X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/94ad01bfba1c29747f9c42942bbec6b834695ef2..deb965b54df637e3170ef365ea7d87443bd72bee:/armsrc/iclass.c diff --git a/armsrc/iclass.c b/armsrc/iclass.c index 7289abbc..5d7375a7 100644 --- a/armsrc/iclass.c +++ b/armsrc/iclass.c @@ -12,7 +12,7 @@ //----------------------------------------------------------------------------- // Based on ISO14443a implementation. Still in experimental phase. // Contribution made during a security research at Radboud University Nijmegen -// +// // Please feel free to contribute and extend iClass support!! //----------------------------------------------------------------------------- // @@ -21,7 +21,7 @@ // We still have sometimes a demodulation error when snooping iClass communication. // The resulting trace of a read-block-03 command may look something like this: // -// + 22279: : 0c 03 e8 01 +// + 22279: : 0c 03 e8 01 // // ...with an incorrect answer... // @@ -31,224 +31,203 @@ // // A correct trace should look like this: // -// + 21112: : 0c 03 e8 01 -// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 +// + 21112: : 0c 03 e8 01 +// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 // //----------------------------------------------------------------------------- +#include "iclass.h" + #include "proxmark3.h" #include "apps.h" #include "util.h" #include "string.h" #include "common.h" +#include "cmd.h" +#include "iso14443a.h" // Needed for CRC in emulation mode; // same construction as in ISO 14443; // different initial value (CRC_ICLASS) #include "iso14443crc.h" +#include "iso15693tools.h" +#include "protocols.h" +#include "optimized_cipher.h" +#include "usb_cdc.h" // for usb_poll_validate_length +#include "fpgaloader.h" static int timeout = 4096; - -static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); - //----------------------------------------------------------------------------- // The software UART that receives commands from the reader, and its state // variables. //----------------------------------------------------------------------------- static struct { - enum { - STATE_UNSYNCD, - STATE_START_OF_COMMUNICATION, - STATE_RECEIVING - } state; - uint16_t shiftReg; - int bitCnt; - int byteCnt; - int byteCntMax; - int posCnt; - int nOutOfCnt; - int OutOfCnt; - int syncBit; - int parityBits; - int samples; - int highCnt; - int swapper; - int counter; - int bitBuffer; - int dropPosition; - uint8_t *output; + enum { + STATE_UNSYNCD, + STATE_START_OF_COMMUNICATION, + STATE_RECEIVING + } state; + uint16_t shiftReg; + int bitCnt; + int byteCnt; + int byteCntMax; + int posCnt; + int nOutOfCnt; + int OutOfCnt; + int syncBit; + int samples; + int highCnt; + int swapper; + int counter; + int bitBuffer; + int dropPosition; + uint8_t *output; } Uart; -static RAMFUNC int OutOfNDecoding(int bit) -{ +static RAMFUNC int OutOfNDecoding(int bit) { //int error = 0; int bitright; - if(!Uart.bitBuffer) { + if (!Uart.bitBuffer) { Uart.bitBuffer = bit ^ 0xFF0; - return FALSE; - } - else { + return false; + } else { Uart.bitBuffer <<= 4; Uart.bitBuffer ^= bit; } - - /*if(Uart.swapper) { + + /*if (Uart.swapper) { Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; Uart.byteCnt++; Uart.swapper = 0; - if(Uart.byteCnt > 15) { return TRUE; } + if (Uart.byteCnt > 15) { return true; } } else { Uart.swapper = 1; }*/ - if(Uart.state != STATE_UNSYNCD) { + if (Uart.state != STATE_UNSYNCD) { Uart.posCnt++; - if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { + if ((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { bit = 0x00; - } - else { + } else { bit = 0x01; } - if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { + if (((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { bitright = 0x00; - } - else { + } else { bitright = 0x01; } - if(bit != bitright) { bit = bitright; } + if (bit != bitright) { + bit = bitright; + } + - // So, now we only have to deal with *bit*, lets see... - if(Uart.posCnt == 1) { + if (Uart.posCnt == 1) { // measurement first half bitperiod - if(!bit) { + if (!bit) { // Drop in first half means that we are either seeing // an SOF or an EOF. - if(Uart.nOutOfCnt == 1) { + if (Uart.nOutOfCnt == 1) { // End of Communication Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; - if(Uart.byteCnt == 0) { + if (Uart.byteCnt == 0) { // Its not straightforward to show single EOFs - // So just leave it and do not return TRUE - Uart.output[Uart.byteCnt] = 0xf0; + // So just leave it and do not return true + Uart.output[0] = 0xf0; Uart.byteCnt++; - - // Calculate the parity bit for the client... - Uart.parityBits = 1; + } else { + return true; } - else { - return TRUE; - } - } - else if(Uart.state != STATE_START_OF_COMMUNICATION) { + } else if (Uart.state != STATE_START_OF_COMMUNICATION) { // When not part of SOF or EOF, it is an error Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 4; } } - } - else { + } else { // measurement second half bitperiod // Count the bitslot we are in... (ISO 15693) Uart.nOutOfCnt++; - - if(!bit) { - if(Uart.dropPosition) { - if(Uart.state == STATE_START_OF_COMMUNICATION) { + + if (!bit) { + if (Uart.dropPosition) { + if (Uart.state == STATE_START_OF_COMMUNICATION) { //error = 1; - } - else { + } else { //error = 7; } // It is an error if we already have seen a drop in current frame Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; - } - else { + } else { Uart.dropPosition = Uart.nOutOfCnt; } } Uart.posCnt = 0; - - if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { + + if (Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { Uart.nOutOfCnt = 0; - - if(Uart.state == STATE_START_OF_COMMUNICATION) { - if(Uart.dropPosition == 4) { + + if (Uart.state == STATE_START_OF_COMMUNICATION) { + if (Uart.dropPosition == 4) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 256; - } - else if(Uart.dropPosition == 3) { + } else if (Uart.dropPosition == 3) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 4; //Uart.output[Uart.byteCnt] = 0xdd; //Uart.byteCnt++; - } - else { + } else { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; } Uart.dropPosition = 0; - } - else { + } else { // RECEIVING DATA // 1 out of 4 - if(!Uart.dropPosition) { + if (!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 9; - } - else { + } else { Uart.shiftReg >>= 2; - + // Swap bit order Uart.dropPosition--; - //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } - //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } - + //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; } + //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; } + Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); Uart.bitCnt += 2; Uart.dropPosition = 0; - if(Uart.bitCnt == 8) { + if (Uart.bitCnt == 8) { Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); Uart.byteCnt++; - - // Calculate the parity bit for the client... - Uart.parityBits <<= 1; - Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)]; - Uart.bitCnt = 0; Uart.shiftReg = 0; } } } - } - else if(Uart.nOutOfCnt == Uart.OutOfCnt) { + } else if (Uart.nOutOfCnt == Uart.OutOfCnt) { // RECEIVING DATA // 1 out of 256 - if(!Uart.dropPosition) { + if (!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 3; - } - else { + } else { Uart.dropPosition--; Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); Uart.byteCnt++; - - // Calculate the parity bit for the client... - Uart.parityBits <<= 1; - Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)]; - Uart.bitCnt = 0; Uart.shiftReg = 0; Uart.nOutOfCnt = 0; @@ -256,7 +235,7 @@ static RAMFUNC int OutOfNDecoding(int bit) } } - /*if(error) { + /*if (error) { Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = error & 0xFF; @@ -271,72 +250,66 @@ static RAMFUNC int OutOfNDecoding(int bit) Uart.byteCnt++; Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; - return TRUE; + return true; }*/ } - } - else { + } else { bit = Uart.bitBuffer & 0xf0; bit >>= 4; bit ^= 0x0F; // drops become 1s ;-) - if(bit) { + if (bit) { // should have been high or at least (4 * 128) / fc // according to ISO this should be at least (9 * 128 + 20) / fc - if(Uart.highCnt == 8) { + if (Uart.highCnt == 8) { // we went low, so this could be start of communication // it turns out to be safer to choose a less significant // syncbit... so we check whether the neighbour also represents the drop Uart.posCnt = 1; // apparently we are busy with our first half bit period Uart.syncBit = bit & 8; Uart.samples = 3; - if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } - else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } - if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } - else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } - if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; - if(Uart.syncBit && (Uart.bitBuffer & 8)) { + if (!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } + else if (bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } + if (!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } + else if (bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } + if (!