X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/9983a929430904ddeb18ec3aded0afad964272ba..c0e852f907041b24bd6292756cd95826367e924e:/common/lfdemod.c

diff --git a/common/lfdemod.c b/common/lfdemod.c
index 32feab6a..f470371a 100644
--- a/common/lfdemod.c
+++ b/common/lfdemod.c
@@ -5,27 +5,69 @@
 // at your option, any later version. See the LICENSE.txt file for the text of
 // the license.
 //-----------------------------------------------------------------------------
-// Low frequency demod/decode commands
+// Low frequency demod/decode commands   - by marshmellow, holiman, iceman and
+//                                         many others who came before
+//
+// NOTES: 
+// LF Demod functions are placed here to allow the flexability to use client or
+// device side. Most BUT NOT ALL of these functions are currenlty safe for 
+// device side use currently. (DetectST for example...)
+//
+// There are likely many improvements to the code that could be made, please
+// make suggestions...
+//
+// we tried to include author comments so any questions could be directed to 
+// the source.
+//
+// There are 4 main sections of code below:
+// Utilities Section: 
+//    for general utilities used by multiple other functions
+// Clock / Bitrate Detection Section:
+//    for clock detection functions for each modulation
+// Modulation Demods &/or Decoding Section:
+//    for main general modulation demodulating and encoding decoding code.
+// Tag format detection section:
+//    for detection of specific tag formats within demodulated data
+//
+// marshmellow
 //-----------------------------------------------------------------------------
 
-#include <stdlib.h>
-#include <string.h>
+#include <string.h>  // for memset, memcmp and size_t
 #include "lfdemod.h"
-uint8_t justNoise(uint8_t *BitStream, size_t size)
-{
-	static const uint8_t THRESHOLD = 123;
+#include <stdint.h>  // for uint_32+
+#include <stdbool.h> // for bool
+#include "parity.h"  // for parity test
+
+//**********************************************************************************************
+//---------------------------------Utilities Section--------------------------------------------
+//**********************************************************************************************
+#define LOWEST_DEFAULT_CLOCK 32
+#define FSK_PSK_THRESHOLD   123
+
+//to allow debug print calls when used not on device
+void dummy(char *fmt, ...){}
+#ifndef ON_DEVICE
+#include "ui.h"
+#include "cmdparser.h"
+#include "cmddata.h"
+#define prnt PrintAndLog
+#else 
+	uint8_t g_debugMode=0;
+#define prnt dummy
+#endif
+
+uint8_t justNoise(uint8_t *BitStream, size_t size) {
 	//test samples are not just noise
 	uint8_t justNoise1 = 1;
 	for(size_t idx=0; idx < size && justNoise1 ;idx++){
-		justNoise1 = BitStream[idx] < THRESHOLD;
+		justNoise1 = BitStream[idx] < FSK_PSK_THRESHOLD;
 	}
 	return justNoise1;
 }
 
 //by marshmellow
 //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
-int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
-{
+int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) {
 	*high=0;
 	*low=255;
 	// get high and low thresholds 
@@ -33,7 +75,7 @@ int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi
 		if (BitStream[i] > *high) *high = BitStream[i];
 		if (BitStream[i] < *low) *low = BitStream[i];
 	}
-	if (*high < 123) return -1; // just noise
+	if (*high < FSK_PSK_THRESHOLD) return -1; // just noise
 	*high = ((*high-128)*fuzzHi + 12800)/100;
 	*low = ((*low-128)*fuzzLo + 12800)/100;
 	return 1;
@@ -42,244 +84,240 @@ int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi
 // by marshmellow
 // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
 // returns 1 if passed
-uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
-{
-	uint8_t ans = 0;
-	for (uint8_t i = 0; i < bitLen; i++){
-		ans ^= ((bits >> i) & 1);
+bool parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) {
+	return oddparity32(bits) ^ pType;
+}
+
+// by marshmellow
+// takes a array of binary values, start position, length of bits per parity (includes parity bit - MAX 32),
+//   Parity Type (1 for odd; 0 for even; 2 for Always 1's; 3 for Always 0's), and binary Length (length to run)
+size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) {
+	uint32_t parityWd = 0;
+	size_t bitCnt = 0;
+	for (int word = 0; word < (bLen); word+=pLen) {
+		for (int bit=0; bit < pLen; bit++) {
+			if (word+bit >= bLen) break;
+			parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
+			BitStream[bitCnt++] = (BitStream[startIdx+word+bit]);
+		}
+		if (word+pLen > bLen) break;
+
+		bitCnt--; // overwrite parity with next data
+		// if parity fails then return 0
+		switch (pType) {
+			case 3: if (BitStream[bitCnt]==1) {return 0;} break; //should be 0 spacer bit
+			case 2: if (BitStream[bitCnt]==0) {return 0;} break; //should be 1 spacer bit
+			default: if (parityTest(parityWd, pLen, pType) == 0) {return 0;} break; //test parity
+		}
+		parityWd = 0;
 	}
-	//PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
-	return (ans == pType);
+	// if we got here then all the parities passed
+	//return size
+	return bitCnt;
 }
 
-//by marshmellow
-//search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
-uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
-{
-	uint8_t foundCnt=0;
-	for (int idx=0; idx < *size - pLen; idx++){
-		if (memcmp(BitStream+idx, preamble, pLen) == 0){
+// by marshmellow
+// takes a array of binary values, length of bits per parity (includes parity bit),
+//   Parity Type (1 for odd; 0 for even; 2 Always 1's; 3 Always 0's), and binary Length (length to run)
+//   Make sure *dest is long enough to store original sourceLen + #_of_parities_to_be_added
+size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType) {
+	uint32_t parityWd = 0;
+	size_t j = 0, bitCnt = 0;
+	for (int word = 0; word < sourceLen; word+=pLen-1) {
+		for (int bit=0; bit < pLen-1; bit++){
+			parityWd = (parityWd << 1) | BitSource[word+bit];
+			dest[j++] = (BitSource[word+bit]);
+		}
+		// if parity fails then return 0
+		switch (pType) {
+			case 3: dest[j++]=0; break; // marker bit which should be a 0
+			case 2: dest[j++]=1; break; // marker bit which should be a 1
+			default: 
+				dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
+				break;
+		}
+		bitCnt += pLen;
+		parityWd = 0;
+	}
+	// if we got here then all the parities passed
+	//return ID start index and size
+	return bitCnt;
+}
+
+uint32_t bytebits_to_byte(uint8_t *src, size_t numbits) {
+	uint32_t num = 0;
+	for(int i = 0 ; i < numbits ; i++)
+	{
+		num = (num << 1) | (*src);
+		src++;
+	}
+	return num;
+}
+
+//least significant bit first
+uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits) {
+	uint32_t num = 0;
+	for(int i = 0 ; i < numbits ; i++)
+	{
+		num = (num << 1) | *(src + (numbits-(i+1)));
+	}
+	return num;
+}
+
+// search for given preamble in given BitStream and return success=1 or fail=0 and startIndex (where it was found) and length if not fineone 
+// fineone does not look for a repeating preamble for em4x05/4x69 sends preamble once, so look for it once in the first pLen bits
+bool preambleSearchEx(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx, bool findone) {
+	// Sanity check.  If preamble length is bigger than bitstream length.
+	if ( *size <= pLen ) return false;
+
+	uint8_t foundCnt = 0;
+	for (size_t idx = 0; idx < *size - pLen; idx++) {
+		if (memcmp(BitStream+idx, preamble, pLen) == 0) {
 			//first index found
 			foundCnt++;
-			if (foundCnt == 1){
+			if (foundCnt == 1) {
+				if (g_debugMode) prnt("DEBUG: preamble found at %u", idx);
 				*startIdx = idx;
-			}
-			if (foundCnt == 2){
+				if (findone) return true;
+			} else if (foundCnt == 2) {
 				*size = idx - *startIdx;
-				return 1;
+				return true;
 			}
 		}
 	}
-	return 0;
+	return false;
 }
 
 //by marshmellow
-//takes 1s and 0s and searches for EM410x format - output EM ID
-uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
-{
-	//no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
-	//  otherwise could be a void with no arguments
-	//set defaults
-	uint32_t i = 0;
-	if (BitStream[1]>1) return 0;  //allow only 1s and 0s
+//search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
+uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) {
+	return (preambleSearchEx(BitStream, preamble, pLen, size, startIdx, false)) ? 1 : 0;
+}
 
-	// 111111111 bit pattern represent start of frame
-	//  include 0 in front to help get start pos
-	uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
-	uint32_t idx = 0;
-	uint32_t parityBits = 0;
-	uint8_t errChk = 0;
-	uint8_t FmtLen = 10;
-	*startIdx = 0;
-	errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
-	if (errChk == 0 || *size < 64) return 0;
-	if (*size > 64) FmtLen = 22;
-	*startIdx += 1; //get rid of 0 from preamble
-	idx = *startIdx + 9;
-	for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits)
-		parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5);
-		//check even parity - quit if failed
-		if (parityTest(parityBits, 5, 0) == 0) return 0;
-		//set uint64 with ID from BitStream
-		for (uint8_t ii=0; ii<4; ii++){
-			*hi = (*hi << 1) | (*lo >> 63);
-			*lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]);
+// find start of modulating data (for fsk and psk) in case of beginning noise or slow chip startup.
+size_t findModStart(uint8_t dest[], size_t size, uint8_t expWaveSize) {
+	size_t i = 0;
+	size_t waveSizeCnt = 0;
+	uint8_t thresholdCnt = 0;
+	bool isAboveThreshold = dest[i++] >= FSK_PSK_THRESHOLD;
+	for (; i < size-20; i++ ) {
+		if(dest[i] < FSK_PSK_THRESHOLD && isAboveThreshold) {
+			thresholdCnt++;
+			if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break;			
+			isAboveThreshold = false;
+			waveSizeCnt = 0;
+		} else if (dest[i] >= FSK_PSK_THRESHOLD && !isAboveThreshold) {
+			thresholdCnt++;
+			if (thresholdCnt > 2 && waveSizeCnt < expWaveSize+1) break;			
+			isAboveThreshold = true;
+			waveSizeCnt = 0;
+		} else {
+			waveSizeCnt++;
 		}
+		if (thresholdCnt > 10) break;
 	}
-	if (errChk != 0) return 1;
-	//skip last 5 bit parity test for simplicity.
-	// *size = 64 | 128;
+	if (g_debugMode == 2) prnt("DEBUG: threshold Count reached at %u, count: %u",i, thresholdCnt);
+	return i;
+}
+
+int getClosestClock(int testclk) {
+	uint8_t fndClk[] = {8,16,32,40,50,64,128};
+
+	for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++)
+		if (testclk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && testclk <= fndClk[clkCnt]+1)
+			return fndClk[clkCnt];
+
 	return 0;
 }
 
-//by marshmellow
-//demodulates strong heavily clipped samples
-int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low)
-{
-	size_t bitCnt=0, smplCnt=0, errCnt=0;
-	uint8_t waveHigh = 0;
-	for (size_t i=0; i < *size; i++){
-		if (BinStream[i] >= high && waveHigh){
-			smplCnt++;
-		} else if (BinStream[i] <= low && !waveHigh){
-			smplCnt++;
-		} else { //transition
-			if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
-				if (smplCnt > clk-(clk/4)-1) { //full clock
-					if (smplCnt > clk + (clk/4)+1) { //too many samples
-						errCnt++;
-						BinStream[bitCnt++]=7;
-					} else if (waveHigh) {
-						BinStream[bitCnt++] = invert;
-						BinStream[bitCnt++] = invert;
-					} else if (!waveHigh) {
-						BinStream[bitCnt++] = invert ^ 1;
-						BinStream[bitCnt++] = invert ^ 1;
-					}
-					waveHigh ^= 1;  
-					smplCnt = 0;
-				} else if (smplCnt > (clk/2) - (clk/4)-1) {
-					if (waveHigh) {
-						BinStream[bitCnt++] = invert;
-					} else if (!waveHigh) {
-						BinStream[bitCnt++] = invert ^ 1;
-					}
-					waveHigh ^= 1;  
-					smplCnt = 0;
-				} else if (!bitCnt) {
-					//first bit
-					waveHigh = (BinStream[i] >= high);
-					smplCnt = 1;
-				} else {
-					smplCnt++;
-					//transition bit oops
-				}
-			} else { //haven't hit new high or new low yet
-				smplCnt++;
-			}
-		}
-	}
-	*size = bitCnt;
-	return errCnt;
+void getNextLow(uint8_t samples[], size_t size, int low, size_t *i) {
+	while ((samples[*i] > low) && (*i < size))
+		*i+=1;
 }
 
