EV1/NTAG PACK response }; - //{ .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response - //{ .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response + // { .response = response7_NTAG, .response_n = sizeof(response7_NTAG)}, // EV1/NTAG GET_VERSION response + // { .response = response9, .response_n = sizeof(response9) } // EV1/NTAG CHK_TEAR response // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it @@ -1044,16 +1022,14 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); BigBuf_free_keep_EM(); + clear_trace(); + set_tracing(TRUE); // allocate buffers: uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); - // clear trace - clear_trace(); - set_tracing(TRUE); - // Prepare the responses of the anticollision phase // there will be not enough time to do this at the moment the reader sends it REQA for (size_t i=0; i 0) { @@ -1144,7 +1125,7 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { } EmSendCmdEx(data,sizeof(data),false); p_response = NULL; - } else if (receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER -- + } else if (receivedCmd[0] == MIFARE_ULEV1_INCR_CNT && tagType == 7) { // Received a INC COUNTER -- // number of counter uint8_t counter = receivedCmd[1]; uint32_t val = bytes_to_num(receivedCmd+2,4); @@ -1154,8 +1135,8 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { uint8_t ack[] = {0x0a}; EmSendCmdEx(ack,sizeof(ack),false); p_response = NULL; - } else if(receivedCmd[0] == 0x3E && tagType == 7) { // Received a CHECK_TEARING_EVENT -- - //first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature] + } else if(receivedCmd[0] == MIFARE_ULEV1_CHECKTEAR && tagType == 7) { // Received a CHECK_TEARING_EVENT -- + // first 12 blocks of emu are [getversion answer - check tearing - pack - 0x00 - signature] uint8_t emdata[3]; uint8_t counter=0; if (receivedCmd[1]<3) counter = receivedCmd[1]; @@ -1163,21 +1144,22 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { AppendCrc14443a(emdata, sizeof(emdata)-2); EmSendCmdEx(emdata, sizeof(emdata), false); p_response = NULL; - } else if(receivedCmd[0] == 0x50) { // Received a HALT + } else if(receivedCmd[0] == ISO14443A_CMD_HALT) { // Received a HALT LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); p_response = NULL; - } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request - + } else if(receivedCmd[0] == MIFARE_AUTH_KEYA || receivedCmd[0] == MIFARE_AUTH_KEYB) { // Received an authentication request if ( tagType == 7 ) { // IF NTAG /EV1 0x60 == GET_VERSION, not a authentication request. uint8_t emdata[10]; emlGetMemBt( emdata, 0, 8 ); AppendCrc14443a(emdata, sizeof(emdata)-2); - EmSendCmdEx(emdata, sizeof(emdata), false); + EmSendCmdEx(emdata, sizeof(emdata), false); p_response = NULL; } else { + cardAUTHSC = receivedCmd[1] / 4; // received block num + cardAUTHKEY = receivedCmd[0] - 0x60; p_response = &responses[5]; order = 7; } - } else if(receivedCmd[0] == 0xE0) { // Received a RATS request + } else if(receivedCmd[0] == ISO14443A_CMD_RATS) { // Received a RATS request if (tagType == 1 || tagType == 2) { // RATS not supported EmSend4bit(CARD_NACK_NA); p_response = NULL; @@ -1186,58 +1168,76 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { } } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication) LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - uint32_t nonce = bytes_to_num(response5,4); uint32_t nr = bytes_to_num(receivedCmd,4); uint32_t ar = bytes_to_num(receivedCmd+4,4); - if(flags & FLAG_NR_AR_ATTACK ) { - if(ar_nr_collected < 2){ - // Avoid duplicates... probably not necessary, nr should vary. - //if(ar_nr_responses[3] != nr){ - ar_nr_responses[ar_nr_collected*5] = 0; - ar_nr_responses[ar_nr_collected*5+1] = 0; - ar_nr_responses[ar_nr_collected*5+2] = nonce; - ar_nr_responses[ar_nr_collected*5+3] = nr; - ar_nr_responses[ar_nr_collected*5+4] = ar; - ar_nr_collected++; - //} - } - - if(ar_nr_collected > 1 ) { - - if (MF_DBGLEVEL >= 2) { - Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); - Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x", - ar_nr_responses[0], // UID1 - ar_nr_responses[1], // UID2 - ar_nr_responses[2], // NT - ar_nr_responses[3], // AR1 - ar_nr_responses[4], // NR1 - ar_nr_responses[8], // AR2 - ar_nr_responses[9] // NR2 - ); - Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x", - ar_nr_responses[0], // UID1 - ar_nr_responses[1], // UID2 - ar_nr_responses[2], // NT1 - ar_nr_responses[3], // AR1 - ar_nr_responses[4], // NR1 - ar_nr_responses[7], // NT2 - ar_nr_responses[8], // AR2 - ar_nr_responses[9] // NR2 - ); + // Collect AR/NR per keytype & sector + if ( (flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) { + for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { + if ( ar_nr_collected[i+mM]==0 || ((cardAUTHSC == ar_nr_resp[i+mM].sector) && (cardAUTHKEY == ar_nr_resp[i+mM].keytype) && (ar_nr_collected[i+mM] > 0)) ) { + // if first auth for sector, or matches sector and keytype of previous auth + if (ar_nr_collected[i+mM] < 2) { + // if we haven't already collected 2 nonces for this sector + if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) { + // Avoid duplicates... probably not necessary, ar should vary. + if (ar_nr_collected[i+mM]==0) { + // first nonce collect + ar_nr_resp[i+mM].cuid = cuid; + ar_nr_resp[i+mM].sector = cardAUTHSC; + ar_nr_resp[i+mM].keytype = cardAUTHKEY; + ar_nr_resp[i+mM].nonce = nonce; + ar_nr_resp[i+mM].nr = nr; + ar_nr_resp[i+mM].ar = ar; + nonce1_count++; + // add this nonce to first moebius nonce + ar_nr_resp[i+ATTACK_KEY_COUNT].cuid = cuid; + ar_nr_resp[i+ATTACK_KEY_COUNT].sector = cardAUTHSC; + ar_nr_resp[i+ATTACK_KEY_COUNT].keytype = cardAUTHKEY; + ar_nr_resp[i+ATTACK_KEY_COUNT].nonce = nonce; + ar_nr_resp[i+ATTACK_KEY_COUNT].nr = nr; + ar_nr_resp[i+ATTACK_KEY_COUNT].ar = ar; + ar_nr_collected[i+ATTACK_KEY_COUNT]++; + } else { // second nonce collect (std and moebius) + ar_nr_resp[i+mM].nonce2 = nonce; + ar_nr_resp[i+mM].nr2 = nr; + ar_nr_resp[i+mM].ar2 = ar; + if (!gettingMoebius) { + nonce2_count++; + // check if this was the last second nonce we need for std attack + if ( nonce2_count == nonce1_count ) { + // done collecting std test switch to moebius + // first finish incrementing last sample + ar_nr_collected[i+mM]++; + // switch to moebius collection + gettingMoebius = true; + mM = ATTACK_KEY_COUNT; + break; + } + } else { + moebius_n_count++; + // if we've collected all the nonces we need - finish. + if (nonce1_count == moebius_n_count) { + cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_resp,sizeof(ar_nr_resp)); + nonce1_count = 0; + nonce2_count = 0; + moebius_n_count = 0; + gettingMoebius = false; + } + } + } + ar_nr_collected[i+mM]++; + } + } + // we found right spot for this nonce stop looking + break; + } } - uint8_t len = ar_nr_collected*5*4; - cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len); - ar_nr_collected = 0; - memset(ar_nr_responses, 0x00, len); } - } - } else if (receivedCmd[0] == 0x1a ) { // ULC authentication - } - else if (receivedCmd[0] == 0x1b) { // NTAG / EV-1 authentication + + } else if (receivedCmd[0] == MIFARE_ULC_AUTH_1 ) { // ULC authentication, or Desfire Authentication + } else if (receivedCmd[0] == MIFARE_ULEV1_AUTH) { // NTAG / EV-1 authentication if ( tagType == 7 ) { - uint16_t start = 13; //first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00] + uint16_t start = 13; // first 4 blocks of emu are [getversion answer - check tearing - pack - 0x00] uint8_t emdata[4]; emlGetMemBt( emdata, start, 2); AppendCrc14443a(emdata, 2); @@ -1324,6 +1324,11 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { // Count number of other messages after a halt if(order != 6 && lastorder == 5) { happened2++; } + // comment this limit if you want to simulation longer + if (!tracing) { + Dbprintf("Trace Full. Simulation stopped."); + break; + } // comment this limit if you want to simulation longer if(cmdsRecvd > 999) { DbpString("1000 commands later..."); @@ -1348,12 +1353,6 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, par); } - - // comment this limit if you want to simulation longer - if (!tracing) { - Dbprintf("Trace Full. Simulation stopped."); - break; - } } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); @@ -1361,6 +1360,36 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { BigBuf_free_keep_EM(); LED_A_OFF(); + if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1) { + for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { + if (ar_nr_collected[i] == 2) { + Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i= 4){ Dbprintf("-[ Wake ups after halt [%d]", happened); Dbprintf("-[ Messages after halt [%d]", happened2); @@ -1368,11 +1397,9 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { } } - // prepare a delayed transfer. This simply shifts ToSend[] by a number // of bits specified in the delay parameter. -void PrepareDelayedTransfer(uint16_t delay) -{ +void PrepareDelayedTransfer(uint16_t delay) { delay &= 0x07; if (!delay) return; @@ -1403,8 +1430,7 @@ void PrepareDelayedTransfer(uint16_t delay) // if == 0: transfer immediately and return time of transfer // if != 0: delay transfer until time specified //------------------------------------------------------------------------------------- -static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) -{ +static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) { FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); uint32_t ThisTransferTime = 0; @@ -1442,12 +1468,10 @@ static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME); } - //----------------------------------------------------------------------------- // Prepare reader command (in bits, support short frames) to send to FPGA //----------------------------------------------------------------------------- -void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) -{ +void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) { int i, j; int last = 0; uint8_t b; @@ -1526,19 +1550,16 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8 //----------------------------------------------------------------------------- // Prepare reader command to send to FPGA //----------------------------------------------------------------------------- -void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) -{ +void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) { CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); } - //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed (return 1) or field was gone (return 2) // Or return 0 when command is captured //----------------------------------------------------------------------------- -static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) -{ +static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) { *len = 0; uint32_t timer = 0, vtime = 0; @@ -1598,13 +1619,10 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) return 0; } } - } } - -static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) -{ +int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) { uint8_t b; uint16_t i = 0; uint32_t ThisTransferTime; @@ -1616,12 +1634,8 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe if (Uart.parityBits & 0x01) { correctionNeeded = TRUE; } - if(correctionNeeded) { - // 1236, so correction bit needed - i = 0; - } else { - i = 1; - } + // 1236, so correction bit needed + i = (correctionNeeded) ? 0 : 1; // clear receiving shift register and holding register while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); @@ -1630,7 +1644,7 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe b = AT91C_BASE_SSC->SSC_RHR; (void) b; // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line) - for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never + for (uint8_t j = 0; j < 5; j++) { // allow timeout - better late than never while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); if (AT91C_BASE_SSC->SSC_RHR) break; } @@ -1659,9 +1673,7 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe i++; } } - LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0); - return 0; } @@ -1745,8 +1757,7 @@ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_Start // If a response is captured return TRUE // If it takes too long return FALSE //----------------------------------------------------------------------------- -static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) -{ +static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) { uint32_t c = 0x00; // Set FPGA mode to "reader listen mode", no modulation (listen @@ -1776,55 +1787,45 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive } } -void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) -{ +void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) { + CodeIso14443aBitsAsReaderPar(frame, bits, par); - // Send command to tag TransmitFor14443a(ToSend, ToSendMax, timing); - if(trigger) - LED_A_ON(); + if(trigger) LED_A_ON(); - // Log reader command in trace buffer - //LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); LogTrace(frame, nbytes(bits), (LastTimeProxToAirStart<<4) + DELAY_ARM2AIR_AS_READER, ((LastTimeProxToAirStart + LastProxToAirDuration)<<4) + DELAY_ARM2AIR_AS_READER, par, TRUE); } -void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) -{ +void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) { ReaderTransmitBitsPar(frame, len*8, par, timing); } -void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) -{ - // Generate parity and redirect - uint8_t par[MAX_PARITY_SIZE] = {0x00}; - GetParity(frame, len/8, par); - ReaderTransmitBitsPar(frame, len, par, timing); +void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) { + // Generate parity and redirect + uint8_t par[MAX_PARITY_SIZE] = {0x00}; + GetParity(frame, len/8, par); + ReaderTransmitBitsPar(frame, len, par, timing); } -void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) -{ - // Generate parity and redirect - uint8_t par[MAX_PARITY_SIZE] = {0x00}; - GetParity(frame, len, par); - ReaderTransmitBitsPar(frame, len*8, par, timing); +void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) { + // Generate parity and redirect + uint8_t par[MAX_PARITY_SIZE] = {0x00}; + GetParity(frame, len, par); + ReaderTransmitBitsPar(frame, len*8, par, timing); } -int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) -{ - if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE; - //if (tracing) { - LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); - //} +int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) { + if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) + return FALSE; + LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); return Demod.len; } int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) { - if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE; - //if (tracing) { + if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) + return FALSE; LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); - //} return Demod.len; } @@ -1834,10 +1835,10 @@ int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) { // if anticollision is false, then the UID must be provided in uid_ptr[] // and num_cascades must be set (1: 4 Byte UID, 2: 7 Byte UID, 3: 10 Byte UID) int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr, bool anticollision, uint8_t num_cascades) { - uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP - uint8_t sel_all[] = { 0x93,0x20 }; - uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; - uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 + uint8_t wupa[] = { ISO14443A_CMD_WUPA }; // 0x26 - ISO14443A_CMD_REQA 0x52 - ISO14443A_CMD_WUPA + uint8_t sel_all[] = { ISO14443A_CMD_ANTICOLL_OR_SELECT,0x20 }; + uint8_t sel_uid[] = { ISO14443A_CMD_ANTICOLL_OR_SELECT,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; + uint8_t rats[] = { ISO14443A_CMD_RATS,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 uint8_t resp[MAX_FRAME_SIZE] = {0}; // theoretically. A usual RATS will be much smaller uint8_t resp_par[MAX_PARITY_SIZE] = {0}; byte_t uid_resp[4] = {0}; @@ -1865,6 +1866,9 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u memset(uid_ptr,0,10); } + // reset the PCB block number + iso14_pcb_blocknum = 0; + // check for proprietary anticollision: if ((resp[0] & 0x1F) == 0) return 3; @@ -1976,41 +1980,37 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u p_hi14a_card->ats_len = len; } - // reset the PCB block number - iso14_pcb_blocknum = 0; - // set default timeout based on ATS iso14a_set_ATS_timeout(resp); - return 1; } void iso14443a_setup(uint8_t fpga_minor_mode) { + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // Set up the synchronous serial port FpgaSetupSsc(); // connect Demodulated Signal to ADC: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); - LED_D_OFF(); // Signal field is on with the appropriate LED if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) LED_D_ON(); - // Prepare the demodulation functions - DemodReset(); - UartReset(); - - iso14a_set_timeout(10*106); // 10ms default + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); - //NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER; - NextTransferTime = DELAY_ARM2AIR_AS_READER << 1; + SpinDelay(20); // Start the timer StartCountSspClk(); + + // Prepare the demodulation functions + DemodReset(); + UartReset(); + NextTransferTime = 2 * DELAY_ARM2AIR_AS_READER; + iso14a_set_timeout(10*106); // 20ms default } int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { @@ -2043,9 +2043,9 @@ int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { return len; } + //----------------------------------------------------------------------------- // Read an ISO 14443a tag. Send out commands and store answers. -// //----------------------------------------------------------------------------- void ReaderIso14443a(UsbCommand *c) { iso14a_command_t param = c->arg[0]; @@ -2134,7 +2134,6 @@ void ReaderIso14443a(UsbCommand *c) { LEDsoff(); } - // Determine the distance between two nonces. // Assume that the difference is small, but we don't know which is first. // Therefore try in alternating directions. @@ -2142,32 +2141,43 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) { if (nt1 == nt2) return 0; - uint16_t i; uint32_t nttmp1 = nt1; uint32_t nttmp2 = nt2; - for (i = 1; i < 32768; ++i) { - nttmp1 = prng_successor(nttmp1, 1); - if (nttmp1 == nt2) return i; - nttmp2 = prng_successor(nttmp2, 1); - if (nttmp2 == nt1) return -i; - } + // 0xFFFF -- Half up and half down to find distance between nonces + for (uint16_t i = 1; i < 32768/8; i += 8) { + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i; + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+1; + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+2; + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+3; + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+4; + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+5; + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+6; + nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+7; + + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -i; + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+1); + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+2); + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+3); + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+4); + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+5); + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+6); + nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+7); + } // either nt1 or nt2 are invalid nonces return(-99999); } - //----------------------------------------------------------------------------- // Recover several bits of the cypher stream. This implements (first stages of) // the algorithm described in "The Dark Side of Security by Obscurity and // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime" // (article by Nicolas T. Courtois, 2009) //----------------------------------------------------------------------------- -void ReaderMifare(bool first_try, uint8_t block ) { - // Mifare AUTH - //uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; - //uint8_t mf_auth[] = { 0x60,0x05, 0x58, 0x2c }; - uint8_t mf_auth[] = { MIFARE_AUTH_KEYA, block, 0x00, 0x00 }; + +void ReaderMifare(bool first_try, uint8_t block, uint8_t keytype ) { + + uint8_t mf_auth[] = { keytype, block, 0x00, 0x00 }; uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0}; uint8_t par_list[8] = {0,0,0,0,0,0,0,0}; @@ -2190,7 +2200,7 @@ void ReaderMifare(bool first_try, uint8_t block ) { uint16_t unexpected_random = 0; uint16_t sync_tries = 0; - // static variables here, is re-used in the next call? + // static variables here, is re-used in the next call static uint32_t nt_attacked = 0; static uint32_t sync_time = 0; static uint32_t sync_cycles = 0; @@ -2200,23 +2210,23 @@ void ReaderMifare(bool first_try, uint8_t block ) { #define PRNG_SEQUENCE_LENGTH (1 << 16) #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up. #define MAX_SYNC_TRIES 32 - #define MAX_STRATEGY 3 - + + AppendCrc14443a(mf_auth, 2); + BigBuf_free(); BigBuf_Clear_ext(false); clear_trace(); - set_tracing(TRUE); + set_tracing(FALSE); iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); - AppendCrc14443a(mf_auth, 2); + sync_time = GetCountSspClk() & 0xfffffff8; + sync_cycles = PRNG_SEQUENCE_LENGTH; // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). + nt_attacked = 0; - if (first_try) { - sync_time = GetCountSspClk() & 0xfffffff8; - sync_cycles = PRNG_SEQUENCE_LENGTH + 1130; //65536; //0x10000 // Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). - mf_nr_ar3 = 0; - nt_attacked = 0; + if (MF_DBGLEVEL >= 4) Dbprintf("Mifare::Sync %u", sync_time); + + if (first_try) { + mf_nr_ar3 = 0; par_low = 0; - - Dbprintf("FIRST: sync_time - %08X", sync_time); } else { // we were unsuccessful on a previous call. // Try another READER nonce (first 3 parity bits remain the same) @@ -2284,9 +2294,9 @@ void ReaderMifare(bool first_try, uint8_t block ) { // Transmit reader nonce with fake par ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); - WDT_HIT(); - LED_B_ON(); - if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet + // we didn't calibrate our clock yet, + // iceman: has to be calibrated every time. + if (previous_nt && !nt_attacked) { nt_distance = dist_nt(previous_nt, nt); @@ -2325,7 +2335,7 @@ void ReaderMifare(bool first_try, uint8_t block ) { } LED_B_OFF(); - if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... + if ( (nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... catch_up_cycles = ABS(dist_nt(nt_attacked, nt)); if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one. @@ -2398,7 +2408,7 @@ void ReaderMifare(bool first_try, uint8_t block ) { mf_nr_ar[3] &= 0x1F; - if (MF_DBGLEVEL >= 1) Dbprintf("\nNumber of sent auth requestes: %u", i); + if (MF_DBGLEVEL >= 4) Dbprintf("Number of sent auth requestes: %u", i); uint8_t buf[28] = {0x00}; memset(buf, 0x00, sizeof(buf)); @@ -2415,127 +2425,176 @@ void ReaderMifare(bool first_try, uint8_t block ) { set_tracing(FALSE); } + /** *MIFARE 1K simulate. * *@param flags : - * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK - * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that - * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that - * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later + * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK + * FLAG_4B_UID_IN_DATA - use 4-byte UID in the data-section + * FLAG_7B_UID_IN_DATA - use 7-byte UID in the data-section + * FLAG_10B_UID_IN_DATA - use 10-byte UID in the data-section + * FLAG_UID_IN_EMUL - use 4-byte UID from emulator memory + * FLAG_NR_AR_ATTACK - collect NR_AR responses for bruteforcing later *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite */ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) { int cardSTATE = MFEMUL_NOFIELD; - int _7BUID = 0; + int _UID_LEN = 0; // 4, 7, 10 int vHf = 0; // in mV - int res; + int res = 0; uint32_t selTimer = 0; uint32_t authTimer = 0; uint16_t len = 0; uint8_t cardWRBL = 0; uint8_t cardAUTHSC = 0; uint8_t cardAUTHKEY = 0xff; // no authentication -// uint32_t cardRr = 0; uint32_t cuid = 0; - //uint32_t rn_enc = 0; uint32_t ans = 0; uint32_t cardINTREG = 0; uint8_t cardINTBLOCK = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; - uint32_t numReads = 0;//Counts numer of times reader read a block + uint32_t numReads = 0; // Counts numer of times reader read a block uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00}; uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00}; - uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID - uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; - uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!! - uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; // Mifare Classic - //uint8_t rSAK[] = {0x09, 0x3f, 0xcc }; // Mifare Mini - uint8_t rSAK1[] = {0x04, 0xda, 0x17}; + uint8_t atqa[] = {0x04, 0x00}; // Mifare classic 1k + uint8_t sak_4[] = {0x0C, 0x00, 0x00}; // CL1 - 4b uid + uint8_t sak_7[] = {0x0C, 0x00, 0x00}; // CL2 - 7b uid + uint8_t sak_10[] = {0x0C, 0x00, 0x00}; // CL3 - 10b uid + // uint8_t sak[] = {0x09, 0x3f, 0xcc }; // Mifare