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; + if (Uart.syncBit && (Uart.bitBuffer & 8)) { Uart.syncBit = 8; // the first half bit period is expected in next sample Uart.posCnt = 0; Uart.samples = 3; } - } - else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } + } else if (bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } Uart.syncBit <<= 4; Uart.state = STATE_START_OF_COMMUNICATION; Uart.bitCnt = 0; Uart.byteCnt = 0; - Uart.parityBits = 0; Uart.nOutOfCnt = 0; Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 Uart.dropPosition = 0; Uart.shiftReg = 0; //error = 0; - } - else { + } else { Uart.highCnt = 0; } - } - else { - if(Uart.highCnt < 8) { - Uart.highCnt++; - } + } else if (Uart.highCnt < 8) { + Uart.highCnt++; } } - return FALSE; + return false; } + //============================================================================= // Manchester //============================================================================= static struct { - enum { - DEMOD_UNSYNCD, + enum { + DEMOD_UNSYNCD, DEMOD_START_OF_COMMUNICATION, DEMOD_START_OF_COMMUNICATION2, DEMOD_START_OF_COMMUNICATION3, @@ -346,30 +319,28 @@ static struct { DEMOD_END_OF_COMMUNICATION, DEMOD_END_OF_COMMUNICATION2, DEMOD_MANCHESTER_F, - DEMOD_ERROR_WAIT - } state; - int bitCount; - int posCount; - int syncBit; - int parityBits; - uint16_t shiftReg; - int buffer; - int buffer2; - int buffer3; - int buff; - int samples; - int len; + DEMOD_ERROR_WAIT + } state; + int bitCount; + int posCount; + int syncBit; + uint16_t shiftReg; + int buffer; + int buffer2; + int buffer3; + int buff; + int samples; + int len; enum { SUB_NONE, SUB_FIRST_HALF, SUB_SECOND_HALF, SUB_BOTH - } sub; - uint8_t *output; + } sub; + uint8_t *output; } Demod; -static RAMFUNC int ManchesterDecoding(int v) -{ +static RAMFUNC int ManchesterDecoding(int v) { int bit; int modulation; int error = 0; @@ -379,49 +350,48 @@ static RAMFUNC int ManchesterDecoding(int v) Demod.buffer2 = Demod.buffer3; Demod.buffer3 = v; - if(Demod.buff < 3) { + if (Demod.buff < 3) { Demod.buff++; - return FALSE; + return false; } - if(Demod.state==DEMOD_UNSYNCD) { + if (Demod.state==DEMOD_UNSYNCD) { Demod.output[Demod.len] = 0xfa; Demod.syncBit = 0; //Demod.samples = 0; - Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part + Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part - if(bit & 0x08) { + if (bit & 0x08) { Demod.syncBit = 0x08; } - if(bit & 0x04) { - if(Demod.syncBit) { + if (bit & 0x04) { + if (Demod.syncBit) { bit <<= 4; } Demod.syncBit = 0x04; } - if(bit & 0x02) { - if(Demod.syncBit) { + if (bit & 0x02) { + if (Demod.syncBit) { bit <<= 2; } Demod.syncBit = 0x02; } - if(bit & 0x01 && Demod.syncBit) { + if (bit & 0x01 && Demod.syncBit) { Demod.syncBit = 0x01; } - - if(Demod.syncBit) { + + if (Demod.syncBit) { Demod.len = 0; Demod.state = DEMOD_START_OF_COMMUNICATION; Demod.sub = SUB_FIRST_HALF; Demod.bitCount = 0; Demod.shiftReg = 0; - Demod.parityBits = 0; Demod.samples = 0; - if(Demod.posCount) { - //if(trigger) LED_A_OFF(); // Not useful in this case... + if (Demod.posCount) { + //if (trigger) LED_A_OFF(); // Not useful in this case... switch(Demod.syncBit) { case 0x08: Demod.samples = 3; break; case 0x04: Demod.samples = 2; break; @@ -429,13 +399,12 @@ static RAMFUNC int ManchesterDecoding(int v) case 0x01: Demod.samples = 0; break; } // SOF must be long burst... otherwise stay unsynced!!! - if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { + if (!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { Demod.state = DEMOD_UNSYNCD; } - } - else { + } else { // SOF must be long burst... otherwise stay unsynced!!! - if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { + if (!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { Demod.state = DEMOD_UNSYNCD; error = 0x88; } @@ -444,56 +413,47 @@ static RAMFUNC int ManchesterDecoding(int v) error = 0; } - } - else { + } else { modulation = bit & Demod.syncBit; modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; - //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; Demod.samples += 4; - if(Demod.posCount==0) { + if (Demod.posCount==0) { Demod.posCount = 1; - if(modulation) { + if (modulation) { Demod.sub = SUB_FIRST_HALF; - } - else { + } else { Demod.sub = SUB_NONE; } - } - else { + } else { Demod.posCount = 0; /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { - if(Demod.state!=DEMOD_ERROR_WAIT) { + if (Demod.state!=DEMOD_ERROR_WAIT) { Demod.state = DEMOD_ERROR_WAIT; Demod.output[Demod.len] = 0xaa; error = 0x01; } }*/ - //else if(modulation) { - if(modulation) { - if(Demod.sub == SUB_FIRST_HALF) { + //else if (modulation) { + if (modulation) { + if (Demod.sub == SUB_FIRST_HALF) { Demod.sub = SUB_BOTH; - } - else { + } else { Demod.sub = SUB_SECOND_HALF; } - } - else if(Demod.sub == SUB_NONE) { - if(Demod.state == DEMOD_SOF_COMPLETE) { + } else if (Demod.sub == SUB_NONE) { + if (Demod.state == DEMOD_SOF_COMPLETE) { Demod.output[Demod.len] = 0x0f; Demod.len++; - Demod.parityBits <<= 1; - Demod.parityBits ^= OddByteParity[0x0f]; Demod.state = DEMOD_UNSYNCD; -// error = 0x0f; - return TRUE; - } - else { +// error = 0x0f; + return true; + } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x33; } - /*if(Demod.state!=DEMOD_ERROR_WAIT) { + /*if (Demod.state!=DEMOD_ERROR_WAIT) { Demod.state = DEMOD_ERROR_WAIT; Demod.output[Demod.len] = 0xaa; error = 0x01; @@ -502,36 +462,33 @@ static RAMFUNC int ManchesterDecoding(int v) switch(Demod.state) { case DEMOD_START_OF_COMMUNICATION: - if(Demod.sub == SUB_BOTH) { + if (Demod.sub == SUB_BOTH) { //Demod.state = DEMOD_MANCHESTER_D; Demod.state = DEMOD_START_OF_COMMUNICATION2; Demod.posCount = 1; Demod.sub = SUB_NONE; - } - else { + } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd2; } break; case DEMOD_START_OF_COMMUNICATION2: - if(Demod.sub == SUB_SECOND_HALF) { + if (Demod.sub == SUB_SECOND_HALF) { Demod.state = DEMOD_START_OF_COMMUNICATION3; - } - else { + } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd3; } break; case DEMOD_START_OF_COMMUNICATION3: - if(Demod.sub == SUB_SECOND_HALF) { -// Demod.state = DEMOD_MANCHESTER_D; + if (Demod.sub == SUB_SECOND_HALF) { +// Demod.state = DEMOD_MANCHESTER_D; Demod.state = DEMOD_SOF_COMPLETE; //Demod.output[Demod.len] = Demod.syncBit & 0xFF; //Demod.len++; - } - else { + } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd4; @@ -542,20 +499,17 @@ static RAMFUNC int ManchesterDecoding(int v) case DEMOD_MANCHESTER_E: // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) // 00001111 = 1 (0 in 14443) - if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF + if (Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF Demod.bitCount++; Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; Demod.state = DEMOD_MANCHESTER_D; - } - else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF + } else if (Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF Demod.bitCount++; Demod.shiftReg >>= 1; Demod.state = DEMOD_MANCHESTER_E; - } - else if(Demod.sub == SUB_BOTH) { + } else if (Demod.sub == SUB_BOTH) { Demod.state = DEMOD_MANCHESTER_F; - } - else { + } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x55; } @@ -563,19 +517,16 @@ static RAMFUNC int ManchesterDecoding(int v) case DEMOD_MANCHESTER_F: // Tag response does not need to be a complete byte! - if(Demod.len > 0 || Demod.bitCount > 0) { - if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF - Demod.shiftReg >>= (9 - Demod.bitCount); + if (Demod.len > 0 || Demod.bitCount > 0) { + if (Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF + Demod.shiftReg >>= (9 - Demod.bitCount); // right align data Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; - // No parity bit, so just shift a 0 - Demod.parityBits <<= 1; } Demod.state = DEMOD_UNSYNCD; - return TRUE; - } - else { + return true; + } else { Demod.output[Demod.len] = 0xad; Demod.state = DEMOD_ERROR_WAIT; error = 0x03; @@ -592,7 +543,7 @@ static RAMFUNC int ManchesterDecoding(int v) break; } - /*if(Demod.bitCount>=9) { + /*if (Demod.bitCount>=9) { Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; @@ -602,20 +553,15 @@ static RAMFUNC int ManchesterDecoding(int v) Demod.bitCount = 0; Demod.shiftReg = 0; }*/ - if(Demod.bitCount>=8) { + if (Demod.bitCount >= 8) { Demod.shiftReg >>= 1; Demod.output[Demod.len] = (Demod.shiftReg & 0xff); Demod.len++; - - // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT - Demod.parityBits <<= 1; - Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)]; - Demod.bitCount = 0; Demod.shiftReg = 0; } - if(error) { + if (error) { Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = error & 0xFF; @@ -633,14 +579,14 @@ static RAMFUNC int ManchesterDecoding(int v) Demod.len++; Demod.output[Demod.len] = 0xBB; Demod.len++; - return TRUE; + return true; } } } // end (state != UNSYNCED) - return FALSE; + return false; } //============================================================================= @@ -653,185 +599,185 @@ static RAMFUNC int ManchesterDecoding(int v) // triggering so that we start recording at the point that the tag is moved // near the reader. //----------------------------------------------------------------------------- -void RAMFUNC SnoopIClass(void) -{ +void RAMFUNC SnoopIClass(void) { + // We won't start recording the frames that we acquire until we trigger; + // a good trigger condition to get started is probably when we see a + // response