-//by marshmellow
-void askAmp(uint8_t *BitStream, size_t size)
-{
-	for(size_t i = 1; i<size; i++){
-		if (BitStream[i]-BitStream[i-1]>=30) //large jump up
-			BitStream[i]=127;
-		else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down
-			BitStream[i]=-127;
-	}
-	return;
+void getNextHigh(uint8_t samples[], size_t size, int high, size_t *i) {
+	while ((samples[*i] < high) && (*i < size))
+		*i+=1;
 }
 
-//by marshmellow
-//attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
-int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType)
-{
-	if (*size==0) return -1;
-	int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
-	if (*clk==0 || start < 0) return -3;
-	if (*invert != 1) *invert = 0;
-	if (amp==1) askAmp(BinStream, *size);
+// load wave counters
+bool loadWaveCounters(uint8_t samples[], size_t size, int lowToLowWaveLen[], int highToLowWaveLen[], int *waveCnt, int *skip, int *minClk, int *high, int *low) {
+	size_t i=0, firstLow, firstHigh;
+	size_t testsize = (size < 512) ? size : 512;
 
-	uint8_t initLoopMax = 255;
-	if (initLoopMax > *size) initLoopMax = *size;
-	// Detect high and lows
-	//25% clip in case highs and lows aren't clipped [marshmellow]
-	int high, low;
-	if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) 
-		return -2; //just noise
+	if ( getHiLo(samples, testsize, high, low, 80, 80) == -1 ) {
+		if (g_debugMode==2) prnt("DEBUG STT: just noise detected - quitting");
+		return false; //just noise
+	}
 
-	size_t errCnt = 0;
-	// if clean clipped waves detected run alternate demod
-	if (DetectCleanAskWave(BinStream, *size, high, low)) {
-		errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
-		if (askType) //askman
-			return manrawdecode(BinStream, size, 0);	
-		else //askraw
-			return errCnt;
+	// get to first full low to prime loop and skip incomplete first pulse
+	getNextHigh(samples, size, *high, &i);
+	getNextLow(samples, size, *low, &i);
+	*skip = i;
+
+	// populate tmpbuff buffer with pulse lengths
+	while (i < size) {
+		// measure from low to low
+		firstLow = i;
+		//find first high point for this wave
+		getNextHigh(samples, size, *high, &i);
+		firstHigh = i;
+
+		getNextLow(samples, size, *low, &i);
+
+		if (*waveCnt >= (size/LOWEST_DEFAULT_CLOCK))
+			break;
+
+		highToLowWaveLen[*waveCnt] = i - firstHigh; //first high to first low
+		lowToLowWaveLen[*waveCnt] = i - firstLow;
+		*waveCnt += 1;
+		if (i-firstLow < *minClk && i < size) {
+			*minClk = i - firstLow;
+		}
 	}
+	return true;
+}
 
-	int lastBit;  //set first clock check - can go negative
-	size_t i, bitnum = 0;     //output counter
-	uint8_t midBit = 0;
-	uint8_t tol = 0;  //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
-	if (*clk <= 32) tol = 1;    //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
-	size_t MaxBits = 1024;
-	lastBit = start - *clk;
+size_t pskFindFirstPhaseShift(uint8_t samples[], size_t size, uint8_t *curPhase, size_t waveStart, uint16_t fc, uint16_t *fullWaveLen) {
+	uint16_t loopCnt = (size+3 < 4096) ? size : 4096;  //don't need to loop through entire array...
 
-	for (i = start; i < *size; ++i) {
-		if (i-lastBit >= *clk-tol){
-			if (BinStream[i] >= high) {
-				BinStream[bitnum++] = *invert;
-			} else if (BinStream[i] <= low) {
-				BinStream[bitnum++] = *invert ^ 1;
-			} else if (i-lastBit >= *clk+tol) {
-				if (bitnum > 0) {
-					BinStream[bitnum++]=7;
-					errCnt++;						
-				} 
-			} else { //in tolerance - looking for peak
-				continue;
-			}
-			midBit = 0;
-			lastBit += *clk;
-		} else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
-			if (BinStream[i] >= high) {
-				BinStream[bitnum++] = *invert;
-			} else if (BinStream[i] <= low) {
-				BinStream[bitnum++] = *invert ^ 1;
-			} else if (i-lastBit >= *clk/2+tol) {
-				BinStream[bitnum] = BinStream[bitnum-1];
-				bitnum++;
-			} else { //in tolerance - looking for peak
-				continue;
+	uint16_t avgWaveVal=0, lastAvgWaveVal=0;
+	size_t i = waveStart, waveEnd, waveLenCnt, firstFullWave;
+	for (; i<loopCnt; i++) {
+		// find peak // was "samples[i] + fc" but why?  must have been used to weed out some wave error... removed..
+		if (samples[i] < samples[i+1] && samples[i+1] >= samples[i+2]){
+			waveEnd = i+1;
+			if (g_debugMode == 2) prnt("DEBUG PSK: waveEnd: %u, waveStart: %u", waveEnd, waveStart);
+			waveLenCnt = waveEnd-waveStart;
+			if (waveLenCnt > fc && waveStart > fc && !(waveLenCnt > fc+8)){ //not first peak and is a large wave but not out of whack
+				lastAvgWaveVal = avgWaveVal/(waveLenCnt);
+				firstFullWave = waveStart;
+				*fullWaveLen = waveLenCnt;
+				//if average wave value is > graph 0 then it is an up wave or a 1 (could cause inverting)
+				if (lastAvgWaveVal > FSK_PSK_THRESHOLD) *curPhase ^= 1;
+				return firstFullWave;
 			}
-			midBit = 1;
+			waveStart = i+1;
+			avgWaveVal = 0;
 		}
-		if (bitnum >= MaxBits) break;
+		avgWaveVal += samples[i+2];
 	}
-	*size = bitnum;
-	return errCnt;
+	return 0;
 }
 
 //by marshmellow
-//take 10 and 01 and manchester decode
-//run through 2 times and take least errCnt
-int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert)
-{
-	uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
-	size_t i, ii;
-	uint16_t bestErr = 1000, bestRun = 0;
-	if (*size < 16) return -1;
-	//find correct start position [alignment]
-	for (ii=0;ii<2;++ii){
-		for (i=ii; i<*size-3; i+=2)
-			if (BitStream[i]==BitStream[i+1])
-				errCnt++;
+//amplify based on ask edge detection  -  not accurate enough to use all the time
+void askAmp(uint8_t *BitStream, size_t size) {
+	uint8_t Last = 128;
+	for(size_t i = 1; i<size; i++){
+		if (BitStream[i]-BitStream[i-1]>=30) //large jump up
+			Last = 255;
+		else if(BitStream[i-1]-BitStream[i]>=20) //large jump down
+			Last = 0;
 
-		if (bestErr>errCnt){
-			bestErr=errCnt;
-			bestRun=ii;
-		}
-		errCnt=0;
-	}
-	//decode
-	for (i=bestRun; i < *size-3; i+=2){
-		if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
-			BitStream[bitnum++]=invert;
-		} else if((BitStream[i] == 0) && BitStream[i+1] == 1){
-			BitStream[bitnum++]=invert^1;
-		} else {
-			BitStream[bitnum++]=7;
-		}
-		if(bitnum>MaxBits) break;
+		BitStream[i-1] = Last;
 	}
-	*size=bitnum;
-	return bestErr;
+	return;
 }
 
 uint32_t manchesterEncode2Bytes(uint16_t datain) {
@@ -294,484 +332,90 @@ uint32_t manchesterEncode2Bytes(uint16_t datain) {
 
 //by marshmellow
 //encode binary data into binary manchester 
-int ManchesterEncode(uint8_t *BitStream, size_t size)
-{
-	size_t modIdx=20000, i=0;
-	if (size>modIdx) return -1;
+//NOTE: BitStream must have triple the size of "size" available in memory to do the swap
+int ManchesterEncode(uint8_t *BitStream, size_t size) {
+	//allow up to 4K out (means BitStream must be at least 2048+4096 to handle the swap)
+	size = (size>2048) ? 2048 : size;
+	size_t modIdx = size;
+	size_t i;
 	for (size_t idx=0; idx < size; idx++){
 		BitStream[idx+modIdx++] = BitStream[idx];
 		BitStream[idx+modIdx++] = BitStream[idx]^1;
 	}
-	for (; i<(size*2); i++){
-		BitStream[i] = BitStream[i+20000];
+	for (i=0; i<(size*2); i++){
+		BitStream[i] = BitStream[i+size];
 	}
 	return i;
 }
 