Mini + + uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; + uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; + uint8_t rUIDBCC3[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; - //uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01}; - uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92}; + uint8_t rAUTH_NT[] = {0x01, 0x01, 0x01, 0x01}; // very random nonce + // uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this? uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; - //Here, we collect UID1,UID2,NT,AR,NR,0,0,NT2,AR2,NR2 + // Here, we collect CUID, NT, NR, AR, CUID2, NT2, NR2, AR2 // This can be used in a reader-only attack. - // (it can also be retrieved via 'hf 14a list', but hey... - uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0}; - uint8_t ar_nr_collected = 0; + nonces_t ar_nr_resp[ATTACK_KEY_COUNT*2]; // for 2 separate attack types (nml, moebius) + memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp)); + + uint8_t ar_nr_collected[ATTACK_KEY_COUNT*2]; // for 2nd attack type (moebius) + memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected)); + uint8_t nonce1_count = 0; + uint8_t nonce2_count = 0; + uint8_t moebius_n_count = 0; + bool gettingMoebius = false; + uint8_t mM = 0; // moebius_modifier for collection storage + bool doBufResetNext = false; // Authenticate response - nonce uint32_t nonce = bytes_to_num(rAUTH_NT, 4); - //-- Determine the UID - // Can be set from emulator memory, incoming data - // and can be 7 or 4 bytes long - if (flags & FLAG_4B_UID_IN_DATA) - { - // 4B uid comes from data-portion of packet - memcpy(rUIDBCC1,datain,4); - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - - } else if (flags & FLAG_7B_UID_IN_DATA) { - // 7B uid comes from data-portion of packet - memcpy(&rUIDBCC1[1],datain,3); - memcpy(rUIDBCC2, datain+3, 4); - _7BUID = true; - } else { - // get UID from emul memory - emlGetMemBt(receivedCmd, 7, 1); - _7BUID = !(receivedCmd[0] == 0x00); - if (!_7BUID) { // ---------- 4BUID - emlGetMemBt(rUIDBCC1, 0, 4); - } else { // ---------- 7BUID - emlGetMemBt(&rUIDBCC1[1], 0, 3); - emlGetMemBt(rUIDBCC2, 3, 4); - } - } - - // save uid. - ar_nr_responses[0*5] = bytes_to_num(rUIDBCC1+1, 3); - if ( _7BUID ) - ar_nr_responses[0*5+1] = bytes_to_num(rUIDBCC2, 4); - - /* - * Regardless of what method was used to set the UID, set fifth byte and modify - * the ATQA for 4 or 7-byte UID - */ - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - if (_7BUID) { - rATQA[0] = 0x44; - rUIDBCC1[0] = 0x88; - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; + // -- Determine the UID + // Can be set from emulator memory or incoming data + // Length: 4,7,or 10 bytes + if ( (flags & FLAG_UID_IN_EMUL) == FLAG_UID_IN_EMUL) + emlGetMemBt(datain, 0, 10); // load 10bytes from EMUL to the datain pointer. to be used below. + + if ( (flags & FLAG_4B_UID_IN_DATA) == FLAG_4B_UID_IN_DATA) { + memcpy(rUIDBCC1, datain, 4); + _UID_LEN = 4; + } else if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) { + memcpy(&rUIDBCC1[1], datain, 3); + memcpy( rUIDBCC2, datain+3, 4); + _UID_LEN = 7; + } else if ( (flags & FLAG_10B_UID_IN_DATA) == FLAG_10B_UID_IN_DATA) { + memcpy(&rUIDBCC1[1], datain, 3); + memcpy(&rUIDBCC2[1], datain+3, 3); + memcpy( rUIDBCC3, datain+6, 4); + _UID_LEN = 10; } - if (MF_DBGLEVEL >= 1) { - if (!_7BUID) { - Dbprintf("4B UID: %02x%02x%02x%02x", - rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]); - } else { - Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x", - rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], - rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]); - } + switch (_UID_LEN) { + case 4: + sak_4[0] &= 0xFB; + // save CUID + cuid = bytes_to_num(rUIDBCC1, 4); + // BCC + rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; + if (MF_DBGLEVEL >= 2) { + Dbprintf("4B UID: %02x%02x%02x%02x", + rUIDBCC1[0], + rUIDBCC1[1], + rUIDBCC1[2], + rUIDBCC1[3] + ); + } + break; + case 7: + atqa[0] |= 0x40; + sak_7[0] &= 0xFB; + // save CUID + cuid = bytes_to_num(rUIDBCC2, 4); + // CascadeTag, CT + rUIDBCC1[0] = 0x88; + // BCC + rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; + rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; + if (MF_DBGLEVEL >= 2) { + Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x", + rUIDBCC1[1], + rUIDBCC1[2], + rUIDBCC1[3], + rUIDBCC2[0], + rUIDBCC2[1], + rUIDBCC2[2], + rUIDBCC2[3] + ); + } + break; + case 10: + atqa[0] |= 0x80; + sak_10[0] &= 0xFB; + // save CUID + cuid = bytes_to_num(rUIDBCC3, 4); + // CascadeTag, CT + rUIDBCC1[0] = 0x88; + rUIDBCC2[0] = 0x88; + // BCC + rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; + rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; + rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3]; + + if (MF_DBGLEVEL >= 2) { + Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", + rUIDBCC1[1], + rUIDBCC1[2], + rUIDBCC1[3], + rUIDBCC2[1], + rUIDBCC2[2], + rUIDBCC2[3], + rUIDBCC3[0], + rUIDBCC3[1], + rUIDBCC3[2], + rUIDBCC3[3] + ); + } + break; + default: + break; } - + // calc some crcs + ComputeCrc14443(CRC_14443_A, sak_4, 1, &sak_4[1], &sak_4[2]); + ComputeCrc14443(CRC_14443_A, sak_7, 1, &sak_7[1], &sak_7[2]); + ComputeCrc14443(CRC_14443_A, sak_10, 1, &sak_10[1], &sak_10[2]); + // We need to listen to the high-frequency, peak-detected path. iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); // free eventually allocated BigBuf memory but keep Emulator Memory BigBuf_free_keep_EM(); - - // clear trace clear_trace(); set_tracing(TRUE); - bool finished = FALSE; while (!BUTTON_PRESS() && !finished && !usb_poll_validate_length()) { WDT_HIT(); @@ -2548,29 +2607,28 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * LED_A_ON(); } } - if(cardSTATE == MFEMUL_NOFIELD) continue; + if (cardSTATE == MFEMUL_NOFIELD) continue; - //Now, get data + // Now, get data res = EmGetCmd(receivedCmd, &len, receivedCmd_par); if (res == 2) { //Field is off! cardSTATE = MFEMUL_NOFIELD; LEDsoff(); continue; } else if (res == 1) { - break; //return value 1 means button press + break; // return value 1 means button press } // REQ or WUP request in ANY state and WUP in HALTED state - if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) { + // this if-statement doesn't match the specification