from the tag. + //int triggered = false; // false to wait first for card - // We won't start recording the frames that we acquire until we trigger; - // a good trigger condition to get started is probably when we see a - // response from the tag. - //int triggered = FALSE; // FALSE to wait first for card - - // The command (reader -> tag) that we're receiving. + // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! - uint8_t *readerToTagCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); - // The response (tag -> reader) that we're receiving. - uint8_t *tagToReaderResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); - - // reset traceLen to 0 - iso14a_set_tracing(TRUE); - iso14a_clear_trace(); - iso14a_set_trigger(FALSE); - - // The DMA buffer, used to stream samples from the FPGA - int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; - int lastRxCounter; - int8_t *upTo; - int smpl; - int maxBehindBy = 0; - - // Count of samples received so far, so that we can include timing - // information in the trace buffer. - int samples = 0; - rsamples = 0; - - // Set up the demodulator for tag -> reader responses. + #define ICLASS_BUFFER_SIZE 32 + uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE]; + // The response (tag -> reader) that we're receiving. + uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE]; + + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + + // free all BigBuf memory + BigBuf_free(); + // The DMA buffer, used to stream samples from the FPGA + uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); + + set_tracing(true); + clear_trace(); + iso14a_set_trigger(false); + + int lastRxCounter; + uint8_t *upTo; + int smpl; + int maxBehindBy = 0; + + // Count of samples received so far, so that we can include timing + // information in the trace buffer. + int samples = 0; + rsamples = 0; + + // Set up the demodulator for tag -> reader responses. Demod.output = tagToReaderResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; + Demod.len = 0; + Demod.state = DEMOD_UNSYNCD; - // Setup for the DMA. - FpgaSetupSsc(); - upTo = dmaBuf; - lastRxCounter = DMA_BUFFER_SIZE; - FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); + // Setup for the DMA. + FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); + upTo = dmaBuf; + lastRxCounter = DMA_BUFFER_SIZE; + FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); - // And the reader -> tag commands - memset(&Uart, 0, sizeof(Uart)); + // And the reader -> tag commands + memset(&Uart, 0, sizeof(Uart)); Uart.output = readerToTagCmd; - Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// - Uart.state = STATE_UNSYNCD; + Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// + Uart.state = STATE_UNSYNCD; - // And put the FPGA in the appropriate mode - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + // And put the FPGA in the appropriate mode + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); uint32_t time_0 = GetCountSspClk(); + uint32_t time_start = 0; + uint32_t time_stop = 0; + int div = 0; + //int div2 = 0; + int decbyte = 0; + int decbyter = 0; - int div = 0; - //int div2 = 0; - int decbyte = 0; - int decbyter = 0; - - // And now we loop, receiving samples. - for(;;) { - LED_A_ON(); - WDT_HIT(); - int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & - (DMA_BUFFER_SIZE-1); - if(behindBy > maxBehindBy) { - maxBehindBy = behindBy; - if(behindBy > 400) { - Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); - goto done; - } - } - if(behindBy < 1) continue; - - LED_A_OFF(); - smpl = upTo[0]; - upTo++; - lastRxCounter -= 1; - if(upTo - dmaBuf > DMA_BUFFER_SIZE) { - upTo -= DMA_BUFFER_SIZE; - lastRxCounter += DMA_BUFFER_SIZE; - AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; - AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; - } - - //samples += 4; - samples += 1; - - if(smpl & 0xF) { - decbyte ^= (1 << (3 - div)); - } - - // FOR READER SIDE COMMUMICATION... - - decbyter <<= 2; - decbyter ^= (smpl & 0x30); - - div++; - - if((div + 1) % 2 == 0) { - smpl = decbyter; - if(OutOfNDecoding((smpl & 0xF0) >> 4)) { - rsamples = samples - Uart.samples; - LED_C_ON(); - - //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break; - //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; - if(tracing) - { - LogTrace(Uart.output,Uart.byteCnt, (GetCountSspClk()-time_0) << 4, Uart.parityBits,TRUE); - LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, TRUE); + // And now we loop, receiving samples. + for (;;) { + LED_A_ON(); + WDT_HIT(); + int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1); + if (behindBy > maxBehindBy) { + maxBehindBy = behindBy; + if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) { + Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); + goto done; } + } + if (behindBy < 1) continue; + + LED_A_OFF(); + smpl = upTo[0]; + upTo++; + lastRxCounter -= 1; + if (upTo - dmaBuf > DMA_BUFFER_SIZE) { + upTo -= DMA_BUFFER_SIZE; + lastRxCounter += DMA_BUFFER_SIZE; + AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; + AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; + } + //samples += 4; + samples += 1; - /* And ready to receive another command. */ - Uart.state = STATE_UNSYNCD; - /* And also reset the demod code, which might have been */ - /* false-triggered by the commands from the reader. */ - Demod.state = DEMOD_UNSYNCD; - LED_B_OFF(); - Uart.byteCnt = 0; + if (smpl & 0xF) { + decbyte ^= (1 << (3 - div)); } - decbyter = 0; - } - if(div > 3) { - smpl = decbyte; - if(ManchesterDecoding(smpl & 0x0F)) { - rsamples = samples - Demod.samples; - LED_B_ON(); + // FOR READER SIDE COMMUMICATION... - if(tracing) - { - LogTrace(Demod.output,Demod.len, (GetCountSspClk()-time_0) << 4 , Demod.parityBits,FALSE); - LogTrace(NULL, 0, (GetCountSspClk()-time_0) << 4, 0, FALSE); + decbyter <<= 2; + decbyter ^= (smpl & 0x30); + + div++; + + if ((div + 1) % 2 == 0) { + smpl = decbyter; + if (OutOfNDecoding((smpl & 0xF0) >> 4)) { + rsamples = samples - Uart.samples; + time_stop = (GetCountSspClk()-time_0) << 4; + LED_C_ON(); + + //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break; + //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break; + uint8_t parity[MAX_PARITY_SIZE]; + GetParity(Uart.output, Uart.byteCnt, parity); + LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, parity, true); + + /* And ready to receive another command. */ + Uart.state = STATE_UNSYNCD; + /* And also reset the demod code, which might have been */ + /* false-triggered by the commands from the reader. */ + Demod.state = DEMOD_UNSYNCD; + LED_B_OFF(); + Uart.byteCnt = 0; + } else { + time_start = (GetCountSspClk()-time_0) << 4; } + decbyter = 0; + } + if (div > 3) { + smpl = decbyte; + if (ManchesterDecoding(smpl & 0x0F)) { + time_stop = (GetCountSspClk()-time_0) << 4; - // And ready to receive another response. - memset(&Demod, 0, sizeof(Demod)); - Demod.output = tagToReaderResponse; - Demod.state = DEMOD_UNSYNCD; - LED_C_OFF(); + rsamples = samples - Demod.samples; + LED_B_ON(); + + uint8_t parity[MAX_PARITY_SIZE]; + GetParity(Demod.output, Demod.len, parity); + LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, false); + + // And ready to receive another response. + memset(&Demod, 0, sizeof(Demod)); + Demod.output = tagToReaderResponse; + Demod.state = DEMOD_UNSYNCD; + LED_C_OFF(); + } else { + time_start = (GetCountSspClk()-time_0) << 4; + } + + div = 0; + decbyte = 0x00; } - - div = 0; - decbyte = 0x00; - } - //} - if(BUTTON_PRESS()) { - DbpString("cancelled_a"); - goto done; - } - } + if (BUTTON_PRESS()) { + DbpString("cancelled_a"); + goto done; + } + } - DbpString("COMMAND FINISHED"); + DbpString("COMMAND FINISHED"); - Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); - Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); + Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); + Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); done: - AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; - Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); - Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); - LED_A_OFF(); - LED_B_OFF(); - LED_C_OFF(); - LED_D_OFF(); + AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; + Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); + Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); + LEDsoff(); } void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { - int i; - for(i = 0; i < 8; i++) { + int i; + for (i = 0; i < 8; i++) { rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); } } @@ -839,199 +785,227 @@ void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed -// Or return TRUE when command is captured +// Or return true when command is captured //----------------------------------------------------------------------------- static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) { - // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen - // only, since we are receiving, not transmitting). - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); - - // Now run a `software UART' on the stream of incoming samples. - Uart.output = received; - Uart.byteCntMax = maxLen; - Uart.state = STATE_UNSYNCD; - - for(;;) { - WDT_HIT(); - - if(BUTTON_PRESS()) return