-//by marshmellow
-//take 01 or 10 = 1 and 11 or 00 = 0
-//check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
-//decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
-int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
-{
-	uint16_t bitnum = 0;
-	uint16_t errCnt = 0;
-	size_t i = offset;
-	uint16_t MaxBits=512;
-	//if not enough samples - error
-	if (*size < 51) return -1;
-	//check for phase change faults - skip one sample if faulty
-	uint8_t offsetA = 1, offsetB = 1;
-	for (; i<48; i+=2){
-		if (BitStream[i+1]==BitStream[i+2]) offsetA=0; 
-		if (BitStream[i+2]==BitStream[i+3]) offsetB=0;					
+// by marshmellow
+// to detect a wave that has heavily clipped (clean) samples
+uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low) {
+	bool allArePeaks = true;
+	uint16_t cntPeaks=0;
+	size_t loopEnd = 512+160;
+	if (loopEnd > size) loopEnd = size;
+	for (size_t i=160; i<loopEnd; i++){
+		if (dest[i]>low && dest[i]<high) 
+			allArePeaks = false;
+		else
+			cntPeaks++;
 	}
-	if (!offsetA && offsetB) offset++;
-	for (i=offset; i<*size-3; i+=2){
-		//check for phase error
-		if (BitStream[i+1]==BitStream[i+2]) {
-			BitStream[bitnum++]=7;
-			errCnt++;
-		}
-		if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
-			BitStream[bitnum++]=1^invert;
-		} else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
-			BitStream[bitnum++]=invert;
-		} else {
-			BitStream[bitnum++]=7;
-			errCnt++;
-		}
-		if(bitnum>MaxBits) break;
-	}
-	*size=bitnum;
-	return errCnt;
-}
-
-// by marshmellow
-// demod gProxIIDemod 
-// error returns as -x 
-// success returns start position in BitStream
-// BitStream must contain previously askrawdemod and biphasedemoded data
-int gProxII_Demod(uint8_t BitStream[], size_t *size)
-{
-	size_t startIdx=0;
-	uint8_t preamble[] = {1,1,1,1,1,0};
-
-	uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
-	if (errChk == 0) return -3; //preamble not found
-	if (*size != 96) return -2; //should have found 96 bits
-	//check first 6 spacer bits to verify format
-	if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
-		//confirmed proper separator bits found
-		//return start position
-		return (int) startIdx;
-	}
-	return -5;
-}
-
-//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
-size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
-{
-	size_t last_transition = 0;
-	size_t idx = 1;
-	//uint32_t maxVal=0;
-	if (fchigh==0) fchigh=10;
-	if (fclow==0) fclow=8;
-	//set the threshold close to 0 (graph) or 128 std to avoid static
-	uint8_t threshold_value = 123; 
-	size_t preLastSample = 0;
-	size_t LastSample = 0;
-	size_t currSample = 0;
-	// sync to first lo-hi transition, and threshold
-
-	// Need to threshold first sample
-
-	if(dest[0] < threshold_value) dest[0] = 0;
-	else dest[0] = 1;
-
-	size_t numBits = 0;
-	// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
-	// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
-	// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
-	for(idx = 1; idx < size; idx++) {
-		// threshold current value
-
-		if (dest[idx] < threshold_value) dest[idx] = 0;
-		else dest[idx] = 1;
-
-		// Check for 0->1 transition
-		if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
-			preLastSample = LastSample;
-			LastSample = currSample;
-			currSample = idx-last_transition;
-			if (currSample < (fclow-2)){            //0-5 = garbage noise
-				//do nothing with extra garbage
-			} else if (currSample < (fchigh-1)) { //6-8 = 8 sample waves
-				if (LastSample > (fchigh-2) && preLastSample < (fchigh-1)){
-					dest[numBits-1]=1;  //correct last 9 wave surrounded by 8 waves
-				}
-				dest[numBits++]=1;
-
-			} else if (currSample > (fchigh+1) && !numBits) { //12 + and first bit = garbage 
-				//do nothing with beginning garbage
-			} else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's
-				dest[numBits++]=1;
-			} else {                                         //9+ = 10 sample waves
-				dest[numBits++]=0;
-			}
-			last_transition = idx;
-		}
-	}
-	return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
-}
-
-//translate 11111100000 to 10
-size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen,
-		uint8_t invert, uint8_t fchigh, uint8_t fclow)
-{
-	uint8_t lastval=dest[0];
-	size_t idx=0;
-	size_t numBits=0;
-	uint32_t n=1;
-	for( idx=1; idx < size; idx++) {
-		n++;
-		if (dest[idx]==lastval) continue; 
-		
-		//if lastval was 1, we have a 1->0 crossing
-		if (dest[idx-1]==1) {
-			if (!numBits && n < rfLen/fclow) {
-				n=0;
-				lastval = dest[idx];
-				continue;
-			}
-			n = (n * fclow + rfLen/2) / rfLen;
-		} else {// 0->1 crossing 
-			//test first bitsample too small
-			if (!numBits && n < rfLen/fchigh) {
-				n=0;
-				lastval = dest[idx];
-				continue;
-			}
-			n = (n * fchigh + rfLen/2) / rfLen; 
-		}
-		if (n == 0) n = 1;
-
-		memset(dest+numBits, dest[idx-1]^invert , n);
-		numBits += n;
-		n=0;
-		lastval=dest[idx];
-	}//end for
-	// if valid extra bits at the end were all the same frequency - add them in
-	if (n > rfLen/fchigh) {
-		if (dest[idx-2]==1) {
-			n = (n * fclow + rfLen/2) / rfLen;
-		} else {
-			n = (n * fchigh + rfLen/2) / rfLen;
-		}
-		memset(dest+numBits, dest[idx-1]^invert , n);
-		numBits += n;
-	}
-	return numBits;
-}
-//by marshmellow  (from holiman's base)
-// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
-int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
-{
-	// FSK demodulator
-	size = fsk_wave_demod(dest, size, fchigh, fclow);
-	size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow);
-	return size;
-}
-
-// loop to get raw HID waveform then FSK demodulate the TAG ID from it
-int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
-{
-	if (justNoise(dest, *size)) return -1;
-
-	size_t numStart=0, size2=*size, startIdx=0; 
-	// FSK demodulator
-	*size = fskdemod(dest, size2,50,1,10,8); //fsk2a
-	if (*size < 96*2) return -2;
-	// 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
-	uint8_t preamble[] = {0,0,0,1,1,1,0,1};
-	// find bitstring in array  
-	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
-	if (errChk == 0) return -3; //preamble not found
-
-	numStart = startIdx + sizeof(preamble);
-	// final loop, go over previously decoded FSK data and manchester decode into usable tag ID
-	for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
-		if (dest[idx] == dest[idx+1]){
-			return -4; //not manchester data
-		}
-		*hi2 = (*hi2<<1)|(*hi>>31);
-		*hi = (*hi<<1)|(*lo>>31);
-		//Then, shift in a 0 or one into low
-		if (dest[idx] && !dest[idx+1])  // 1 0
-			*lo=(*lo<<1)|1;
-		else // 0 1
-			*lo=(*lo<<1)|0;
-	}
-	return (int)startIdx;
-}
-
-// loop to get raw paradox waveform then FSK demodulate the TAG ID from it
-int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
-{
-	if (justNoise(dest, *size)) return -1;
-	
-	size_t numStart=0, size2=*size, startIdx=0;
-	// FSK demodulator
-	*size = fskdemod(dest, size2,50,1,10,8); //fsk2a
-	if (*size < 96) return -2;
-
-	// 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
-	uint8_t preamble[] = {0,0,0,0,1,1,1,1};
-
-	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
-	if (errChk == 0) return -3; //preamble not found
-
-	numStart = startIdx + sizeof(preamble);
-	// final loop, go over previously decoded FSK data and manchester decode into usable tag ID
-	for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
-		if (dest[idx] == dest[idx+1]) 
-			return -4; //not manchester data
-		*hi2 = (*hi2<<1)|(*hi>>31);
-		*hi = (*hi<<1)|(*lo>>31);
-		//Then, shift in a 0 or one into low
-		if (dest[idx] && !dest[idx+1])	// 1 0
-			*lo=(*lo<<1)|1;
-		else // 0 1
-			*lo=(*lo<<1)|0;
-	}
-	return (int)startIdx;
-}
-
-uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
-{
-	uint32_t num = 0;
-	for(int i = 0 ; i < numbits ; i++)
-	{
-		num = (num << 1) | (*src);
-		src++;
-	}
-	return num;
-}
-
-//least significant bit first
-uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
-{
-	uint32_t num = 0;
-	for(int i = 0 ; i < numbits ; i++)
-	{
-		num = (num << 1) | *(src + (numbits-(i+1)));
-	}
-	return num;
-}
-
-int IOdemodFSK(uint8_t *dest, size_t size)
-{
-	if (justNoise(dest, size)) return -1;
-	//make sure buffer has data
-	if (size < 66*64) return -2;
-	// FSK demodulator
-	size = fskdemod(dest, size, 64, 1, 10, 8);  // FSK2a RF/64 
-	if (size < 65) return -3;  //did we get a good demod?
-	//Index map
-	//0           10          20          30          40          50          60
-	//|           |           |           |           |           |           |
-	//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
-	//-----------------------------------------------------------------------------
-	//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
-	//
-	//XSF(version)facility:codeone+codetwo
-	//Handle the data
-	size_t startIdx = 0;
-	uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
-	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
-	if (errChk == 0) return -4; //preamble not found
-
-	if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
-		//confirmed proper separator bits found
-		//return start position
-		return (int) startIdx;
-	}
-	return -5;
-} 
-
-// by marshmellow
-// find viking preamble 0xF200 in already demoded data
-int VikingDemod_AM(uint8_t *dest, size_t *size) {
-	//make sure buffer has data
-	if (*size < 64*2) return -2;
-
-	size_t startIdx = 0;
-	uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
-	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
-	if (errChk == 0) return -4; //preamble not found
-	uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8)
-	    ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8) 
-	    ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8);
-	if ( checkCalc != 0xA8 ) return -5;
-	if (*size != 64) return -6;
-	//return start position
-	return (int) startIdx;
-}
-
-// by marshmellow
-// takes a array of binary values, start position, length of bits per parity (includes parity bit),
-//   Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run) 
-size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
-{
-	uint32_t parityWd = 0;
-	size_t j = 0, bitCnt = 0;
-	for (int word = 0; word < (bLen); word+=pLen){
-		for (int bit=0; bit < pLen; bit++){
-			parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
-			BitStream[j++] = (BitStream[startIdx+word+bit]);
-		}
-		j--; // overwrite parity with next data
-		// if parity fails then return 0
-		if (pType == 2) { // then marker bit which should be a 1
-			if (!BitStream[j]) return 0;
-		} else {
-			if (parityTest(parityWd, pLen, pType) == 0) return 0;			
-		}
-		bitCnt+=(pLen-1);
-		parityWd = 0;
+	if (!allArePeaks){
+		if (cntPeaks > 300) return true;
 	}
-	// if we got here then all the parities passed
-	//return ID start index and size
-	return bitCnt;
+	return allArePeaks;
 }
 
-// Ask/Biphase Demod then try to locate an ISO 11784/85 ID
-// BitStream must contain previously askrawdemod and biphasedemoded data
-int FDXBdemodBI(uint8_t *dest, size_t *size)
-{
-	//make sure buffer has enough data
-	if (*size < 128) return -1;
-
-	size_t startIdx = 0;
-	uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
-
-	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
-	if (errChk == 0) return -2; //preamble not found
-	return (int)startIdx;
-}
-
-// by marshmellow
-// FSK Demod then try to locate an AWID ID
-int AWIDdemodFSK(uint8_t *dest, size_t *size)
-{
-	//make sure buffer has enough data
-	if (*size < 96*50) return -1;
-
-	if (justNoise(dest, *size)) return -2;
-
-	// FSK demodulator
-	*size = fskdemod(dest, *size, 50, 1, 10, 8);  // fsk2a RF/50 
-	if (*size < 96) return -3;  //did we get a good demod?
-
-	uint8_t preamble[] = {0,0,0,0,0,0,0,1};
-	size_t startIdx = 0;
-	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
-	if (errChk == 0) return -4; //preamble not found
-	if (*size != 96) return -5;
-	return (int)startIdx;
-}
-
-// by marshmellow
-// FSK Demod then try to locate an Farpointe Data (pyramid) ID
-int PyramiddemodFSK(uint8_t *dest, size_t *size)
-{
-	//make sure buffer has data
-	if (*size < 128*50) return -5;
-
-	//test samples are not just noise
-	if (justNoise(dest, *size)) return -1;
-
-	// FSK demodulator
-	*size = fskdemod(dest, *size, 50, 1, 10, 8);  // fsk2a RF/50 
-	if (*size < 128) return -2;  //did we get a good demod?
-
-	uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
-	size_t startIdx = 0;
-	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
-	if (errChk == 0) return -4; //preamble not found
-	if (*size != 128) return -3;
-	return (int)startIdx;
-}
-
-// by marshmellow
-// to detect a wave that has heavily clipped (clean) samples
-uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
-{
-	uint16_t allPeaks=1;
-	uint16_t cntPeaks=0;
-	size_t loopEnd = 512+60;
-	if (loopEnd > size) loopEnd = size;
-	for (size_t i=60; i<loopEnd; i++){
-		if (dest[i]>low && dest[i]<high) 
-			allPeaks=0;
-		else
-			cntPeaks++;
-	}
-	if (allPeaks == 0){
-		if (cntPeaks > 300) return 1;
-	}
-	return allPeaks;
-}
+//**********************************************************************************************
+//-------------------Clock / Bitrate Detection Section------------------------------------------
+//**********************************************************************************************
 
 // by marshmellow
 // to help detect clocks on heavily clipped samples
 // based on count of low to low
-int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
-{
-	uint8_t fndClk[] = {8,16,32,40,50,64,128};
+int DetectStrongAskClock(uint8_t dest[], size_t size, int high, int low, int *clock) {
 	size_t startwave;
-	size_t i = 0;
+	size_t i = 100;
 	size_t minClk = 255;
+	int shortestWaveIdx = 0;
 		// get to first full low to prime loop and skip incomplete first pulse
-	while ((dest[i] < high) && (i < size))
-		++i;
-	while ((dest[i] > low) && (i < size))
-		++i;
+	getNextHigh(dest, size, high, &i);
+	getNextLow(dest, size, low, &i);
 
 	// loop through all samples
 	while (i < size) {
 		// measure from low to low
-		while ((dest[i] > low) && (i < size))
-			++i;
-		startwave= i;
-		while ((dest[i] < high) && (i < size))
-			++i;
-		while ((dest[i] > low) && (i < size))
-			++i;
+		startwave = i;
+
+		getNextHigh(dest, size, high, &i);
+		getNextLow(dest, size, low, &i);
 		//get minimum measured distance
-		if (i-startwave < minClk && i < size)
+		if (i-startwave < minClk && i < size) {
 			minClk = i - startwave;
+			shortestWaveIdx = startwave;
+		}
 	}
 	// set clock
-	for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
-		if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
-			return fndClk[clkCnt];
-	}
-	return 0;
+	if (g_debugMode==2) prnt("DEBUG ASK: DetectStrongAskClock smallest wave: %d",minClk);
+	*clock = getClosestClock(minClk);
+	if (*clock == 0) 
+		return 0;
+	
+	return shortestWaveIdx;
 }
 