above. (iceman) + if (len == 1 && ((receivedCmd[0] == ISO14443A_CMD_REQA && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == ISO14443A_CMD_WUPA)) { selTimer = GetTickCount(); - EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52)); + EmSendCmdEx(atqa, sizeof(atqa), (receivedCmd[0] == ISO14443A_CMD_WUPA)); cardSTATE = MFEMUL_SELECT1; - - // init crypto block - LED_B_OFF(); - LED_C_OFF(); crypto1_destroy(pcs); cardAUTHKEY = 0xff; + LEDsoff(); + nonce++; continue; } @@ -2582,160 +2640,258 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } case MFEMUL_SELECT1:{ - // select all - if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) { + if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && receivedCmd[1] == 0x20)) { if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received"); EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1)); break; } - - if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 ) - { - Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]); - } // select card if (len == 9 && - (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { - EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK)); - cuid = bytes_to_num(rUIDBCC1, 4); - if (!_7BUID) { - cardSTATE = MFEMUL_WORK; - LED_B_ON(); - if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); - break; - } else { - cardSTATE = MFEMUL_SELECT2; + ( receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && + receivedCmd[1] == 0x70 && + memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { + + // SAK 4b + EmSendCmd(sak_4, sizeof(sak_4)); + switch(_UID_LEN){ + case 4: + cardSTATE = MFEMUL_WORK; + LED_B_ON(); + if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); + continue; + case 7: + case 10: + cardSTATE = MFEMUL_SELECT2; + continue; + default:break; } + } else { + cardSTATE_TO_IDLE(); } break; } - case MFEMUL_AUTH1:{ - if( len != 8) { - cardSTATE_TO_IDLE(); + case MFEMUL_SELECT2:{ + if (!len) { LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } - - uint32_t ar = bytes_to_num(receivedCmd, 4); - uint32_t nr = bytes_to_num(&receivedCmd[4], 4); - - //Collect AR/NR - //if(ar_nr_collected < 2 && cardAUTHSC == 2){ - if(ar_nr_collected < 2) { - if(ar_nr_responses[2] != ar) { - // Avoid duplicates... probably not necessary, ar should vary. - //ar_nr_responses[ar_nr_collected*5] = 0; - //ar_nr_responses[ar_nr_collected*5+1] = 0; - ar_nr_responses[ar_nr_collected*5+2] = nonce; - ar_nr_responses[ar_nr_collected*5+3] = nr; - ar_nr_responses[ar_nr_collected*5+4] = ar; - ar_nr_collected++; - } - // Interactive mode flag, means we need to send ACK - if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2) - finished = true; - } - - // --- crypto - //crypto1_word(pcs, ar , 1); - //cardRr = nr ^ crypto1_word(pcs, 0, 0); - - //test if auth OK - //if (cardRr != prng_successor(nonce, 64)){ - - //if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", - // cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', - // cardRr, prng_successor(nonce, 64)); - // Shouldn't we respond anything here? - // Right now, we don't nack or anything, which causes the - // reader to do a WUPA after a while. /Martin - // -- which is the correct response. /piwi - //cardSTATE_TO_IDLE(); - //LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); - //break; - //} - - ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); - - num_to_bytes(ans, 4, rAUTH_AT); - // --- crypto - EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); - LED_C_ON(); - cardSTATE = MFEMUL_WORK; - if (MF_DBGLEVEL >= 4) { - Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", - cardAUTHSC, - cardAUTHKEY == 0 ? 'A' : 'B', - GetTickCount() - authTimer - ); + if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && receivedCmd[1] == 0x20)) { + EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); + break; } + if (len == 9 && + (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && + receivedCmd[1] == 0x70 && + memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0) ) { + + EmSendCmd(sak_7, sizeof(sak_7)); + switch(_UID_LEN){ + case 7: + cardSTATE = MFEMUL_WORK; + LED_B_ON(); + if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); + continue; + case 10: + cardSTATE = MFEMUL_SELECT3; + continue; + default:break; + } + } + cardSTATE_TO_IDLE(); break; } - case MFEMUL_SELECT2:{ + case MFEMUL_SELECT3:{ if (!len) { LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } - if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) { - EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); + if (len == 2 && (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x20)) { + EmSendCmd(rUIDBCC3, sizeof(rUIDBCC3)); break; } - - // select 2 card if (len == 9 && - (receivedCmd[0] == 0x95 && + (receivedCmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && receivedCmd[1] == 0x70 && - memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0) ) { - EmSendCmd(rSAK, sizeof(rSAK)); - cuid = bytes_to_num(rUIDBCC2, 4); + memcmp(&receivedCmd[2], rUIDBCC3, 4) == 0) ) { + + EmSendCmd(sak_10, sizeof(sak_10)); cardSTATE = MFEMUL_WORK; LED_B_ON(); - if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); + if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer); break; } + cardSTATE_TO_IDLE(); + break; + } + case MFEMUL_AUTH1:{ + if( len != 8) { + cardSTATE_TO_IDLE(); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); + break; + } + + uint32_t nr = bytes_to_num(receivedCmd, 4); + uint32_t ar = bytes_to_num(&receivedCmd[4], 4); + + if (doBufResetNext) { + // Reset, lets try again! + Dbprintf("Re-read after previous NR_AR_ATTACK, resetting buffer"); + memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp)); + memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected)); + mM = 0; + doBufResetNext = false; + } + + for (uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { + if ( ar_nr_collected[i+mM]==0 || ((cardAUTHSC == ar_nr_resp[i+mM].sector) && (cardAUTHKEY == ar_nr_resp[i+mM].keytype) && (ar_nr_collected[i+mM] > 0)) ) { + + // if first auth for sector, or matches sector and keytype of previous auth + if (ar_nr_collected[i+mM] < 2) { + // if we haven't already collected 2 nonces for this sector + if (ar_nr_resp[ar_nr_collected[i+mM]].ar != ar) { + // Avoid duplicates... probably not necessary, ar should vary. + if (ar_nr_collected[i+mM]==0) { + // first