FALSE; - - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - /*if(OutOfNDecoding((b & 0xf0) >> 4)) { - *len = Uart.byteCnt; - return TRUE; - }*/ - if(OutOfNDecoding(b & 0x0f)) { + // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen + // only, since we are receiving, not transmitting). + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); + + // Now run a `software UART' on the stream of incoming samples. + Uart.output = received; + Uart.byteCntMax = maxLen; + Uart.state = STATE_UNSYNCD; + + for (;;) { + WDT_HIT(); + + if (BUTTON_PRESS()) return false; + + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; + } + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + + if (OutOfNDecoding(b & 0x0f)) { *len = Uart.byteCnt; - return TRUE; + return true; } - } - } + } + } } +static uint8_t encode4Bits(const uint8_t b) { + uint8_t c = b & 0xF; + // OTA, the least significant bits first + // The columns are + // 1 - Bit value to send + // 2 - Reversed (big-endian) + // 3 - Encoded + // 4 - Hex values + + switch(c){ + // 1 2 3 4 + case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55 + case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95 + case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65 + case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5 + case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59 + case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99 + case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69 + case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9 + case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56 + case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96 + case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66 + case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6 + case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a + case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a + case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a + default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa + + } +} //----------------------------------------------------------------------------- // Prepare tag messages //----------------------------------------------------------------------------- -static void CodeIClassTagAnswer(const uint8_t *cmd, int len) -{ - //So far a dummy implementation, not used - //int lastProxToAirDuration =0; +static void CodeIClassTagAnswer(const uint8_t *cmd, int len) { + + /* + * SOF comprises 3 parts; + * * An unmodulated time of 56.64 us + * * 24 pulses of 423.75 kHz (fc/32) + * * A logic 1, which starts with an unmodulated time of 18.88us + * followed by 8 pulses of 423.75kHz (fc/32) + * + * + * EOF comprises 3 parts: + * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated + * time of 18.88us. + * - 24 pulses of fc/32 + * - An unmodulated time of 56.64 us + * + * + * A logic 0 starts with 8 pulses of fc/32 + * followed by an unmodulated time of 256/fc (~18,88us). + * + * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by + * 8 pulses of fc/32 (also 18.88us) + * + * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag, + * works like this. + * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us). + * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us + * + * In this mode the SOF can be written as 00011101 = 0x1D + * The EOF can be written as 10111000 = 0xb8 + * A logic 1 is 01 + * A logic 0 is 10 + * + * */ + int i; ToSendReset(); // Send SOF - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0xff;//Proxtoair duration starts here - ToSend[++ToSendMax] = 0xff; - ToSend[++ToSendMax] = 0xff; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0xff; + ToSend[++ToSendMax] = 0x1D; - for(i = 0; i < len; i++) { - int j; + for (i = 0; i < len; i++) { uint8_t b = cmd[i]; - - // Data bits - for(j = 0; j < 8; j++) { - if(b & 1) { - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0xff; - } else { - ToSend[++ToSendMax] = 0xff; - ToSend[++ToSendMax] = 0x00; - } - b >>= 1; - } + ToSend[++ToSendMax] = encode4Bits(b & 0xF); // Least significant half + ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF); // Most significant half } // Send EOF - ToSend[++ToSendMax] = 0xff; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0xff; - ToSend[++ToSendMax] = 0xff; - ToSend[++ToSendMax] = 0xff; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0x00; - + ToSend[++ToSendMax] = 0xB8; //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end - // Convert from last byte pos to length ToSendMax++; } -// Only SOF -static void CodeIClassTagSOF() -{ +// Only SOF +static void CodeIClassTagSOF() { //So far a dummy implementation, not used //int lastProxToAirDuration =0; ToSendReset(); // Send SOF - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0xff; - ToSend[++ToSendMax] = 0xff; - ToSend[++ToSendMax] = 0xff; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0xff; - -// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning + ToSend[++ToSendMax] = 0x1D; +// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning - // Convert from last byte pos to length ToSendMax++; } -/** - * @brief SimulateIClass simulates an iClass card. - * @param arg0 type of simulation - * - 0 uses the first 8 bytes in usb data as CSN - * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified - * in the usb data. This mode collects MAC from the reader, in order to do an offline - * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. - * - Other : Uses the default CSN (031fec8af7ff12e0) - * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) - * @param arg2 - * @param datain - */ -void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) -{ - uint32_t simType = arg0; - uint32_t numberOfCSNS = arg1; - - // Enable and clear the trace - iso14a_set_tracing(TRUE); - iso14a_clear_trace(); +static void AppendCrc(uint8_t *data, int len) { + ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1); +} - uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; +static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) { + int i = 0, d = 0;//, u = 0, d = 0; + uint8_t b = 0; - if(simType == 0) { - // Use the CSN from commandline - memcpy(csn_crc, datain, 8); - doIClassSimulation(csn_crc,0); - }else if(simType == 1) - { - doIClassSimulation(csn_crc,0); - } - else if(simType == 2) - { - Dbprintf("Going into attack mode"); - // In this mode, a number of csns are within datain. We'll simulate each one, one at a time - // in order to collect MAC's from the reader. This can later be used in an offlne-attack - // in order to obtain the keys, as in the "dismantling iclass"-paper. - for(int i = 0 ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++) - { - // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. + //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K_8BIT); - memcpy(csn_crc, datain+(i*8), 8); - if(doIClassSimulation(csn_crc,1)) - { - return; // Button pressed + AT91C_BASE_SSC->SSC_THR = 0x00; + FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); + while (!BUTTON_PRESS()) { + if ((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){ + b = AT91C_BASE_SSC->SSC_RHR; (void) b; + } + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){ + b = 0x00; + if (d < delay) { + d++; + } + else { + if (i < respLen) { + b = resp[i]; + //Hack + //b = 0xAC; + } + i++; } + AT91C_BASE_SSC->SSC_THR = b; } - } - else{ - // We may want a mode here where we hardcode the csns to use (from proxclone). - // That will speed things up a little, but not required just yet. - Dbprintf("The mode is not implemented, reserved for future use"); + +// if (i > respLen +4) break; + if (i > respLen + 1) break; } + return 0; } + + +#define MODE_SIM_CSN 0 +#define MODE_EXIT_AFTER_MAC 1 +#define MODE_FULLSIM 2 + /** * @brief Does the actual simulation * @param csn - csn to use * @param breakAfterMacReceived if true, returns after reader MAC has been received. */ -int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived) -{ - +int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) { + // free eventually allocated BigBuf memory + BigBuf_free_keep_EM(); + + State cipher_state; +// State cipher_state_reserve; + uint8_t *csn = BigBuf_get_EM_addr(); + uint8_t *emulator = csn; + uint8_t sof_data[] = { 0x0F} ; // CSN followed by two CRC bytes - uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; - uint8_t response3[] = { 0,0,0,0,0,0,0,0,0,0}; - memcpy(response3,csn,sizeof(response3)); - Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); - // e-Purse - uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; + uint8_t anticoll_data[10] = { 0 }; + uint8_t csn_data[10] = { 0 }; + memcpy(csn_data, csn, sizeof(csn_data)); + Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]); // Construct anticollision-CSN - rotateCSN(response3,response2); + rotateCSN(csn_data, anticoll_data); // Compute CRC on both CSNs - ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]); - ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]); + ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]); + ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]); + + uint8_t diversified_key[8] = { 0 }; + // e-Purse + uint8_t card_challenge_data[8] = { 0x00 }; + if (simulationMode == MODE_FULLSIM) { + //The diversified key should be stored on block 3 + //Get the diversified key from emulator memory + memcpy(diversified_key, emulator + (8*3), 8); + //Card challenge, a.k.a e-purse is on block 2 + memcpy(card_challenge_data, emulator + (8 * 2), 8); + //Precalculate the cipher state, feeding it the CC + cipher_state = opt_doTagMAC_1(card_challenge_data, diversified_key); + } int exitLoop = 0; // Reader 0a @@ -1041,34 +1015,31 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived) // Reader 81 anticoll. CSN // Tag CSN - uint8_t *resp; - int respLen; - uint8_t* respdata = NULL; - int respsize = 0; - uint8_t sof = 0x0f; + uint8_t *modulated_response; + int modulated_response_size = 0; + uint8_t *trace_data = NULL; + int trace_data_size = 0; - // Respond SOF -- takes 8 bytes - uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); - int resp1Len; + // Respond SOF -- takes 1 bytes + uint8_t *resp_sof = BigBuf_malloc(2); + int resp_sof_Len; // Anticollision CSN (rotated CSN) - // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) - uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 10); - int resp2Len; + // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) + uint8_t *resp_anticoll = BigBuf_malloc(28); + int resp_anticoll_len; // CSN - // 176: Takes 16 bytes for SOF/EOF and 10 * 16 = 160 bytes (2 bytes/bit) - uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 190); - int resp3Len; + // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) + uint8_t *resp_csn = BigBuf_malloc(30); + int resp_csn_len; // e-Purse - // 144: Takes 16 bytes for SOF/EOF and 8 * 16 = 128 bytes (2 bytes/bit) - uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 370); - int resp4Len; + // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) + uint8_t *resp_cc = BigBuf_malloc(20); + int resp_cc_len; - // + 1720.. - uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); - memset(receivedCmd, 0x44, RECV_CMD_SIZE); + uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); int len; // Prepare card messages @@ -1076,29 +1047,39 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived) // First card answer: SOF CodeIClassTagSOF(); - memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; + memcpy(resp_sof, ToSend, ToSendMax); + resp_sof_Len = ToSendMax; // Anticollision CSN - CodeIClassTagAnswer(response2, sizeof(response2)); - memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; + CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data)); + memcpy(resp_anticoll, ToSend, ToSendMax); + resp_anticoll_len = ToSendMax; // CSN - CodeIClassTagAnswer(response3, sizeof(response3)); - memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; + CodeIClassTagAnswer(csn_data, sizeof(csn_data)); + memcpy(resp_csn, ToSend, ToSendMax); + resp_csn_len = ToSendMax; // e-Purse - CodeIClassTagAnswer(response4, sizeof(response4)); - memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; + CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data)); + memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax; + //This is used for responding to READ-block commands or other data which is dynamically generated + //First the 'trace'-data, not encoded for FPGA + uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer + //Then storage for the modulated data + //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes) + uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2); // Start from off (no field generated) - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelay(200); - - + //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + //SpinDelay(200); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); + SpinDelay(100); + StartCountSspClk(); // We need to listen to the high-frequency, peak-detected path. SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - FpgaSetupSsc(); + FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); // To control where we are in the protocol int cmdsRecvd = 0; @@ -1107,17 +1088,16 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived) uint32_t r2t_time =0; LED_A_ON(); - bool displayDebug = true; bool buttonPressed = false; - while(!exitLoop) { - displayDebug = true; - + uint8_t response_delay = 1; + while (!exitLoop) { + response_delay = 1; LED_B_OFF(); //Signal tracer // Can be used to get a trigger for an oscilloscope.. LED_C_OFF(); - if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) { + if (!GetIClassCommandFromReader(receivedCmd, &len, 100)) { buttonPressed = true; break; } @@ -1126,54 +1106,110 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived) LED_C_ON(); // Okay, look at the command now. - if(receivedCmd[0] == 0x0a ) { + if (receivedCmd[0] == ICLASS_CMD_ACTALL) { // Reader in anticollission phase - resp = resp1; respLen = resp1Len; //order = 1; - respdata = &sof; - respsize = sizeof(sof); - displayDebug = false; - } else if(receivedCmd[0] == 0x0c) { + modulated_response = resp_sof; + modulated_response_size = resp_sof_Len; //order = 1; + trace_data = sof_data; + trace_data_size = sizeof(sof_data); + } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // Reader asks for anticollission CSN - resp = resp2; respLen = resp2Len; //order = 2; - respdata = response2; - respsize = sizeof(response2); - //displayDebug = false; + modulated_response = resp_anticoll; + modulated_response_size = resp_anticoll_len; //order = 2; + trace_data = anticoll_data; + trace_data_size = sizeof(anticoll_data); //DbpString("Reader requests anticollission CSN:"); - } else if(receivedCmd[0] == 0x81) { + } else if (receivedCmd[0] == ICLASS_CMD_SELECT) { // Reader selects anticollission CSN. // Tag sends the corresponding real CSN - resp = resp3; respLen = resp3Len; //order = 3; - respdata = response3; - respsize = sizeof(response3); + modulated_response = resp_csn; + modulated_response_size = resp_csn_len; //order = 3; + trace_data = csn_data; + trace_data_size = sizeof(csn_data); //DbpString("Reader selects anticollission CSN:"); - } else if(receivedCmd[0] == 0x88) { + } else if (receivedCmd[0] == ICLASS_CMD_READCHECK_KD) { // Read e-purse (88 02) - resp = resp4; respLen = resp4Len; //order = 4; - respdata = response4; - respsize = sizeof(response4); + modulated_response = resp_cc; + modulated_response_size = resp_cc_len; //order = 4; + trace_data = card_challenge_data; + trace_data_size = sizeof(card_challenge_data); LED_B_ON(); - } else if(receivedCmd[0] == 0x05) { + } else if (receivedCmd[0] == ICLASS_CMD_CHECK) { // Reader random and reader MAC!!! - // Do not respond - // We do not know what to answer, so lets keep quit - resp = resp1; respLen = 0; //order = 5; - respdata = NULL; - respsize = 0; - if (breakAfterMacReceived){ - // TODO, actually return this to the caller instead of just - // dbprintf:ing ... - Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x"); - Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len, - receivedCmd[0], receivedCmd[1], receivedCmd[2], - receivedCmd[3], receivedCmd[4], receivedCmd[5], - receivedCmd[6], receivedCmd[7], receivedCmd[8]); - exitLoop = true; + if (simulationMode == MODE_FULLSIM) { + //NR, from reader, is in receivedCmd +1 + opt_doTagMAC_2(cipher_state, receivedCmd+1, data_generic_trace, diversified_key); + + trace_data = data_generic_trace; + trace_data_size = 4; + CodeIClassTagAnswer(trace_data, trace_data_size); + memcpy(data_response, ToSend, ToSendMax); + modulated_response = data_response; + modulated_response_size = ToSendMax; + response_delay = 0; //We need to hurry here... (but maybe not too much... ??) + //exitLoop = true; + } else { //Not fullsim, we don't respond + // We do not know what to answer, so lets keep quiet + modulated_response = resp_sof; + modulated_response_size = 0; + trace_data = NULL; + trace_data_size = 0; + if (simulationMode == MODE_EXIT_AFTER_MAC) { + // dbprintf:ing ... + Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x" + ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); + Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len, + receivedCmd[0], receivedCmd[1], receivedCmd[2], + receivedCmd[3], receivedCmd[4], receivedCmd[5], + receivedCmd[6], receivedCmd[7], receivedCmd[8]); + if (reader_mac_buf != NULL) { + memcpy(reader_mac_buf, receivedCmd+1, 8); + } + exitLoop = true; + } } - } else if(receivedCmd[0] == 0x00 && len == 1) { + + } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { // Reader ends the session - resp = resp1; respLen = 0; //order = 0; - respdata = NULL; - respsize = 0; + modulated_response = resp_sof; + modulated_response_size = 0; //order = 0; + trace_data = NULL; + trace_data_size = 0; + } else if (simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { + //Read block + uint16_t blk = receivedCmd[1]; + //Take the data... + memcpy(data_generic_trace, emulator + (blk << 3), 8); + //Add crc + AppendCrc(data_generic_trace, 8); + trace_data = data_generic_trace; + trace_data_size = 10; + CodeIClassTagAnswer(trace_data, trace_data_size); + memcpy(data_response, ToSend, ToSendMax); + modulated_response = data_response; + modulated_response_size = ToSendMax; + } else if (receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM) { + //Probably the reader wants to update the nonce. Let's just