 // by marshmellow
 // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
 // maybe somehow adjust peak trimming value based on samples to fix?
 // return start index of best starting position for that clock and return clock (by reference)
-int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
-{
+int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) {
 	size_t i=1;
 	uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255};
 	uint8_t clkEnd = 9;
 	uint8_t loopCnt = 255;  //don't need to loop through entire array...
-	if (size <= loopCnt) return -1; //not enough samples
-
+	if (size <= loopCnt+60) return -1; //not enough samples
+	size -= 60; //sometimes there is a strange end wave - filter out this....
 	//if we already have a valid clock
 	uint8_t clockFnd=0;
 	for (;i<clkEnd;++i)
@@ -785,96 +429,340 @@ int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
 	//test for large clean peaks
 	if (!clockFnd){
 		if (DetectCleanAskWave(dest, size, peak, low)==1){
-			int ans = DetectStrongAskClock(dest, size, peak, low);
-			for (i=clkEnd-1; i>0; i--){
-				if (clk[i] == ans) {
-					*clock = ans;
-					//clockFnd = i;
-					return 0;  // for strong waves i don't use the 'best start position' yet...
-					//break; //clock found but continue to find best startpos [not yet]
+			int ans = DetectStrongAskClock(dest, size, peak, low, clock);
+			if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %i, ShortestWave: %i",clock, ans);
+			if (ans > 0) {
+				return ans; //return shortest wave start position
+			}
+		}
+	}
+	uint8_t ii;
+	uint8_t clkCnt, tol = 0;
+	uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
+	uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
+	size_t errCnt = 0;
+	size_t arrLoc, loopEnd;
+
+	if (clockFnd>0) {
+		clkCnt = clockFnd;
+		clkEnd = clockFnd+1;
+	}
+	else clkCnt=1;
+
+	//test each valid clock from smallest to greatest to see which lines up
+	for(; clkCnt < clkEnd; clkCnt++){
+		if (clk[clkCnt] <= 32){
+			tol=1;
+		}else{
+			tol=0;
+		}
+		//if no errors allowed - keep start within the first clock
+		if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2;
+		bestErr[clkCnt]=1000;
+		//try lining up the peaks by moving starting point (try first few clocks)
+		for (ii=0; ii < loopCnt; ii++){
+			if (dest[ii] < peak && dest[ii] > low) continue;
+
+			errCnt=0;
+			// now that we have the first one lined up test rest of wave array
+			loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
+			for (i=0; i < loopEnd; ++i){
+				arrLoc = ii + (i * clk[clkCnt]);
+				if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
+				}else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
+				}else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
+				}else{  //error no peak detected
+					errCnt++;
+				}
+			}
+			//if we found no errors then we can stop here and a low clock (common clocks)
+			//  this is correct one - return this clock
+			if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i);
+			if(errCnt==0 && clkCnt<7) { 
+				if (!clockFnd) *clock = clk[clkCnt];
+				return ii;
+			}
+			//if we found errors see if it is lowest so far and save it as best run
+			if(errCnt<bestErr[clkCnt]){
+				bestErr[clkCnt]=errCnt;
+				bestStart[clkCnt]=ii;
+			}
+		}
+	}
+	uint8_t iii;
+	uint8_t best=0;
+	for (iii=1; iii<clkEnd; ++iii){
+		if (bestErr[iii] < bestErr[best]){
+			if (bestErr[iii] == 0) bestErr[iii]=1;
+			// current best bit to error ratio     vs  new bit to error ratio
+			if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){
+				best = iii;
+			}
+		}
+		if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]);
+	}
+	if (!clockFnd) *clock = clk[best];
+	return bestStart[best];
+}
+
+int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low, bool *strong) {
+	//find shortest transition from high to low
+	*strong = false;
+	size_t i = 0;
+	size_t transition1 = 0;
+	int lowestTransition = 255;
+	bool lastWasHigh = false;
+	size_t transitionSampleCount = 0;
+	//find first valid beginning of a high or low wave
+	while ((dest[i] >= peak || dest[i] <= low) && (i < size))
+		++i;
+	while ((dest[i] < peak && dest[i] > low) && (i < size))
+		++i;
+	lastWasHigh = (dest[i] >= peak);
+
+	if (i==size) return 0;
+	transition1 = i;
+
+	for (;i < size; i++) {
+		if ((dest[i] >= peak && !lastWasHigh) || (dest[i] <= low && lastWasHigh)) {
+			lastWasHigh = (dest[i] >= peak);
+			if (i-transition1 < lowestTransition) lowestTransition = i-transition1;
+			transition1 = i;
+		} else if (dest[i] < peak && dest[i] > low) {
+			transitionSampleCount++;
+		}
+	}
+	if (lowestTransition == 255) lowestTransition = 0;
+	if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
+	// if less than 10% of the samples were not peaks (or 90% were peaks) then we have a strong wave
+	if (transitionSampleCount / size < 10) {
+		*strong = true;
+		lowestTransition = getClosestClock(lowestTransition);
+	}
+	return lowestTransition;
+}
+
+//by marshmellow
+//detect nrz clock by reading #peaks vs no peaks(or errors)
+int DetectNRZClock(uint8_t dest[], size_t size, int clock, size_t *clockStartIdx) {
+	size_t i=0;
+	uint8_t clk[]={8,16,32,40,50,64,100,128,255};
+	size_t loopCnt = 4096;  //don't need to loop through entire array...
+	if (size == 0) return 0;
+	if (size<loopCnt) loopCnt = size-20;
+	//if we already have a valid clock quit
+	for (; i < 8; ++i)
+		if (clk[i] == clock) return clock;
+
+	//get high and low peak
+	int peak, low;
+	if (getHiLo(dest, loopCnt, &peak, &low, 90, 90) < 1) return 0;
+
+	bool strong = false;
+	int lowestTransition = DetectStrongNRZClk(dest, size-20, peak, low, &strong);
+	if (strong) return lowestTransition;
+	size_t ii;
+	uint8_t clkCnt;
+	uint8_t tol = 0;
+	uint16_t smplCnt = 0;
+	int16_t peakcnt = 0;
+	int16_t peaksdet[] = {0,0,0,0,0,0,0,0};
+	uint16_t minPeak = 255;
+	bool firstpeak = true;
+	//test for large clipped waves - ignore first peak
+	for (i=0; i<loopCnt; i++) {
+		if (dest[i] >= peak || dest[i] <= low) {
+			if (firstpeak) continue;
+			smplCnt++;
+		} else {
+			firstpeak = false;
+			if (smplCnt > 0) {
+				if (minPeak > smplCnt && smplCnt > 7) minPeak = smplCnt;
+				peakcnt++;
+				if (g_debugMode == 2) prnt("DEBUG NRZ: minPeak: %d, smplCnt: %d, peakcnt: %d",minPeak,smplCnt,peakcnt);
+				smplCnt = 0;				
+			}
+		}
+	}
+	if (minPeak < 8) return 0;
+	bool errBitHigh = 0;
+	bool bitHigh = 0;
+	uint8_t ignoreCnt = 0;
+	uint8_t ignoreWindow = 4;
+	bool lastPeakHigh = 0;
+	int lastBit = 0; 
+	size_t bestStart[]={0,0,0,0,0,0,0,0,0};
+	peakcnt=0;
+	//test each valid clock from smallest to greatest to see which lines up
+	for(clkCnt=0; clkCnt < 8; ++clkCnt) {
+		//ignore clocks smaller than smallest peak
+		if (clk[clkCnt] < minPeak - (clk[clkCnt]/4)) continue;
+		//try lining up the peaks by moving starting point (try first 256)
+		for (ii=20; ii < loopCnt; ++ii) {
+			if ((dest[ii] >= peak) || (dest[ii] <= low)) {
+				peakcnt = 0;
+				bitHigh = false;
+				ignoreCnt = 0;
+				lastBit = ii-clk[clkCnt]; 
+				//loop through to see if this start location works
+				for (i = ii; i < size-20; ++i) {
+					//if we are at a clock bit
+					if ((i >= lastBit + clk[clkCnt] - tol) && (i <= lastBit + clk[clkCnt] + tol)) {
+						//test high/low
+						if (dest[i] >= peak || dest[i] <= low) {
+							//if same peak don't count it
+							if ((dest[i] >= peak && !lastPeakHigh) || (dest[i] <= low && lastPeakHigh)) {
+								peakcnt++;
+							}
+							lastPeakHigh = (dest[i] >= peak);
+							bitHigh = true;
+							errBitHigh = false;
+							ignoreCnt = ignoreWindow;
+							lastBit += clk[clkCnt];
+						} else if (i == lastBit + clk[clkCnt] + tol) {
+							lastBit += clk[clkCnt];
+						}
+					//else if not a clock bit and no peaks
+					} else if (dest[i] < peak && dest[i] > low) {
+						if (ignoreCnt==0) {
+							bitHigh=false;
+							if (errBitHigh==true) peakcnt--;
+							errBitHigh=false;
+						} else {
+							ignoreCnt--;
+						}
+						// else if not a clock bit but we have a peak
+					} else if ((dest[i]>=peak || dest[i]<=low) && (!bitHigh)) {
+						//error bar found no clock...
+						errBitHigh=true;
+					}
 				}
+				if(peakcnt>peaksdet[clkCnt]) {
+					bestStart[clkCnt]=ii;
+					peaksdet[clkCnt]=peakcnt;
+				}
+			}
+		}
+	}
+	int iii=7;
+	uint8_t best=0;
+	for (iii=7; iii > 0; iii--) {
+		if ((peaksdet[iii] >= (peaksdet[best]-1)) && (peaksdet[iii] <= peaksdet[best]+1) && lowestTransition) {
+			if (clk[iii] > (lowestTransition - (clk[iii]/8)) && clk[iii] < (lowestTransition + (clk[iii]/8))) {
+				best = iii;
 			}
+		} else if (peaksdet[iii] > peaksdet[best]) {
+			best = iii;
 		}
+		if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, minPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],minPeak, clk[best], lowestTransition);
 	}
-	
-	uint8_t ii;
-	uint8_t clkCnt, tol = 0;
-	uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
-	uint8_t bestStart[]={0,0,0,0,0,0,0,0,0};
-	size_t errCnt = 0;
-	size_t arrLoc, loopEnd;
+	*clockStartIdx	= bestStart[best];
+	return clk[best];
+}
 
-	if (clockFnd>0) {
-		clkCnt = clockFnd;
-		clkEnd = clockFnd+1;
-	}
-	else clkCnt=1;
+//by marshmellow
+//countFC is to detect the field clock lengths.
+//counts and returns the 2 most common wave lengths
+//mainly used for FSK field clock detection
+uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) {
+	uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+	uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+	uint8_t fcLensFnd = 0;
+	uint8_t lastFCcnt = 0;
+	uint8_t fcCounter = 0;
+	size_t i;
+	if (size < 180) return 0;
 
-	//test each valid clock from smallest to greatest to see which lines up
-	for(; clkCnt < clkEnd; clkCnt++){
-		if (clk[clkCnt] <= 32){
-			tol=1;
-		}else{
-			tol=0;
-		}
-		//if no errors allowed - keep start within the first clock
-		if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2;
-		bestErr[clkCnt]=1000;
-		//try lining up the peaks by moving starting point (try first few clocks)
-		for (ii=0; ii < loopCnt; ii++){
-			if (dest[ii] < peak && dest[ii] > low) continue;
+	// prime i to first up transition
+	for (i = 160; i < size-20; i++)
+		if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
+			break;
 
-			errCnt=0;
-			// now that we have the first one lined up test rest of wave array
-			loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1;
-			for (i=0; i < loopEnd; ++i){
-				arrLoc = ii + (i * clk[clkCnt]);
-				if (dest[arrLoc] >= peak || dest[arrLoc] <= low){
-				}else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){
-				}else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){
-				}else{  //error no peak detected
-					errCnt++;
-				}
+	for (; i < size-20; i++){
+		if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
+			// new up transition
+			fcCounter++;
+			if (fskAdj){
+				//if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
+				if (lastFCcnt==5 && fcCounter==9) fcCounter--;
+				//if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
+				if ((fcCounter==9) || fcCounter==4) fcCounter++;
+			// save last field clock count  (fc/xx)
+			lastFCcnt = fcCounter;
 			}
-			//if we found no errors then we can stop here and a low clock (common clocks)
-			//  this is correct one - return this clock
-					//PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
-			if(errCnt==0 && clkCnt<7) { 
-				if (!clockFnd) *clock = clk[clkCnt];
-				return ii;
+			// find which fcLens to save it to:
+			for (int ii=0; ii<15; ii++){
+				if (fcLens[ii]==fcCounter){
+					fcCnts[ii]++;
+					fcCounter=0;
+					break;
+				}
 			}
-			//if we found errors see if it is lowest so far and save it as best run
-			if(errCnt<bestErr[clkCnt]){
-				bestErr[clkCnt]=errCnt;
-				bestStart[clkCnt]=ii;
+			if (fcCounter>0 && fcLensFnd<15){
+				//add new fc length 
+				fcCnts[fcLensFnd]++;
+				fcLens[fcLensFnd++]=fcCounter;
 			}
+			fcCounter=0;
+		} else {
+			// count sample
+			fcCounter++;
 		}
 	}
-	uint8_t iii;
-	uint8_t best=0;
-	for (iii=1; iii<clkEnd; ++iii){
-		if (bestErr[iii] < bestErr[best]){
-			if (bestErr[iii] == 0) bestErr[iii]=1;
-			// current best bit to error ratio     vs  new bit to error ratio
-			if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){
-				best = iii;
-			}
+	
+	uint8_t best1=14, best2=14, best3=14;
+	uint16_t maxCnt1=0;
+	// go through fclens and find which ones are bigest 2  
+	for (i=0; i<15; i++){
+		// get the 3 best FC values
+		if (fcCnts[i]>maxCnt1) {
+			best3=best2;
+			best2=best1;
+			maxCnt1=fcCnts[i];
+			best1=i;
+		} else if(fcCnts[i]>fcCnts[best2]){
+			best3=best2;
+			best2=i;
+		} else if(fcCnts[i]>fcCnts[best3]){
+			best3=i;
 		}
+		if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
+		if (fcLens[i]==0) break;
 	}
-	//if (bestErr[best] > maxErr) return -1;
-	if (!clockFnd) *clock = clk[best];
-	return bestStart[best];
+	if (fcLens[best1]==0) return 0;
+	uint8_t fcH=0, fcL=0;
+	if (fcLens[best1]>fcLens[best2]){
+		fcH=fcLens[best1];
+		fcL=fcLens[best2];
+	} else{
+		fcH=fcLens[best2];
+		fcL=fcLens[best1];
+	}
+	if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
+		if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
+		return 0; //lots of waves not psk or fsk
+	}
+	// TODO: take top 3 answers and compare to known Field clocks to get top 2
+
+	uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
+	if (fskAdj) return fcs;
+	return (uint16_t)fcLens[best2] << 8 | fcLens[best1];
 }
 