nonce collect + ar_nr_resp[i+mM].cuid = cuid; + ar_nr_resp[i+mM].sector = cardAUTHSC; + ar_nr_resp[i+mM].keytype = cardAUTHKEY; + ar_nr_resp[i+mM].nonce = nonce; + ar_nr_resp[i+mM].nr = nr; + ar_nr_resp[i+mM].ar = ar; + nonce1_count++; + // add this nonce to first moebius nonce + ar_nr_resp[i+ATTACK_KEY_COUNT].cuid = cuid; + ar_nr_resp[i+ATTACK_KEY_COUNT].sector = cardAUTHSC; + ar_nr_resp[i+ATTACK_KEY_COUNT].keytype = cardAUTHKEY; + ar_nr_resp[i+ATTACK_KEY_COUNT].nonce = nonce; + ar_nr_resp[i+ATTACK_KEY_COUNT].nr = nr; + ar_nr_resp[i+ATTACK_KEY_COUNT].ar = ar; + ar_nr_collected[i+ATTACK_KEY_COUNT]++; + } else { // second nonce collect (std and moebius) + ar_nr_resp[i+mM].nonce2 = nonce; + ar_nr_resp[i+mM].nr2 = nr; + ar_nr_resp[i+mM].ar2 = ar; + if (!gettingMoebius) { + nonce2_count++; + // check if this was the last second nonce we need for std attack + if ( nonce2_count == nonce1_count ) { + // done collecting std test switch to moebius + // first finish incrementing last sample + ar_nr_collected[i+mM]++; + // switch to moebius collection + gettingMoebius = true; + mM = ATTACK_KEY_COUNT; + break; + } + } else { + moebius_n_count++; + // if we've collected all the nonces we need - finish. + + if (nonce1_count == moebius_n_count) { + cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_resp,sizeof(ar_nr_resp)); + nonce1_count = 0; + nonce2_count = 0; + moebius_n_count = 0; + gettingMoebius = false; + doBufResetNext = true; + finished = ( ((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE)); + } + } + } + ar_nr_collected[i+mM]++; + } + } + // we found right spot for this nonce stop looking + break; + } + } + + + /* + // Collect AR/NR + // if(ar_nr_collected < 2 && cardAUTHSC == 2){ + if(ar_nr_collected < 2) { + // if(ar_nr_responses[2] != nr) { + ar_nr_responses[ar_nr_collected*4] = cuid; + ar_nr_responses[ar_nr_collected*4+1] = nonce; + ar_nr_responses[ar_nr_collected*4+2] = nr; + ar_nr_responses[ar_nr_collected*4+3] = ar; + ar_nr_collected++; + // } + + // Interactive mode flag, means we need to send ACK + finished = ( ((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE)&& ar_nr_collected == 2); + } - // i guess there is a command). go into the work state. - if (len != 4) { + crypto1_word(pcs, ar , 1); + cardRr = nr ^ crypto1_word(pcs, 0, 0); + + test if auth OK + if (cardRr != prng_successor(nonce, 64)){ + + if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", + cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', + cardRr, prng_successor(nonce, 64)); + Shouldn't we respond anything here? + Right now, we don't nack or anything, which causes the + reader to do a WUPA after a while. /Martin + -- which is the correct response. /piwi + cardSTATE_TO_IDLE(); LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } + */ + + ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); + num_to_bytes(ans, 4, rAUTH_AT); + EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); + LED_C_ON(); + + if (MF_DBGLEVEL >= 4) { + Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", + cardAUTHSC, + cardAUTHKEY == 0 ? 'A' : 'B', + GetTickCount() - authTimer + ); + } cardSTATE = MFEMUL_WORK; - //goto lbWORK; - //intentional fall-through to the next case-stmt + break; } - case MFEMUL_WORK:{ if (len == 0) { LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; - } - + } bool encrypted_data = (cardAUTHKEY != 0xFF) ; - // decrypt seqence if(encrypted_data) mf_crypto1_decrypt(pcs, receivedCmd, len); - if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { + if (len == 4 && (receivedCmd[0] == MIFARE_AUTH_KEYA || + receivedCmd[0] == MIFARE_AUTH_KEYB) ) { + authTimer = GetTickCount(); cardAUTHSC = receivedCmd[1] / 4; // received block num - cardAUTHKEY = receivedCmd[0] - 0x60; - crypto1_destroy(pcs);//Added by martin + cardAUTHKEY = receivedCmd[0] - 0x60; // & 1 + crypto1_destroy(pcs); crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); - if (!encrypted_data) { // first authentication + if (!encrypted_data) { + // first authentication + crypto1_word(pcs, cuid ^ nonce, 0);// Update crypto state + num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce + if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); - crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state - num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce - } else { // nested authentication - if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); + } else { + // nested authentication ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); num_to_bytes(ans, 4, rAUTH_AT); + + if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); } EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); - //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]); cardSTATE = MFEMUL_AUTH1; break; } @@ -2758,12 +2914,13 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } - if(receivedCmd[0] == 0x30 // read block - || receivedCmd[0] == 0xA0 // write block - || receivedCmd[0] == 0xC0 // inc - || receivedCmd[0] == 0xC1 // dec - || receivedCmd[0] == 0xC2 // restore - || receivedCmd[0] == 0xB0) { // transfer + if ( receivedCmd[0] == ISO14443A_CMD_READBLOCK || + receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK || + receivedCmd[0] == MIFARE_CMD_INC || + receivedCmd[0] == MIFARE_CMD_DEC || + receivedCmd[0] == MIFARE_CMD_RESTORE || + receivedCmd[0] == MIFARE_CMD_TRANSFER ) { + if (receivedCmd[1] >= 16 * 4) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); @@ -2777,8 +2934,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } } // read block - if (receivedCmd[0] == 0x30) { - if (MF_DBGLEVEL >= 4) Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]); + if (receivedCmd[0] == ISO14443A_CMD_READBLOCK) { + if (MF_DBGLEVEL >= 4) Dbprintf("Reader reading block %d (0x%02x)", receivedCmd[1], receivedCmd[1]); emlGetMem(response, receivedCmd[1], 1); AppendCrc14443a(response, 16); @@ -2792,34 +2949,35 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } // write block - if (receivedCmd[0] == 0xA0) { - if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]); + if (receivedCmd[0] == ISO14443A_CMD_WRITEBLOCK) { + if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)", receivedCmd[1], receivedCmd[1]); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); cardSTATE = MFEMUL_WRITEBL2; cardWRBL = receivedCmd[1]; break; } // increment, decrement, restore - if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) { - if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); + if ( receivedCmd[0] == MIFARE_CMD_INC || + receivedCmd[0] == MIFARE_CMD_DEC || + receivedCmd[0] == MIFARE_CMD_RESTORE) { + + if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0], receivedCmd[1], receivedCmd[1]); + if (emlCheckValBl(receivedCmd[1])) { if (MF_DBGLEVEL >= 4) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); break; } EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - if (receivedCmd[0] == 0xC1) - cardSTATE = MFEMUL_INTREG_INC; - if (receivedCmd[0] == 0xC0) - cardSTATE = MFEMUL_INTREG_DEC; - if (receivedCmd[0] == 0xC2) - cardSTATE = MFEMUL_INTREG_REST; + if (receivedCmd[0] == MIFARE_CMD_INC) cardSTATE = MFEMUL_INTREG_INC; + if (receivedCmd[0] == MIFARE_CMD_DEC) cardSTATE = MFEMUL_INTREG_DEC; + if (receivedCmd[0] == MIFARE_CMD_RESTORE) cardSTATE = MFEMUL_INTREG_REST; cardWRBL = receivedCmd[1]; break; } // transfer - if (receivedCmd[0] == 0xB0) { - if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); + if (receivedCmd[0] == MIFARE_CMD_TRANSFER) { + if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)", receivedCmd[0], receivedCmd[1], receivedCmd[1]); if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); else @@ -2827,7 +2985,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } // halt - if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) { + if (receivedCmd[0] == ISO14443A_CMD_HALT && receivedCmd[1] == 0x00) { LED_B_OFF(); LED_C_OFF(); cardSTATE = MFEMUL_HALTED; @@ -2836,7 +2994,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } // RATS - if (receivedCmd[0] == 0xe0) {//RATS + if (receivedCmd[0] == ISO14443A_CMD_RATS) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); break; } @@ -2857,7 +3015,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } break; } - case MFEMUL_INTREG_INC:{ mf_crypto1_decrypt(pcs, receivedCmd, len); memcpy(&ans, receivedCmd, 4); @@ -2900,48 +3057,46 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } // Interactive mode flag, means we need to send ACK - if(flags & FLAG_INTERACTIVE) { - //May just aswell send the collected ar_nr in the response aswell - uint8_t len = ar_nr_collected*5*4; + /* + if((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE) { + // May just aswell send the collected ar_nr in the response aswell + uint8_t len = ar_nr_collected * 4 * 4; cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len); } - - if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) { - if(ar_nr_collected > 1 ) { - Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); - Dbprintf("../tools/mfkey/mfkey32 %06x%08x %08x %08x %08x %08x %08x", - ar_nr_responses[0], // UID1 - ar_nr_responses[1], // UID2 - ar_nr_responses[2], // NT - ar_nr_responses[3], // AR1 - ar_nr_responses[4], // NR1 - ar_nr_responses[8], // AR2 - ar_nr_responses[9] // NR2 - ); - Dbprintf("../tools/mfkey/mfkey32v2 %06x%08x %08x %08x %08x %08x %08x %08x", - ar_nr_responses[0], // UID1 - ar_nr_responses[1], // UID2 - ar_nr_responses[2], // NT1 - ar_nr_responses[3], // AR1 - ar_nr_responses[4], // NR1 - ar_nr_responses[7], // NT2 - ar_nr_responses[8], // AR2 - ar_nr_responses[9] // NR2 - ); - } else { - Dbprintf("Failed to obtain two AR/NR pairs!"); - if(ar_nr_collected > 0 ) { - Dbprintf("Only got these: UID=%06x%08x, nonce=%08x, AR1=%08x, NR1=%08x", - ar_nr_responses[0], // UID1 - ar_nr_responses[1], // UID2 - ar_nr_responses[2], // NT - ar_nr_responses[3], // AR1 - ar_nr_responses[4] // NR1 + + */ + if( ((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) && MF_DBGLEVEL >= 1 ) { + for ( uint8_t i = 0; i < ATTACK_KEY_COUNT; i++) { + if (ar_nr_collected[i] == 2) { + Dbprintf("Collected two pairs of AR/NR which can be used to extract %s from reader for sector %d:", (i= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen()); + + + if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen()); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); @@ -2952,11 +3107,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * //----------------------------------------------------------------------------- // MIFARE sniffer. // +// if no activity for 2sec, it sends the collected data to the client. //----------------------------------------------------------------------------- +// "hf mf sniff" void RAMFUNC SniffMifare(uint8_t param) { - // param: - // bit 0 - trigger from first card answer - // bit 1 - trigger from first reader 7-bit request + LEDsoff(); // free eventually allocated BigBuf memory @@ -2975,6 +3130,7 @@ void RAMFUNC SniffMifare(uint8_t param) { iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); // allocate the DMA buffer, used to stream samples from the FPGA + // [iceman] is this sniffed data unsigned? uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); uint8_t *data = dmaBuf; uint8_t previous_data = 0; @@ -2989,16 +3145,19 @@ void RAMFUNC SniffMifare(uint8_t param) { // Set up the demodulator for the reader -> tag commands UartInit(receivedCmd, receivedCmdPar); - // Setup for the DMA. - FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. + // Setup and start DMA. + // set transfer address and number of bytes. Start transfer. + if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){ + if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); + return; + } LED_D_OFF(); - - // init sniffer + MfSniffInit(); // And now we loop, receiving samples. - for(uint32_t sniffCounter = 0; TRUE; ) { + for(uint32_t sniffCounter = 0;; ) { LED_A_ON(); WDT_HIT(); @@ -3018,7 +3177,11 @@ void RAMFUNC SniffMifare(uint8_t param) { maxDataLen = 0; ReaderIsActive = FALSE; TagIsActive = FALSE; - FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. + // Setup and start DMA. set transfer address and number of bytes. Start transfer. + if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, DMA_BUFFER_SIZE) ){ + if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting"); + return; + } } } @@ -3093,10 +3256,11 @@ void RAMFUNC SniffMifare(uint8_t param) { data = dmaBuf; } // main cycle - + + if (MF_DBGLEVEL >= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); + FpgaDisableSscDma(); MfSniffEnd(); - Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(FALSE);