ignore that for now. + // OBS! If this is implemented, don't forget to regenerate the cipher_state + //We're expected to respond with the data+crc, exactly what's already in the receivedcmd + //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b| + + //Take the data... + memcpy(data_generic_trace, receivedCmd+2, 8); + //Add crc + AppendCrc(data_generic_trace, 8); + trace_data = data_generic_trace; + trace_data_size = 10; + CodeIClassTagAnswer(trace_data, trace_data_size); + memcpy(data_response, ToSend, ToSendMax); + modulated_response = data_response; + modulated_response_size = ToSendMax; + } else if (receivedCmd[0] == ICLASS_CMD_PAGESEL) { + //Pagesel + //Pagesel enables to select a page in the selected chip memory and return its configuration block + //Chips with a single page will not answer to this command + // It appears we're fine ignoring this. + //Otherwise, we should answer 8bytes (block) + 2bytes CRC } else { //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44 // Never seen this command before @@ -1183,234 +1219,238 @@ int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived) receivedCmd[3], receivedCmd[4], receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8]); // Do not respond - resp = resp1; respLen = 0; //order = 0; - respdata = NULL; - respsize = 0; + modulated_response = resp_sof; + modulated_response_size = 0; //order = 0; + trace_data = NULL; + trace_data_size = 0; } - if(cmdsRecvd > 100) { + if (cmdsRecvd > 100) { //DbpString("100 commands later..."); - break; - } - else { + //break; + } else { cmdsRecvd++; } - - if(respLen > 0) { - SendIClassAnswer(resp, respLen, 21); + /** + A legit tag has about 380us delay between reader EOT and tag SOF. + **/ + if (modulated_response_size > 0) { + SendIClassAnswer(modulated_response, modulated_response_size, response_delay); t2r_time = GetCountSspClk(); - -// } - if(displayDebug) Dbprintf("R2T:(len=%d): %x %x %x %x %x %x %x %x %x\nT2R: (total/data =%d/%d): %x %x %x %x %x %x %x %x %x", - len, - receivedCmd[0], receivedCmd[1], receivedCmd[2], - receivedCmd[3], receivedCmd[4], receivedCmd[5], - receivedCmd[6], receivedCmd[7], receivedCmd[8], - respLen,respsize, - resp[0], resp[1], resp[2], - resp[3], resp[4], resp[5], - resp[6], resp[7], resp[8]); - } - if (tracing) { - //LogTrace(receivedCmd,len, rsamples, Uart.parityBits, TRUE); - - LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, Uart.parityBits,TRUE); - LogTrace(NULL,0, (r2t_time-time_0) << 4, 0,TRUE); - - if (respdata != NULL) { - //LogTrace(respdata,respsize, rsamples, SwapBits(GetParity(respdata,respsize),respsize), FALSE); - //if(!LogTrace(resp,respLen, rsamples,SwapBits(GetParity(respdata,respsize),respsize),FALSE)) - LogTrace(respdata,respsize, (t2r_time-time_0) << 4,SwapBits(GetParity(respdata,respsize),respsize),FALSE); - LogTrace(NULL,0, (t2r_time-time_0) << 4,0,FALSE); - - - } - if(!tracing) { - DbpString("Trace full"); - //break; - } + uint8_t parity[MAX_PARITY_SIZE]; + GetParity(receivedCmd, len, parity); + LogTrace(receivedCmd, len, (r2t_time-time_0) << 4, (r2t_time-time_0) << 4, parity, true); + if (trace_data != NULL) { + GetParity(trace_data, trace_data_size, parity); + LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, false); + } + if (!get_tracing()) { + DbpString("Trace full"); + //break; } - memset(receivedCmd, 0x44, RECV_CMD_SIZE); } - Dbprintf("%x", cmdsRecvd); + //Dbprintf("%x", cmdsRecvd); LED_A_OFF(); LED_B_OFF(); - if(buttonPressed) + LED_C_OFF(); + + if (buttonPressed) { DbpString("Button pressed"); } return buttonPressed; } -static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) -{ - int i = 0, d=0;//, u = 0, d = 0; - uint8_t b = 0; +/** + * @brief SimulateIClass simulates an iClass card. + * @param arg0 type of simulation + * - 0 uses the first 8 bytes in usb data as CSN + * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified + * in the usb data. This mode collects MAC from the reader, in order to do an offline + * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. + * - Other : Uses the default CSN (031fec8af7ff12e0) + * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) + * @param arg2 + * @param datain + */ +void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) { + uint32_t simType = arg0; + uint32_t numberOfCSNS = arg1; + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); + // Enable and clear the trace + set_tracing(true); + clear_trace(); + //Use the emulator memory for SIM + uint8_t *emulator = BigBuf_get_EM_addr(); - AT91C_BASE_SSC->SSC_THR = 0x00; - FpgaSetupSsc(); - while(!BUTTON_PRESS()) { - if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){ - b = AT91C_BASE_SSC->SSC_RHR; (void) b; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){ - b = 0x00; - if(d < delay) { - d++; - } - else { - if( i < respLen){ - b = resp[i]; - //Hack - //b = 0xAC; - } - i++; + if (simType == 0) { + // Use the CSN from commandline + memcpy(emulator, datain, 8); + doIClassSimulation(MODE_SIM_CSN,NULL); + } else if (simType == 1) { + //Default CSN + uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; + // Use the CSN from commandline + memcpy(emulator, csn_crc, 8); + doIClassSimulation(MODE_SIM_CSN,NULL); + } else if (simType == 2) { + uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; + Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); + // In this mode, a number of csns are within datain. We'll simulate each one, one at a time + // in order to collect MAC's from the reader. This can later be used in an offlne-attack + // in order to obtain the keys, as in the "dismantling iclass"-paper. + int i = 0; + for ( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++) { + // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. + memcpy(emulator, datain+(i*8), 8); + if (doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8)) { + cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*8); + return; // Button pressed } - AT91C_BASE_SSC->SSC_THR = b; } - - if (i > respLen +4) break; + cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*8); + } else if (simType == 3) { + //This is 'full sim' mode, where we use the emulator storage for data. + doIClassSimulation(MODE_FULLSIM, NULL); + } else { + // We may want a mode here where we hardcode the csns to use (from proxclone). + // That will speed things up a little, but not required just yet. + Dbprintf("The mode is not implemented, reserved for future use"); } + Dbprintf("Done..."); - return 0; } + /// THE READER CODE //----------------------------------------------------------------------------- // Transmit the command (to the tag) that was placed in ToSend[]. //----------------------------------------------------------------------------- -static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) -{ - int c; - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - AT91C_BASE_SSC->SSC_THR = 0x00; - FpgaSetupSsc(); - - if (wait) - if(*wait < 10) - *wait = 10; - - for(c = 0; c < *wait;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! - c++; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; - (void)r; - } - WDT_HIT(); - } - - uint8_t sendbyte; - bool firstpart = TRUE; - c = 0; - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - - // DOUBLE THE SAMPLES! - if(firstpart) { - sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); - } - else { - sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); - c++; - } - if(sendbyte == 0xff) { - sendbyte = 0xfe; - } - AT91C_BASE_SSC->SSC_THR = sendbyte; - firstpart = !firstpart; - - if(c >= len) { - break; - } - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; - (void)r; - } - WDT_HIT(); - } - if (samples) *samples = (c + *wait) << 3; +static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) { + int c; + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + AT91C_BASE_SSC->SSC_THR = 0x00; + FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); + + if (wait) { + if (*wait < 10) *wait = 10; + + for (c = 0; c < *wait;) { + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! + c++; + } + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; + (void)r; + } + WDT_HIT(); + } + } + + uint8_t sendbyte; + bool firstpart = true; + c = 0; + for (;;) { + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + + // DOUBLE THE SAMPLES! + if (firstpart) { + sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); + } else { + sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); + c++; + } + if (sendbyte == 0xff) { + sendbyte = 0xfe; + } + AT91C_BASE_SSC->SSC_THR = sendbyte; + firstpart = !firstpart; + + if (c >= len) { + break; + } + } + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; + (void)r; + } + WDT_HIT(); + } + if (samples && wait) *samples = (c + *wait) << 3; } //----------------------------------------------------------------------------- // Prepare iClass reader command to send to FPGA //----------------------------------------------------------------------------- -void CodeIClassCommand(const uint8_t * cmd, int len) -{ - int i, j, k; - uint8_t b; - - ToSendReset(); - - // Start of Communication: 1 out of 4 - ToSend[++ToSendMax] = 0xf0; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0x0f; - ToSend[++ToSendMax] = 0x00; - - // Modulate