 //by marshmellow
 //detect psk clock by reading each phase shift
 // a phase shift is determined by measuring the sample length of each wave
-int DetectPSKClock(uint8_t dest[], size_t size, int clock)
-{
+int DetectPSKClock(uint8_t dest[], size_t size, int clock, size_t *firstPhaseShift, uint8_t *curPhase, uint8_t *fc) {
 	uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock
 	uint16_t loopCnt = 4096;  //don't need to loop through entire array...
 	if (size == 0) return 0;
-	if (size<loopCnt) loopCnt = size;
+	if (size+3<loopCnt) loopCnt = size-20;
+
+	uint16_t fcs = countFC(dest, size, 0);
+	*fc = fcs & 0xFF;
+	if (g_debugMode==2) prnt("DEBUG PSK: FC: %d, FC2: %d",*fc, fcs>>8);
+	if ((fcs>>8) == 10 && *fc == 8) return 0;
+	if (*fc!=2 && *fc!=4 && *fc!=8) return 0;
 
 	//if we already have a valid clock quit
 	size_t i=1;
@@ -882,570 +770,819 @@ int DetectPSKClock(uint8_t dest[], size_t size, int clock)
 		if (clk[i] == clock) return clock;
 
 	size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0;
-	uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1;
-	uint16_t peakcnt=0, errCnt=0, waveLenCnt=0;
+
+	uint8_t clkCnt, tol=1;
+	uint16_t peakcnt=0, errCnt=0, waveLenCnt=0, fullWaveLen=0;
 	uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
 	uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
-	fc = countFC(dest, size, 0);
-	if (fc!=2 && fc!=4 && fc!=8) return -1;
-	//PrintAndLog("DEBUG: FC: %d",fc);
 
-	//find first full wave
-	for (i=0; i<loopCnt; i++){
-		if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
-			if (waveStart == 0) {
-				waveStart = i+1;
-				//PrintAndLog("DEBUG: waveStart: %d",waveStart);
+	//find start of modulating data in trace 
+	i = findModStart(dest, size, *fc);
+
+	firstFullWave = pskFindFirstPhaseShift(dest, size, curPhase, i, *fc, &fullWaveLen);
+	if (firstFullWave == 0) {
+		// no phase shift detected - could be all 1's or 0's - doesn't matter where we start
+		// so skip a little to ensure we are past any Start Signal
+		firstFullWave = 160;
+		fullWaveLen = 0;
+	}
+
+	*firstPhaseShift = firstFullWave;
+	if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
+	//test each valid clock from greatest to smallest to see which lines up
+	for(clkCnt=7; clkCnt >= 1 ; clkCnt--) {
+		tol = *fc/2;
+		lastClkBit = firstFullWave; //set end of wave as clock align
+		waveStart = 0;
+		errCnt=0;
+		peakcnt=0;
+		if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
+
+		for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
+			//top edge of wave = start of new wave 
+			if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
+				if (waveStart == 0) {
+					waveStart = i+1;
+					waveLenCnt=0;
+				} else { //waveEnd
+					waveEnd = i+1;
+					waveLenCnt = waveEnd-waveStart;
+					if (waveLenCnt > *fc){ 
+						//if this wave is a phase shift
+						if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,*fc);
+						if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
+							peakcnt++;
+							lastClkBit+=clk[clkCnt];
+						} else if (i<lastClkBit+8){
+							//noise after a phase shift - ignore
+						} else { //phase shift before supposed to based on clock
+							errCnt++;
+						}
+					} else if (i+1 > lastClkBit + clk[clkCnt] + tol + *fc){
+						lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
+					}
+					waveStart=i+1;
+				}
+			}
+		}
+		if (errCnt == 0){
+			return clk[clkCnt];
+		}
+		if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
+		if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
+	} 
+	//all tested with errors 
+	//return the highest clk with the most peaks found
+	uint8_t best=7;
+	for (i=7; i>=1; i--){
+		if (peaksdet[i] > peaksdet[best]) {
+			best = i;
+		}
+		if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
+	}
+	return clk[best];
+}
+
+//by marshmellow
+//detects the bit clock for FSK given the high and low Field Clocks
+uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow, int *firstClockEdge) {
+	uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
+	uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+	uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+	uint8_t rfLensFnd = 0;
+	uint8_t lastFCcnt = 0;
+	uint16_t fcCounter = 0;
+	uint16_t rfCounter = 0;
+	uint8_t firstBitFnd = 0;
+	size_t i;
+	if (size == 0) return 0;
+
+	uint8_t fcTol = ((fcHigh*100 - fcLow*100)/2 + 50)/100; //(uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
+	rfLensFnd=0;
+	fcCounter=0;
+	rfCounter=0;
+	firstBitFnd=0;
+	//PrintAndLog("DEBUG: fcTol: %d",fcTol);
+	// prime i to first peak / up transition
+	for (i = 160; i < size-20; i++)
+		if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
+			break;
+
+	for (; i < size-20; i++){
+		fcCounter++;
+		rfCounter++;
+
+		if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) 
+			continue;		
+		// else new peak 
+		// if we got less than the small fc + tolerance then set it to the small fc
+		// if it is inbetween set it to the last counter
+		if (fcCounter < fcHigh && fcCounter > fcLow)
+			fcCounter = lastFCcnt;
+		else if (fcCounter < fcLow+fcTol) 
+			fcCounter = fcLow;
+		else //set it to the large fc
+			fcCounter = fcHigh;
+
+		//look for bit clock  (rf/xx)
+		if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
+			//not the same size as the last wave - start of new bit sequence
+			if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
+				for (int ii=0; ii<15; ii++){
+					if (rfLens[ii] >= (rfCounter-4) && rfLens[ii] <= (rfCounter+4)){
+						rfCnts[ii]++;
+						rfCounter = 0;
+						break;
+					}
+				}
+				if (rfCounter > 0 && rfLensFnd < 15){
+					//PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
+					rfCnts[rfLensFnd]++;
+					rfLens[rfLensFnd++] = rfCounter;
+				}
 			} else {
-				waveEnd = i+1;
-				//PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
-				waveLenCnt = waveEnd-waveStart;
-				if (waveLenCnt > fc){
-					firstFullWave = waveStart;
-					fullWaveLen=waveLenCnt;
+				*firstClockEdge = i;
+				firstBitFnd++;
+			}
+			rfCounter=0;
+			lastFCcnt=fcCounter;
+		}
+		fcCounter=0;
+	}
+	uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
+
+	for (i=0; i<15; i++){
+		//get highest 2 RF values  (might need to get more values to compare or compare all?)
+		if (rfCnts[i]>rfCnts[rfHighest]){
+			rfHighest3=rfHighest2;
+			rfHighest2=rfHighest;
+			rfHighest=i;
+		} else if(rfCnts[i]>rfCnts[rfHighest2]){
+			rfHighest3=rfHighest2;
+			rfHighest2=i;
+		} else if(rfCnts[i]>rfCnts[rfHighest3]){
+			rfHighest3=i;
+		}
+		if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
+	}  
+	// set allowed clock remainder tolerance to be 1 large field clock length+1 
+	//   we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off  
+	uint8_t tol1 = fcHigh+1; 
+	
+	if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
+
+	// loop to find the highest clock that has a remainder less than the tolerance
+	//   compare samples counted divided by
+	// test 128 down to 32 (shouldn't be possible to have fc/10 & fc/8 and rf/16 or less)
+	int ii=7;
+	for (; ii>=2; ii--){
+		if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
+			if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
+				if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
+					if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
 					break;
-				} 
-				waveStart=0;
+				}
 			}
 		}
 	}
-	//PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
-	
-	//test each valid clock from greatest to smallest to see which lines up
-	for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
-		lastClkBit = firstFullWave; //set end of wave as clock align
-		waveStart = 0;
-		errCnt=0;
-		peakcnt=0;
-		//PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
 