the bytes - for (i = 0; i < len; i++) { - b = cmd[i]; - for(j = 0; j < 4; j++) { - for(k = 0; k < 4; k++) { - if(k == (b & 3)) { - ToSend[++ToSendMax] = 0x0f; - } - else { - ToSend[++ToSendMax] = 0x00; +void CodeIClassCommand(const uint8_t *cmd, int len) { + int i, j, k; + + ToSendReset(); + + // Start of Communication: 1 out of 4 + ToSend[++ToSendMax] = 0xf0; + ToSend[++ToSendMax] = 0x00; + ToSend[++ToSendMax] = 0x0f; + ToSend[++ToSendMax] = 0x00; + + // Modulate the bytes + for (i = 0; i < len; i++) { + uint8_t b = cmd[i]; + for (j = 0; j < 4; j++) { + for (k = 0; k < 4; k++) { + if (k == (b & 3)) { + ToSend[++ToSendMax] = 0xf0; + } else { + ToSend[++ToSendMax] = 0x00; + } } - } - b >>= 2; - } - } - - // End of Communication - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0x00; - ToSend[++ToSendMax] = 0xf0; - ToSend[++ToSendMax] = 0x00; - - // Convert from last character reference to length - ToSendMax++; + b >>= 2; + } + } + + // End of Communication + ToSend[++ToSendMax] = 0x00; + ToSend[++ToSendMax] = 0x00; + ToSend[++ToSendMax] = 0xf0; + ToSend[++ToSendMax] = 0x00; + + // Convert from last character reference to length + ToSendMax++; } -void ReaderTransmitIClass(uint8_t* frame, int len) -{ - int wait = 0; - int samples = 0; - int par = 0; +static void ReaderTransmitIClass(uint8_t *frame, int len) { + int wait = 0; + int samples = 0; - // This is tied to other size changes - // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; - CodeIClassCommand(frame,len); + // This is tied to other size changes + CodeIClassCommand(frame, len); - // Select the card - TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); - if(trigger) - LED_A_ON(); + // Select the card + TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); + if (trigger) + LED_A_ON(); - // Store reader command in buffer - if (tracing) LogTrace(frame,len,rsamples,par,TRUE); + // Store reader command in buffer + uint8_t par[MAX_PARITY_SIZE]; + GetParity(frame, len, par); + LogTrace(frame, len, rsamples, rsamples, par, true); } //----------------------------------------------------------------------------- // Wait a certain time for tag response -// If a response is captured return TRUE -// If it takes too long return FALSE +// If a response is captured return true +// If it takes too long return false //----------------------------------------------------------------------------- -static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer -{ +static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) { + //uint8_t *buffer // buffer needs to be 512 bytes int c; @@ -1426,59 +1466,57 @@ static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, uint8_t b; if (elapsed) *elapsed = 0; - bool skip = FALSE; + bool skip = false; c = 0; - for(;;) { + for (;;) { WDT_HIT(); - if(BUTTON_PRESS()) return FALSE; + if (BUTTON_PRESS()) return false; - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! if (elapsed) (*elapsed)++; } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - if(c < timeout) { c++; } else { return FALSE; } + if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + if (c < timeout) { + c++; + } else { + return false; + } b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; skip = !skip; - if(skip) continue; - /*if(ManchesterDecoding((b>>4) & 0xf)) { - *samples = ((c - 1) << 3) + 4; - return TRUE; - }*/ - if(ManchesterDecoding(b & 0x0f)) { + if (skip) continue; + + if (ManchesterDecoding(b & 0x0f)) { *samples = c << 3; - return TRUE; + return true; } } } } -int ReaderReceiveIClass(uint8_t* receivedAnswer) -{ - int samples = 0; - if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE; - rsamples += samples; - if (tracing) LogTrace(receivedAnswer,Demod.len,rsamples,Demod.parityBits,FALSE); - if(samples == 0) return FALSE; - return Demod.len; +static int ReaderReceiveIClass(uint8_t *receivedAnswer) { + int samples = 0; + if (!GetIClassAnswer(receivedAnswer, 160, &samples, 0)) { + return false; + } + rsamples += samples; + uint8_t parity[MAX_PARITY_SIZE]; + GetParity(receivedAnswer, Demod.len, parity); + LogTrace(receivedAnswer, Demod.len, rsamples, rsamples, parity, false); + if (samples == 0) return false; + return Demod.len; } -// Reader iClass Anticollission -void ReaderIClass(uint8_t arg0) { - uint8_t act_all[] = { 0x0a }; - uint8_t identify[] = { 0x0c }; - uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; - - uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes - +static void setupIclassReader() { + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // Reset trace buffer - memset(trace, 0x44, RECV_CMD_OFFSET); - traceLen = 0; + set_tracing(true); + clear_trace(); // Setup SSC - FpgaSetupSsc(); + FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); // Start from off (no field generated) // Signal field is off with the appropriate LED LED_D_OFF(); @@ -1491,41 +1529,462 @@ void ReaderIClass(uint8_t arg0) { // Signal field is on with the appropriate LED FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); SpinDelay(200); - LED_A_ON(); - for(;;) { - - if(traceLen > TRACE_SIZE) { +} + +static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) { + while (retries-- > 0) { + ReaderTransmitIClass(command, cmdsize); + if (expected_size == ReaderReceiveIClass(resp)) { + return true; + } + } + return false;//Error +} + +/** + * @brief Talks to an iclass tag, sends the commands to get CSN and CC. + * @param card_data where the CSN and CC are stored for return + * @return 0 = fail + * 1 = Got CSN + * 2 = Got CSN and CC + */ +static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) { + static uint8_t act_all[] = { 0x0a }; + //static uint8_t identify[] = { 0x0c }; + static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 }; + static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; + static uint8_t readcheck_cc[]= { 0x88, 0x02 }; + if (use_credit_key) + readcheck_cc[0] = 0x18; + else + readcheck_cc[0] = 0x88; + + uint8_t resp[ICLASS_BUFFER_SIZE]; + + uint8_t read_status = 0; + + // Send act_all + ReaderTransmitIClass(act_all, 1); + // Card present? + if (!ReaderReceiveIClass(resp)) return read_status;//Fail + //Send Identify + ReaderTransmitIClass(identify, 1); + //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC + uint8_t len = ReaderReceiveIClass(resp); + if (len != 10) return read_status;//Fail + + //Copy the Anti-collision CSN to our select-packet + memcpy(&select[1], resp, 8); + //Select the card + ReaderTransmitIClass(select, sizeof(select)); + //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC + len = ReaderReceiveIClass(resp); + if (len != 10) return read_status;//Fail + + //Success - level 1, we got CSN + //Save CSN in response data + memcpy(card_data, resp, 8); + + //Flag that we got to at least stage 1, read CSN + read_status = 1; + + // Card selected, now read e-purse (cc) (only 8 bytes no CRC) + ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); + if (ReaderReceiveIClass(resp) == 8) { + //Save CC (e-purse) in response data + memcpy(card_data+8, resp, 8); + read_status++; + } + + return read_status; +} + +static uint8_t handshakeIclassTag(uint8_t *card_data) { + return handshakeIclassTag_ext(card_data, false); +} + + +// Reader iClass Anticollission +void ReaderIClass(uint8_t arg0) { + + uint8_t card_data[6 * 8] = {0}; + memset(card_data, 0xFF, sizeof(card_data)); + uint8_t last_csn[8] = {0,0,0,0,0,0,0,0}; + uint8_t resp[ICLASS_BUFFER_SIZE]; + memset(resp, 0xFF, sizeof(resp)); + //Read conf block CRC(0x01) => 0xfa 0x22 + uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22}; + //Read App Issuer Area block CRC(0x05) => 0xde 0x64 + uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64}; + + int read_status= 0; + uint8_t result_status = 0; + // flag to read until one tag is found successfully + bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; + // flag to only try 5 times to find one tag then return + bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY; + // if neither abort_after_read nor try_once then continue reading until button pressed. + + bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY; + // test flags for what blocks to be sure to read + uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF; + uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC; + uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA; + + set_tracing(true); + setupIclassReader(); + + uint16_t tryCnt = 0; + bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length(); + while (!userCancelled) { + // if only looking for one card try 2 times if we missed it the first time + if (try_once && tryCnt > 2) { + break; + } + tryCnt++; + if (!get_tracing()) { DbpString("Trace full"); break; } - - if (BUTTON_PRESS()) break; - - // Send act_all - ReaderTransmitIClass(act_all, 1); - // Card present? - if(ReaderReceiveIClass(resp)) { - ReaderTransmitIClass(identify, 1); - if(ReaderReceiveIClass(resp) == 10) { - // Select card - memcpy(&select[1],resp,8); - ReaderTransmitIClass(select, sizeof(select)); - - if(ReaderReceiveIClass(resp) == 10) { - Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x", - resp[0], resp[1], resp[2], - resp[3], resp[4], resp[5], - resp[6], resp[7]); + WDT_HIT(); + + read_status = handshakeIclassTag_ext(card_data, use_credit_key); + + if (read_status == 0) continue; + if (read_status == 1) result_status = FLAG_ICLASS_READER_CSN; + if (read_status == 2) result_status = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC; + + // handshakeIclass returns CSN|CC, but the actual block + // layout is CSN|CONFIG|CC, so here we reorder the data, + // moving CC forward 8 bytes + memcpy(card_data+16, card_data+8, 8); + //Read block 1, config + if (flagReadConfig) { + if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10)) { + result_status |= FLAG_ICLASS_READER_CONF; + memcpy(card_data+8, resp, 8); + } else { + Dbprintf("Failed to dump config block"); + } + } + + //Read block 5, AA + if (flagReadAA) { + if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10)) { + result_status |= FLAG_ICLASS_READER_AA; + memcpy(card_data + (8*5), resp, 8); + } else { + //Dbprintf("Failed to dump AA block"); + } + } + + // 0 : CSN + // 1 : Configuration + // 2 : e-purse + // (3,4 write-only, kc and kd) + // 5 Application issuer area + // + //Then we can 'ship' back the 8 * 6 bytes of data, + // with 0xFF:s in block 3 and 4. + + LED_B_ON(); + //Send back to client, but don't bother if we already sent this - + // only useful if looping in arm (not try_once && not abort_after_read) + if (memcmp(last_csn, card_data, 8) != 0) { + // If caller requires that we get Conf, CC, AA, continue until we got it + if ( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) { + cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data)); + if (abort_after_read) { + LED_A_OFF(); + LED_B_OFF(); + return; } - // Card selected, whats next... ;-) + //Save that we already sent this.... + memcpy(last_csn, card_data, 8); } + } + LED_B_OFF(); + userCancelled = BUTTON_PRESS() || usb_poll_validate_length(); + } + if (userCancelled) { + cmd_send(CMD_ACK, 0xFF, 0, 0, card_data, 0); + } else { + cmd_send(CMD_ACK, 0, 0, 0, card_data, 0); + } + LED_A_OFF(); +} + +void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { + + uint8_t card_data[USB_CMD_DATA_SIZE]={0}; + uint16_t block_crc_LUT[255] = {0}; + + //Generate a lookup table for block crc + for (int block = 0; block < 255; block++){ + char bl = block; + block_crc_LUT[block] = iclass_crc16(&bl ,1); + } + //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]); + + uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; + uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; + + uint16_t crc = 0; + uint8_t cardsize = 0; + uint8_t mem = 0; + + static struct memory_t { + int k16; + int book; + int k2; + int lockauth; + int keyaccess; + } memory; + + uint8_t resp[ICLASS_BUFFER_SIZE]; + + setupIclassReader(); + set_tracing(true); + + while (!BUTTON_PRESS()) { + WDT_HIT(); + + if (!get_tracing()) { + DbpString("Trace full"); + break; + } + + uint8_t read_status = handshakeIclassTag(card_data); + if (read_status < 2) continue; + + //for now replay captured auth (as cc not updated) + memcpy(check+5, MAC, 4); + + if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 5)) { + Dbprintf("Error: Authentication Fail!"); + continue; + } + + //first get configuration block (block 1) + crc = block_crc_LUT[1]; + read[1] = 1; + read[2] = crc >> 8; + read[3] = crc & 0xff; + + if (!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) { + Dbprintf("Dump config (block 1) failed"); + continue; + } + + mem = resp[5]; + memory.k16 = (mem & 0x80); + memory.book = (mem & 0x20); + memory.k2 = (mem & 0x8); + memory.lockauth = (mem & 0x2); + memory.keyaccess = (mem & 0x1); + + cardsize = memory.k16 ? 255 : 32; + WDT_HIT(); + //Set card_data to all zeroes, we'll fill it with data + memset(card_data, 0x0, USB_CMD_DATA_SIZE); + uint8_t failedRead = 0; + uint32_t stored_data_length = 0; + //then loop around remaining blocks + for (int block = 0; block < cardsize; block++) { + read[1] = block; + crc = block_crc_LUT[block]; + read[2] = crc >> 8; + read[3] = crc & 0xff; + + if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) { + Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", + block, resp[0], resp[1], resp[2], + resp[3], resp[4], resp[5], + resp[6], resp[7]); + + //Fill up the buffer + memcpy(card_data+stored_data_length, resp, 8); + stored_data_length += 8; + if (stored_data_length +8 > USB_CMD_DATA_SIZE) { + //Time to send this off and start afresh + cmd_send(CMD_ACK, + stored_data_length,//data length + failedRead,//Failed blocks? + 0,//Not used ATM + card_data, stored_data_length); + //reset + stored_data_length = 0; + failedRead = 0; + } + + } else { + failedRead = 1; + stored_data_length += 8;//Otherwise, data becomes misaligned + Dbprintf("Failed to dump block %d", block); + } + } + + //Send off any remaining data + if (stored_data_length > 0) { + cmd_send(CMD_ACK, + stored_data_length,//data length + failedRead,//Failed blocks? + 0,//Not used ATM + card_data, + stored_data_length); + } + //If we got here, let's break + break; } - + //Signal end of transmission + cmd_send(CMD_ACK, + 0,//data length + 0,//Failed blocks? + 0,//Not used ATM + card_data, + 0); + LED_A_OFF(); } +void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) { + uint8_t readcheck[] = { keyType, blockNo }; + uint8_t resp[] = {0,0,0,0,0,0,0,0}; + size_t isOK = 0; + isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6); + cmd_send(CMD_ACK,isOK, 0, 0, 0, 0); +} + +void iClass_Authentication(uint8_t *MAC) { + uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; + uint8_t resp[ICLASS_BUFFER_SIZE]; + memcpy(check+5, MAC, 4); + bool isOK; + isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6); + cmd_send(CMD_ACK,isOK, 0, 0, 0, 0); +} + +bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) { + uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C? + char bl = blockNo; + uint16_t rdCrc = iclass_crc16(&bl, 1); + readcmd[2] = rdCrc >> 8; + readcmd[3] = rdCrc & 0xff; + uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0}; + bool isOK = false; + + //readcmd[1] = blockNo; + isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10); + memcpy(readdata, resp, sizeof(resp)); + + return isOK; +} + +void iClass_ReadBlk(uint8_t blockno) { + uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; + bool isOK = false; + isOK = iClass_ReadBlock(blockno, readblockdata); + cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8); +} + +void iClass_Dump(uint8_t blockno, uint8_t numblks) { + uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; + bool isOK = false; + uint8_t blkCnt = 0; + + BigBuf_free(); + uint8_t *dataout = BigBuf_malloc(255*8); + if (dataout == NULL) { + Dbprintf("out of memory"); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_D_OFF(); + cmd_send(CMD_ACK, 0, 1, 0, 0, 0); + LED_A_OFF(); + return; + } + memset(dataout, 0xFF, 255*8); + + for ( ; blkCnt < numblks; blkCnt++) { + isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); + if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again + isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); + if (!isOK) { + Dbprintf("Block %02X failed to read", blkCnt+blockno); + break; + } + } + memcpy(dataout + (blkCnt*8), readblockdata, 8); + } + //return pointer to dump memory in arg3 + cmd_send(CMD_ACK, isOK, blkCnt, BigBuf_max_traceLen(), 0, 0); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LEDsoff(); + BigBuf_free(); +} + +static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) { + uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; + //uint8_t readblockdata[10]; + //write[1] = blockNo; + memcpy(write+2, data, 12); // data + mac + char *wrCmd = (char *)(write+1); + uint16_t wrCrc = iclass_crc16(wrCmd, 13); + write[14] = wrCrc >> 8; + write[15] = wrCrc & 0xff; + uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0}; + bool isOK = false; + + isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10); + if (isOK) { //if reader responded correctly + //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]); + if (memcmp(write+2, resp, 8)) { //if response is not equal to write values + if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data) + //error try again + isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10); + } + } + } + return isOK; +} + +void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) { + bool isOK = iClass_WriteBlock_ext(blockNo, data); + if (isOK){ + Dbprintf("Write block [%02x] successful", blockNo); + } else { + Dbprintf("Write block [%02x] failed", blockNo); + } + cmd_send(CMD_ACK, isOK, 0, 0, 0, 0); +} +void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) { + int i; + int written = 0; + int total_block = (endblock - startblock) + 1; + for (i = 0; i < total_block; i++) { + // block number + if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){ + Dbprintf("Write block [%02x] successful", i + startblock); + written++; + } else { + if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){ + Dbprintf("Write block [%02x] successful", i + startblock); + written++; + } else { + Dbprintf("Write block [%02x] failed", i + startblock); + } + } + } + if (written == total_block) + Dbprintf("Clone complete"); + else + Dbprintf("Clone incomplete"); + + cmd_send(CMD_ACK, 1, 0, 0, 0, 0); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LEDsoff(); +}