-		for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
-			//top edge of wave = start of new wave 
-			if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){
-				if (waveStart == 0) {
-					waveStart = i+1;
-					waveLenCnt=0;
-				} else { //waveEnd
-					waveEnd = i+1;
-					waveLenCnt = waveEnd-waveStart;
-					if (waveLenCnt > fc){ 
-						//if this wave is a phase shift
-						//PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
-						if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
-							peakcnt++;
-							lastClkBit+=clk[clkCnt];
-						} else if (i<lastClkBit+8){
-							//noise after a phase shift - ignore
-						} else { //phase shift before supposed to based on clock
-							errCnt++;
-						}
-					} else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){
-						lastClkBit+=clk[clkCnt]; //no phase shift but clock bit
+	if (ii<2) return 0; // oops we went too far
+
+	return clk[ii];
+}
+
+//**********************************************************************************************
+//--------------------Modulation Demods &/or Decoding Section-----------------------------------
+//**********************************************************************************************
+
+// look for Sequence Terminator - should be pulses of clk*(1 or 2), clk*2, clk*(1.5 or 2), by idx we mean graph position index...
+bool findST(int *stStopLoc, int *stStartIdx, int lowToLowWaveLen[], int highToLowWaveLen[], int clk, int tol, int buffSize, size_t *i) {
+	if (buffSize < *i+4) return false;
+
+	for (; *i < buffSize - 4; *i+=1) {
+		*stStartIdx += lowToLowWaveLen[*i]; //caution part of this wave may be data and part may be ST....  to be accounted for in main function for now...
+		if (lowToLowWaveLen[*i] >= clk*1-tol && lowToLowWaveLen[*i] <= (clk*2)+tol && highToLowWaveLen[*i] < clk+tol) {           //1 to 2 clocks depending on 2 bits prior
+			if (lowToLowWaveLen[*i+1] >= clk*2-tol && lowToLowWaveLen[*i+1] <= clk*2+tol && highToLowWaveLen[*i+1] > clk*3/2-tol) {       //2 clocks and wave size is 1 1/2
+				if (lowToLowWaveLen[*i+2] >= (clk*3)/2-tol && lowToLowWaveLen[*i+2] <= clk*2+tol && highToLowWaveLen[*i+2] > clk-tol) { //1 1/2 to 2 clocks and at least one full clock wave
+					if (lowToLowWaveLen[*i+3] >= clk*1-tol && lowToLowWaveLen[*i+3] <= clk*2+tol) { //1 to 2 clocks for end of ST + first bit
+						*stStopLoc = *i + 3;
+						return true;
 					}
-					waveStart=i+1;
 				}
 			}
 		}
-		if (errCnt == 0){
-			return clk[clkCnt];
+	}
+	return false;
+}
+//by marshmellow
+//attempt to identify a Sequence Terminator in ASK modulated raw wave
+bool DetectST(uint8_t buffer[], size_t *size, int *foundclock, size_t *ststart, size_t *stend) {
+	size_t bufsize = *size;
+	//need to loop through all samples and identify our clock, look for the ST pattern
+	int clk = 0; 
+	int tol = 0;
+	int j=0, high, low, skip=0, start=0, end=0, minClk=255;
+	size_t i = 0;
+	//probably should malloc... || test if memory is available ... handle device side? memory danger!!! [marshmellow]
+	int tmpbuff[bufsize / LOWEST_DEFAULT_CLOCK]; // low to low wave count //guess rf/32 clock, if click is smaller we will only have room for a fraction of the samples captured
+	int waveLen[bufsize / LOWEST_DEFAULT_CLOCK]; // high to low wave count //if clock is larger then we waste memory in array size that is not needed...
+	//size_t testsize = (bufsize < 512) ? bufsize : 512;
+	int phaseoff = 0;
+	high = low = 128;
+	memset(tmpbuff, 0, sizeof(tmpbuff));
+	memset(waveLen, 0, sizeof(waveLen));
+
+	if (!loadWaveCounters(buffer, bufsize, tmpbuff, waveLen, &j, &skip, &minClk, &high, &low)) return false;
+	// set clock  - might be able to get this externally and remove this work...
+	clk = getClosestClock(minClk);
+	// clock not found - ERROR
+	if (clk == 0) {
+		if (g_debugMode==2) prnt("DEBUG STT: clock not found - quitting");
+		return false;
+	}
+	*foundclock = clk;
+
+	tol = clk/8;
+	if (!findST(&start, &skip, tmpbuff, waveLen, clk, tol, j, &i)) {
+		// first ST not found - ERROR
+		if (g_debugMode==2) prnt("DEBUG STT: first STT not found - quitting");
+		return false;
+	} else {
+		if (g_debugMode==2) prnt("DEBUG STT: first STT found at wave: %i, skip: %i, j=%i", start, skip, j);
+	}
+	if (waveLen[i+2] > clk*1+tol)
+		phaseoff = 0;
+	else
+		phaseoff = clk/2;
+	
+	// skip over the remainder of ST
+	skip += clk*7/2; //3.5 clocks from tmpbuff[i] = end of st - also aligns for ending point
+
+	// now do it again to find the end
+	int dummy1 = 0;
+	end = skip;
+	i+=3;
+	if (!findST(&dummy1, &end, tmpbuff, waveLen, clk, tol, j, &i)) {
+		//didn't find second ST - ERROR
+		if (g_debugMode==2) prnt("DEBUG STT: second STT not found - quitting");
+		return false;
+	}
+	end -= phaseoff;
+	if (g_debugMode==2) prnt("DEBUG STT: start of data: %d end of data: %d, datalen: %d, clk: %d, bits: %d, phaseoff: %d", skip, end, end-skip, clk, (end-skip)/clk, phaseoff);
+	//now begin to trim out ST so we can use normal demod cmds
+	start = skip;
+	size_t datalen = end - start;
+	// check validity of datalen (should be even clock increments)  - use a tolerance of up to 1/8th a clock
+	if ( clk - (datalen % clk) <= clk/8) {
+		// padd the amount off - could be problematic...  but shouldn't happen often
+		datalen += clk - (datalen % clk);
+	} else if ( (datalen % clk) <= clk/8 ) {
+		// padd the amount off - could be problematic...  but shouldn't happen often
+		datalen -= datalen % clk;
+	} else {
+		if (g_debugMode==2) prnt("DEBUG STT: datalen not divisible by clk: %u %% %d = %d - quitting", datalen, clk, datalen % clk);
+		return false;
+	}
+	// if datalen is less than one t55xx block - ERROR
+	if (datalen/clk < 8*4) {
+		if (g_debugMode==2) prnt("DEBUG STT: datalen is less than 1 full t55xx block - quitting");		
+		return false;
+	}
+	size_t dataloc = start;
+	if (buffer[dataloc-(clk*4)-(clk/4)] <= low && buffer[dataloc] <= low && buffer[dataloc-(clk*4)] >= high) {
+		//we have low drift (and a low just before the ST and a low just after the ST) - compensate by backing up the start 
+		for ( i=0; i <= (clk/4); ++i ) {
+			if ( buffer[dataloc - (clk*4) - i] <= low ) {
+				dataloc -= i;
+				break;
+			}
 		}
-		if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
-		if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt;
-	} 
-	//all tested with errors 
-	//return the highest clk with the most peaks found
-	uint8_t best=7;
-	for (i=7; i>=1; i--){
-		if (peaksdet[i] > peaksdet[best]) {
-			best = i;
+	}
+	
+	size_t newloc = 0;
+	i=0;
+	if (g_debugMode==2) prnt("DEBUG STT: Starting STT trim - start: %d, datalen: %d ",dataloc, datalen);		
+	bool firstrun = true;
+	// warning - overwriting buffer given with raw wave data with ST removed...
+	while ( dataloc < bufsize-(clk/2) ) {
+		//compensate for long high at end of ST not being high due to signal loss... (and we cut out the start of wave high part)
+		if (buffer[dataloc]<high && buffer[dataloc]>low && buffer[dataloc+clk/4]<high && buffer[dataloc+clk/4]>low) {
+			for(i=0; i < clk/2-tol; ++i) {
+				buffer[dataloc+i] = high+5;
+			}
+		} //test for small spike outlier (high between two lows) in the case of very strong waves
+		if (buffer[dataloc] > low && buffer[dataloc+clk/4] <= low) {
+			for(i=0; i < clk/4; ++i) {
+				buffer[dataloc+i] = buffer[dataloc+clk/4];
+			}
+		}
+		if (firstrun) {
+			*stend = dataloc;
+			*ststart = dataloc-(clk*4);
+			firstrun=false;
+		}
+		for (i=0; i<datalen; ++i) {
+			if (i+newloc < bufsize) {
+				if (i+newloc < dataloc)
+					buffer[i+newloc] = buffer[dataloc];
+
+				dataloc++;
+			}
 		}
-		//PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+		newloc += i;
+		//skip next ST  -  we just assume it will be there from now on...
+		if (g_debugMode==2) prnt("DEBUG STT: skipping STT at %d to %d", dataloc, dataloc+(clk*4));
+		dataloc += clk*4;
 	}
-	return clk[best];
+	*size = newloc;
+	return true;
 }
 
 //by marshmellow
-//detect nrz clock by reading #peaks vs no peaks(or errors)
-int DetectNRZClock(uint8_t dest[], size_t size, int clock)
-{
-	size_t i=0;
-	uint8_t clk[]={8,16,32,40,50,64,100,128,255};
-	size_t loopCnt = 4096;  //don't need to loop through entire array...
-	if (size == 0) return 0;
-	if (size<loopCnt) loopCnt = size;
-
-	//if we already have a valid clock quit
-	for (; i < 8; ++i)
-		if (clk[i] == clock) return clock;
+//take 11 10 01 11 00 and make 01100 ... miller decoding 
+//check for phase errors - should never have half a 1 or 0 by itself and should never exceed 1111 or 0000 in a row
+//decodes miller encoded binary
+//NOTE  askrawdemod will NOT demod miller encoded ask unless the clock is manually set to 1/2 what it is detected as!
+int millerRawDecode(uint8_t *BitStream, size_t *size, int invert) {
+	if (*size < 16) return -1;
+	uint16_t MaxBits = 512, errCnt = 0;
+	size_t i, bitCnt=0;
+	uint8_t alignCnt = 0, curBit = BitStream[0], alignedIdx = 0;
+	uint8_t halfClkErr = 0;
+	//find alignment, needs 4 1s or 0s to properly align
+	for (i=1; i < *size-1; i++) {
+		alignCnt = (BitStream[i] == curBit) ? alignCnt+1 : 0;
+		curBit = BitStream[i];
+		if (alignCnt == 4) break;
+	}
+	// for now error if alignment not found.  later add option to run it with multiple offsets...
+	if (alignCnt != 4) {
+		if (g_debugMode) prnt("ERROR MillerDecode: alignment not found so either your bitstream is not miller or your data does not have a 101 in it");
+		return -1;
+	}
+	alignedIdx = (i-1) % 2;
+	for (i=alignedIdx; i < *size-3; i+=2) {
+		halfClkErr = (uint8_t)((halfClkErr << 1 | BitStream[i]) & 0xFF);
+		if ( (halfClkErr & 0x7) == 5 || (halfClkErr & 0x7) == 2 || (i > 2 && (halfClkErr & 0x7) == 0) || (halfClkErr & 0x1F) == 0x1F) {
+			errCnt++;
+			BitStream[bitCnt++] = 7;
+			continue;
+		}
+		BitStream[bitCnt++] = BitStream[i] ^ BitStream[i+1] ^ invert;
 
-	//get high and low peak
-	int peak, low;
-	if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0;
+		if (bitCnt > MaxBits) break;
+	}
+	*size = bitCnt;
+	return errCnt;
+}
 
-	//PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
-	size_t ii;
-	uint8_t clkCnt;
-	uint8_t tol = 0;
-	uint16_t peakcnt=0;
-	uint16_t peaksdet[]={0,0,0,0,0,0,0,0};
-	uint16_t maxPeak=0;
-	//test for large clipped waves
-	for (i=0; i<loopCnt; i++){
-		if (dest[i] >= peak || dest[i] <= low){
-			peakcnt++;
+//by marshmellow
+//take 01 or 10 = 1 and 11 or 00 = 0
+//check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010
+//decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding
+int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int *offset, int invert) {
+	uint16_t bitnum = 0;
+	uint16_t errCnt = 0;
+	size_t i = *offset;
+	uint16_t MaxBits=512;
+	//if not enough samples - error
+	if (*size < 51) return -1;
+	//check for phase change faults - skip one sample if faulty
+	uint8_t offsetA = 1, offsetB = 1;
+	for (; i<48; i+=2){
+		if (BitStream[i+1]==BitStream[i+2]) offsetA=0; 
+		if (BitStream[i+2]==BitStream[i+3]) offsetB=0;					
+	}
+	if (!offsetA && offsetB) *offset+=1;
+	for (i=*offset; i<*size-3; i+=2){
+		//check for phase error
+		if (BitStream[i+1]==BitStream[i+2]) {
+			BitStream[bitnum++]=7;
+			errCnt++;
+		}
+		if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
+			BitStream[bitnum++]=1^invert;
+		} else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
+			BitStream[bitnum++]=invert;
 		} else {
-			if (peakcnt>0 && maxPeak < peakcnt){
-				maxPeak = peakcnt;
-			}
-			peakcnt=0;
+			BitStream[bitnum++]=7;
+			errCnt++;
 		}
+		if(bitnum>MaxBits) break;
 	}
-	peakcnt=0;
-	//test each valid clock from smallest to greatest to see which lines up
-	for(clkCnt=0; clkCnt < 8; ++clkCnt){
-		//ignore clocks smaller than largest peak
-		if (clk[clkCnt]<maxPeak) continue;
+	*size=bitnum;
+	return errCnt;
+}
 
-		//try lining up the peaks by moving starting point (try first 256)
-		for (ii=0; ii< loopCnt; ++ii){
-			if ((dest[ii] >= peak) || (dest[ii] <= low)){
-				peakcnt=0;
-				// now that we have the first one lined up test rest of wave array
-				for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
-					if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
-						peakcnt++;
-					}
-				}
-				if(peakcnt>peaksdet[clkCnt]) {
-					peaksdet[clkCnt]=peakcnt;
-				}
-			}
+//by marshmellow
+//take 10 and 01 and manchester decode
+//run through 2 times and take least errCnt
+int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert, uint8_t *alignPos) {
+	uint16_t bitnum=0, MaxBits = 512, errCnt = 0;
+	size_t i, ii;
+	uint16_t bestErr = 1000, bestRun = 0;
+	if (*size < 16) return -1;
+	//find correct start position [alignment]
+	for (ii=0;ii<2;++ii){
+		for (i=ii; i<*size-3; i+=2)
+			if (BitStream[i]==BitStream[i+1])
+				errCnt++;
+
+		if (bestErr>errCnt){
+			bestErr=errCnt;
+			bestRun=ii;
 		}
+		errCnt=0;
 	}
-	int iii=7;
-	uint8_t best=0;
-	for (iii=7; iii > 0; iii--){
-		if (peaksdet[iii] > peaksdet[best]){
-			best = iii;
+	*alignPos=bestRun;
+	//decode
+	for (i=bestRun; i < *size-3; i+=2){
+		if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
+			BitStream[bitnum++]=invert;
+		} else if((BitStream[i] == 0) && BitStream[i+1] == 1){
+			BitStream[bitnum++]=invert^1;
+		} else {
+			BitStream[bitnum++]=7;
 		}
-		//PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
+		if(bitnum>MaxBits) break;
 	}
-	return clk[best];
+	*size=bitnum;
+	return bestErr;
 }
 
-// by marshmellow
-// convert psk1 demod to psk2 demod
-// only transition waves are 1s
-void psk1TOpsk2(uint8_t *BitStream, size_t size)
+//by marshmellow
+//demodulates strong heavily clipped samples
+int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low, int *startIdx)
 {
-	size_t i=1;
-	uint8_t lastBit=BitStream[0];
-	for (; i<size; i++){
-		if (BitStream[i]==7){
-			//ignore errors
-		} else if (lastBit!=BitStream[i]){
-			lastBit=BitStream[i];
-			BitStream[i]=1;
-		} else {
-			BitStream[i]=0;
+	*startIdx=0;
+	size_t bitCnt=0, smplCnt=1, errCnt=0;
+	bool waveHigh = (BinStream[0] >= high);
+	for (size_t i=1; i < *size; i++){
+		if (BinStream[i] >= high && waveHigh){
+			smplCnt++;
+		} else if (BinStream[i] <= low && !waveHigh){
+			smplCnt++;
+		} else { //transition
+			if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){
+				if (smplCnt > clk-(clk/4)-1) { //full clock
+					if (smplCnt > clk + (clk/4)+1) { //too many samples
+						errCnt++;
+						if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
+						BinStream[bitCnt++] = 7;
+					} else if (waveHigh) {
+						BinStream[bitCnt++] = invert;
+						BinStream[bitCnt++] = invert;
+					} else if (!waveHigh) {
+						BinStream[bitCnt++] = invert ^ 1;
+						BinStream[bitCnt++] = invert ^ 1;
+					}
+					if (*startIdx==0) *startIdx = i-clk;
+					waveHigh = !waveHigh;  
+					smplCnt = 0;
+				} else if (smplCnt > (clk/2) - (clk/4)-1) { //half clock
+					if (waveHigh) {
+						BinStream[bitCnt++] = invert;
+					} else if (!waveHigh) {
+						BinStream[bitCnt++] = invert ^ 1;
+					}
+					if (*startIdx==0) *startIdx = i-(clk/2);
+					waveHigh = !waveHigh;  
+					smplCnt = 0;
+				} else {
+					smplCnt++;
+					//transition bit oops
+				}
+			} else { //haven't hit new high or new low yet
+				smplCnt++;
+			}
 		}
 	}
-	return;
+	*size = bitCnt;
+	return errCnt;
 }
 
-// by marshmellow
-// convert psk2 demod to psk1 demod
-// from only transition waves are 1s to phase shifts change bit
-void psk2TOpsk1(uint8_t *BitStream, size_t size)
-{
-	uint8_t phase=0;
-	for (size_t i=0; i<size; i++){
-		if (BitStream[i]==1){
-			phase ^=1;
+//by marshmellow
+//attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester
+int askdemod_ext(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType, int *startIdx) {
+	if (*size==0) return -1;
+	int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default
+	if (*clk==0 || start < 0) return -3;
+	if (*invert != 1) *invert = 0;
+	if (amp==1) askAmp(BinStream, *size);
+	if (g_debugMode==2) prnt("DEBUG ASK: clk %d, beststart %d, amp %d", *clk, start, amp);
+
+	//start pos from detect ask clock is 1/2 clock offset
+	// NOTE: can be negative (demod assumes rest of wave was there)
+	*startIdx = start - (*clk/2); 
+	uint8_t initLoopMax = 255;
+	if (initLoopMax > *size) initLoopMax = *size;
+	// Detect high and lows
+	//25% clip in case highs and lows aren't clipped [marshmellow]
+	int high, low;
+	if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) 
+		return -2; //just noise
+
+	size_t errCnt = 0;
+	// if clean clipped waves detected run alternate demod
+	if (DetectCleanAskWave(BinStream, *size, high, low)) {
+		if (g_debugMode==2) prnt("DEBUG ASK: Clean Wave Detected - using clean wave demod");
+		errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low, startIdx);
+		if (askType) { //askman
+			uint8_t alignPos = 0;
+			errCnt = manrawdecode(BinStream, size, 0, &alignPos);
+			*startIdx += *clk/2 * alignPos;
+			if (g_debugMode) prnt("DEBUG ASK CLEAN: startIdx %i, alignPos %u", *startIdx, alignPos);
+			return errCnt;
+		} else { //askraw
+			return errCnt;
+		}
+	}
+	if (g_debugMode) prnt("DEBUG ASK WEAK: startIdx %i", *startIdx);
+	if (g_debugMode==2) prnt("DEBUG ASK: Weak Wave Detected - using weak wave demod");
+
+	int lastBit;              //set first clock check - can go negative
+	size_t i, bitnum = 0;     //output counter
+	uint8_t midBit = 0;
+	uint8_t tol = 0;          //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
+	if (*clk <= 32) tol = 1;  //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
+	size_t MaxBits = 3072;    //max bits to collect
+	lastBit = start - *clk;
+
+	for (i = start; i < *size; ++i) {
+		if (i-lastBit >= *clk-tol){
+			if (BinStream[i] >= high) {
+				BinStream[bitnum++] = *invert;
+			} else if (BinStream[i] <= low) {
+				BinStream[bitnum++] = *invert ^ 1;
+			} else if (i-lastBit >= *clk+tol) {
+				if (bitnum > 0) {
+					if (g_debugMode==2) prnt("DEBUG ASK: Modulation Error at: %u", i);
+					BinStream[bitnum++]=7;
+					errCnt++;						
+				} 
+			} else { //in tolerance - looking for peak
+				continue;
+			}
+			midBit = 0;
+			lastBit += *clk;
+		} else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){
+			if (BinStream[i] >= high) {
+				BinStream[bitnum++] = *invert;
+			} else if (BinStream[i] <= low) {
+				BinStream[bitnum++] = *invert ^ 1;
+			} else if (i-lastBit >= *clk/2+tol) {
+				BinStream[bitnum] = BinStream[bitnum-1];
+				bitnum++;
+			} else { //in tolerance - looking for peak
+				continue;
+			}
+			midBit = 1;
 		}
-		BitStream[i]=phase;
+		if (bitnum >= MaxBits) break;
 	}
-	return;
+	*size = bitnum;
+	return errCnt;
 }
 
-// redesigned by marshmellow adjusted from existing decode functions
-// indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
-int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
-{
-	//26 bit 40134 format  (don't know other formats)
-	uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
-	uint8_t preamble_i[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0};
-	size_t startidx = 0; 
-	if (!preambleSearch(bitStream, preamble, sizeof(preamble), size, &startidx)){
-		// if didn't find preamble try again inverting
-		if (!preambleSearch(bitStream, preamble_i, sizeof(preamble_i), size, &startidx)) return -1;
-		*invert ^= 1;
-	} 
-	if (*size != 64 && *size != 224) return -2;
-	if (*invert==1)
-		for (size_t i = startidx; i < *size; i++)
-			bitStream[i] ^= 1;
-
-	return (int) startidx;
+int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType) {
+	int start = 0;
+	return askdemod_ext(BinStream, size, clk, invert, maxErr, amp, askType, &start);
 }
 
-// by marshmellow - demodulate NRZ wave (both similar enough)
+// by marshmellow - demodulate NRZ wave - requires a read with strong signal
 // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
-// there probably is a much simpler way to do this.... 
-int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr)
-{
+int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int *startIdx) {
 	if (justNoise(dest, *size)) return -1;
-	*clk = DetectNRZClock(dest, *size, *clk);
+	size_t clkStartIdx = 0;
+	*clk = DetectNRZClock(dest, *size, *clk, &clkStartIdx);
 	if (*clk==0) return -2;
 	size_t i, gLen = 4096;
-	if (gLen>*size) gLen = *size;
+	if (gLen>*size) gLen = *size-20;
 	int high, low;
 	if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low
-	int lastBit = 0;  //set first clock check
-	size_t iii = 0, bitnum = 0; //bitnum counter
-	uint16_t errCnt = 0, MaxBits = 1000;
-	size_t bestErrCnt = maxErr+1;
-	size_t bestPeakCnt = 0, bestPeakStart = 0;
-	uint8_t bestFirstPeakHigh=0, firstPeakHigh=0, curBit=0, bitHigh=0, errBitHigh=0;
-	uint8_t tol = 1;  //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
-	uint16_t peakCnt=0;
-	uint8_t ignoreWindow=4;
-	uint8_t ignoreCnt=ignoreWindow; //in case of noise near peak
-	//loop to find first wave that works - align to clock
-	for (iii=0; iii < gLen; ++iii){
-		if ((dest[iii]>=high) || (dest[iii]<=low)){
-			if (dest[iii]>=high) firstPeakHigh=1;
-			else firstPeakHigh=0;
-			lastBit=iii-*clk;
-			peakCnt=0;
-			errCnt=0;
-			//loop through to see if this start location works
-			for (i = iii; i < *size; ++i) {
-				// if we are at a clock bit
-				if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) {
-					//test high/low
-					if (dest[i] >= high || dest[i] <= low) {
-						bitHigh = 1;
-						peakCnt++;
-						errBitHigh = 0;
-						ignoreCnt = ignoreWindow;
-						lastBit += *clk;
-					} else if (i == lastBit + *clk + tol) {
-						lastBit += *clk;
-					}
-				//else if no bars found
-				} else if (dest[i] < high && dest[i] > low){
-					if (ignoreCnt==0){
-						bitHigh=0;
-						if (errBitHigh==1) errCnt++;
-						errBitHigh=0;
-					} else {
-						ignoreCnt--;
-					}
-				} else if ((dest[i]>=high || dest[i]<=low) && (bitHigh==0)) {
-					//error bar found no clock...
-					errBitHigh=1;
-				}
-				if (((i-iii) / *clk)>=MaxBits) break;
-			}
-			//we got more than 64 good bits and not all errors
-			if (((i-iii) / *clk) > 64 && (errCnt <= (maxErr))) {
-				//possible good read
-				if (!errCnt || peakCnt > bestPeakCnt){
-					bestFirstPeakHigh=firstPeakHigh;
-					bestErrCnt = errCnt;
-					bestPeakCnt = peakCnt;
-					bestPeakStart = iii;
-					if (!errCnt) break;  //great read - finish
-				}
-			}
-		}
+	
+	uint8_t bit=0;
+	//convert wave samples to 1's and 0's
+	for(i=20; i < *size-20; i++){
+		if (dest[i] >= high) bit = 1;
+		if (dest[i] <= low)  bit = 0;
+		dest[i] = bit;
 	}
-	//PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart);
-	if (bestErrCnt > maxErr) return bestErrCnt;		
-
-	//best run is good enough set to best run and set overwrite BinStream
-	lastBit = bestPeakStart - *clk;
-	memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk);
-	bitnum += (bestPeakStart / *clk);
-	for (i = bestPeakStart; i < *size; ++i) {
-		// if expecting a clock bit
-		if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) {
-			// test high/low
-			if (dest[i] >= high || dest[i] <= low) {
-				peakCnt++;
-				bitHigh = 1;
-				errBitHigh = 0;
-				ignoreCnt = ignoreWindow;
-				curBit = *invert;
-				if (dest[i] >= high) curBit ^= 1;
-				dest[bitnum++] = curBit;
-				lastBit += *clk;
-			//else no bars found in clock area
-			} else if (i == lastBit + *clk + tol) {
-				dest[bitnum++] = curBit;
-				lastBit += *clk;
-			}
-		//else if no bars found
-		} else if (dest[i] < high && dest[i] > low){
-			if (ignoreCnt == 0){
-				bitHigh = 0;
-				if (errBitHigh == 1){
-					dest[bitnum++] = 7;
-					errCnt++;
-				}
-				errBitHigh=0;
-			} else {
-				ignoreCnt--;
+	//now demod based on clock (rf/32 = 32 1's for one 1 bit, 32 0's for one 0 bit) 
+	size_t lastBit = 0;
+	size_t numBits = 0;
+	for(i=21; i < *size-20; i++) {
+		//if transition detected or large number of same bits - store the passed bits
+		if (dest[i] != dest[i-1] || (i-lastBit) == (10 * *clk)) {
+			memset(dest+numBits, dest[i-1] ^ *invert, (i - lastBit + (*clk/4)) / *clk);
+			numBits += (i - lastBit + (*clk/4)) / *clk;
+			if (lastBit == 0) {
+				*startIdx = i - (numBits * *clk);
+				if (g_debugMode==2) prnt("DEBUG NRZ: startIdx %i", *startIdx);
 			}
-		} else if ((dest[i] >= high || dest[i] <= low) && (bitHigh == 0)) {
-			//error bar found no clock...
-			errBitHigh=1;
+			lastBit = i-1;
 		}
-		if (bitnum >= MaxBits) break;
 	}
-	*size = bitnum;
-	return bestErrCnt;
+	*size = numBits;
+	return 0;
 }
 
-//by marshmellow
-//detects the bit clock for FSK given the high and low Field Clocks
-uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
-{
-	uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
-	uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
-	uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
-	uint8_t rfLensFnd = 0;
-	uint8_t lastFCcnt = 0;
-	uint16_t fcCounter = 0;
-	uint16_t rfCounter = 0;
-	uint8_t firstBitFnd = 0;
-	size_t i;
-	if (size == 0) return 0;
-
-	uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
-	rfLensFnd=0;
-	fcCounter=0;
-	rfCounter=0;
-	firstBitFnd=0;
-	//PrintAndLog("DEBUG: fcTol: %d",fcTol);
-	// prime i to first up transition
-	for (i = 1; i < size-1; i++)
-		if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
-			break;
-
-	for (; i < size-1; i++){
-		fcCounter++;
-		rfCounter++;
+//translate wave to 11111100000 (1 for each short wave [higher freq] 0 for each long wave [lower freq])
+size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow, int *startIdx) {
+	size_t last_transition = 0;
+	size_t idx = 1;
+	if (fchigh==0) fchigh=10;
+	if (fclow==0) fclow=8;
+	//set the threshold close to 0 (graph) or 128 std to avoid static
+	size_t preLastSample = 0;
+	size_t LastSample = 0;
+	size_t currSample = 0;
+	if ( size < 1024 ) return 0; // not enough samples
 
-		if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) 
-			continue;		
-		// else new peak 
-		// if we got less than the small fc + tolerance then set it to the small fc
-		if (fcCounter < fcLow+fcTol) 
-			fcCounter = fcLow;
-		else //set it to the large fc
-			fcCounter = fcHigh;
+	//find start of modulating data in trace 
+	idx = findModStart(dest, size, fchigh);
+	// Need to threshold first sample
+	if(dest[idx] < FSK_PSK_THRESHOLD) dest[0] = 0;
+	else dest[0] = 1;
+	
+	last_transition = idx;
+	idx++;
+	size_t numBits = 0;
+	// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
+	// or 10 (fc/10) cycles but in practice due to noise etc we may end up with anywhere
+	// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
+	//  (could also be fc/5 && fc/7 for fsk1 = 4-9)
+	for(; idx < size; idx++) {
+		// threshold current value
+		if (dest[idx] < FSK_PSK_THRESHOLD) dest[idx] = 0;
+		else dest[idx] = 1;
 
-		//look for bit clock  (rf/xx)
-		if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){
-			//not the same size as the last wave - start of new bit sequence
-			if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit
-				for (int ii=0; ii<15; ii++){
-					if (rfLens[ii] == rfCounter){
-						rfCnts[ii]++;
-						rfCounter = 0;
-						break;
-					}
-				}
-				if (rfCounter > 0 && rfLensFnd < 15){
-					//PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
-					rfCnts[rfLensFnd]++;
-					rfLens[rfLensFnd++] = rfCounter;
+		// Check for 0->1 transition
+		if (dest[idx-1] < dest[idx]) {
+			preLastSample = LastSample;
+			LastSample = currSample;
+			currSample = idx-last_transition;
+			if (currSample < (fclow-2)) {                   //0-5 = garbage noise (or 0-3)
+				//do nothing with extra garbage
+			} else if (currSample < (fchigh-1)) {           //6-8 = 8 sample waves  (or 3-6 = 5)
+				//correct previous 9 wave surrounded by 8 waves (or 6 surrounded by 5)
+				if (numBits > 1 && LastSample > (fchigh-2) && (preLastSample < (fchigh-1))){
+					dest[numBits-1]=1;
 				}
-			} else {
-				firstBitFnd++;
+				dest[numBits++]=1;
+			if (numBits > 0 && *startIdx==0) *startIdx = idx - fclow;
+			} else if (currSample > (fchigh+1) && numBits < 3) { //12 + and first two bit = unusable garbage
+				//do nothing with beginning garbage and reset..  should be rare..
+				numBits = 0; 
+			} else if (currSample == (fclow+1) && LastSample == (fclow-1)) { // had a 7 then a 9 should be two 8's (or 4 then a 6 should be two 5's)
+				dest[numBits++]=1;
+			if (numBits > 0 && *startIdx==0) *startIdx = idx - fclow;
+			} else {                                        //9+ = 10 sample waves (or 6+ = 7)
+				dest[numBits++]=0;
+			if (numBits > 0 && *startIdx==0) *startIdx = idx - fchigh;
 			}
-			rfCounter=0;
-			lastFCcnt=fcCounter;
+			last_transition = idx;
 		}
-		fcCounter=0;
 	}
-	uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
+	return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
+}
 
-	for (i=0; i<15; i++){
-		//PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
-		//get highest 2 RF values  (might need to get more values to compare or compare all?)
-		if (rfCnts[i]>rfCnts[rfHighest]){
-			rfHighest3=rfHighest2;
-			rfHighest2=rfHighest;
-			rfHighest=i;
-		} else if(rfCnts[i]>rfCnts[rfHighest2]){
-			rfHighest3=rfHighest2;
-			rfHighest2=i;
-		} else if(rfCnts[i]>rfCnts[rfHighest3]){
-			rfHighest3=i;
+//translate 11111100000 to 10
+//rfLen = clock, fchigh = larger field clock, fclow = smaller field clock
+size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow, int *startIdx) {
+	uint8_t lastval=dest[0];
+	size_t idx=0;
+	size_t numBits=0;
+	uint32_t n=1;
+	for( idx=1; idx < size; idx++) {
+		n++;
+		if (dest[idx]==lastval) continue; //skip until we hit a transition
+		
+		//find out how many bits (n) we collected (use 1/2 clk tolerance)
+		//if lastval was 1, we have a 1->0 crossing
+		if (dest[idx-1]==1) {
+			n = (n * fclow + rfLen/2) / rfLen;
+		} else {// 0->1 crossing 
+			n = (n * fchigh + rfLen/2) / rfLen; 
 		}
-	}  
-	// set allowed clock remainder tolerance to be 1 large field clock length+1 
-	//   we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off  
-	uint8_t tol1 = fcHigh+1; 
-	
-	//PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
-
-	// loop to find the highest clock that has a remainder less than the tolerance
-	//   compare samples counted divided by
-	int ii=7;
-	for (; ii>=0; ii--){
-		if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
-			if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
-				if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
-					break;
-				}
+		if (n == 0) n = 1;
+		
+		//first transition - save startidx
+		if (numBits == 0) {
+			if (lastval == 1) {  //high to low
+				*startIdx += (fclow * idx) - (n*rfLen);
+				if (g_debugMode==2) prnt("DEBUG FSK: startIdx %i, fclow*idx %i, n*rflen %u", *startIdx, fclow*(idx), n*rfLen);
+			} else {
+				*startIdx += (fchigh * idx) - (n*rfLen);
+				if (g_debugMode==2) prnt("DEBUG FSK: startIdx %i, fchigh*idx %i, n*rflen %u", *startIdx, fchigh*(idx), n*rfLen);
 			}
 		}
-	}
-
-	if (ii<0) return 0; // oops we went too far
-
-	return clk[ii];
-}
-
-//by marshmellow
-//countFC is to detect the field clock lengths.
-//counts and returns the 2 most common wave lengths
-//mainly used for FSK field clock detection
-uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
-{
-	uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
-	uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
-	uint8_t fcLensFnd = 0;
-	uint8_t lastFCcnt=0;
-	uint8_t fcCounter = 0;
-	size_t i;
-	if (size == 0) return 0;
-
-	// prime i to first up transition
-	for (i = 1; i < size-1; i++)
-		if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
-			break;
 
-	for (; i < size-1; i++){
-		if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
-			// new up transition
-			fcCounter++;
-			if (fskAdj){
-				//if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
-				if (lastFCcnt==5 && fcCounter==9) fcCounter--;
-				//if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5)
-				if ((fcCounter==9) || fcCounter==4) fcCounter++;
-			// save last field clock count  (fc/xx)
-			lastFCcnt = fcCounter;
-			}
-			// find which fcLens to save it to:
-			for (int ii=0; ii<10; ii++){
-				if (fcLens[ii]==fcCounter){
-					fcCnts[ii]++;
-					fcCounter=0;
-					break;
-				}
-			}
-			if (fcCounter>0 && fcLensFnd<10){
-				//add new fc length 
-				fcCnts[fcLensFnd]++;
-				fcLens[fcLensFnd++]=fcCounter;
-			}
-			fcCounter=0;
+		//add to our destination the bits we collected		
+		memset(dest+numBits, dest[idx-1]^invert , n);
+		numBits += n;
+		n=0;
+		lastval=dest[idx];
+	}//end for
+	// if valid extra bits at the end were all the same frequency - add them in
+	if (n > rfLen/fchigh) {
+		if (dest[idx-2]==1) {
+			n = (n * fclow + rfLen/2) / rfLen;
 		} else {
-			// count sample
-			fcCounter++;
+			n = (n * fchigh + rfLen/2) / rfLen;
 		}
+		memset(dest+numBits, dest[idx-1]^invert , n);
+		numBits += n;
 	}
-	
-	uint8_t best1=9, best2=9, best3=9;
-	uint16_t maxCnt1=0;
-	// go through fclens and find which ones are bigest 2  
-	for (i=0; i<10; i++){
-		// PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);    
-		// get the 3 best FC values
-		if (fcCnts[i]>maxCnt1) {
-			best3=best2;
-			best2=best1;
-			maxCnt1=fcCnts[i];
-			best1=i;
-		} else if(fcCnts[i]>fcCnts[best2]){
-			best3=best2;
-			best2=i;
-		} else if(fcCnts[i]>fcCnts[best3]){
-			best3=i;
+	return numBits;
+}
+
+//by marshmellow  (from holiman's base)
+// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
+int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow, int *startIdx) {
+	if (justNoise(dest, size)) return 0;
+	// FSK demodulator
+	size = fsk_wave_demod(dest, size, fchigh, fclow, startIdx);
+	size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow, startIdx);
+	return size;
+}
+
+// by marshmellow
+// convert psk1 demod to psk2 demod
+// only transition waves are 1s
+void psk1TOpsk2(uint8_t *BitStream, size_t size) {
+	size_t i=1;
+	uint8_t lastBit=BitStream[0];
+	for (; i<size; i++){
+		if (BitStream[i]==7){
+			//ignore errors
+		} else if (lastBit!=BitStream[i]){
+			lastBit=BitStream[i];
+			BitStream[i]=1;
+		} else {
+			BitStream[i]=0;
 		}
 	}
-	uint8_t fcH=0, fcL=0;
-	if (fcLens[best1]>fcLens[best2]){
-		fcH=fcLens[best1];
-		fcL=fcLens[best2];
-	} else{
-		fcH=fcLens[best2];
-		fcL=fcLens[best1];
-	}
-
-	// TODO: take top 3 answers and compare to known Field clocks to get top 2
+	return;
+}
 
-	uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
-	// PrintAndLog("DEBUG: Best %d  best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
-	if (fskAdj) return fcs;	
-	return fcLens[best1];
+// by marshmellow
+// convert psk2 demod to psk1 demod
+// from only transition waves are 1s to phase shifts change bit
+void psk2TOpsk1(uint8_t *BitStream, size_t size) {
+	uint8_t phase=0;
+	for (size_t i=0; i<size; i++){
+		if (BitStream[i]==1){
+			phase ^=1;
+		}
+		BitStream[i]=phase;
+	}
+	return;
 }
 
 //by marshmellow - demodulate PSK1 wave 
 //uses wave lengths (# Samples) 
-int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
-{
-	if (size == 0) return -1;
-	uint16_t loopCnt = 4096;  //don't need to loop through entire array...
-	if (*size<loopCnt) loopCnt = *size;
+int pskRawDemod_ext(uint8_t dest[], size_t *size, int *clock, int *invert, int *startIdx) {
+	if (*size < 170) return -1;
 
 	uint8_t curPhase = *invert;
-	size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
-	uint8_t fc=0, fullWaveLen=0, tol=1;
-	uint16_t errCnt=0, waveLenCnt=0;
-	fc = countFC(dest, *size, 0);
-	if (fc!=2 && fc!=4 && fc!=8) return -1;
-	//PrintAndLog("DEBUG: FC: %d",fc);
-	*clock = DetectPSKClock(dest, *size, *clock);
-	if (*clock == 0) return -1;
-	int avgWaveVal=0, lastAvgWaveVal=0;
-	//find first phase shift
-	for (i=0; i<loopCnt; i++){
-		if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
-			waveEnd = i+1;
-			//PrintAndLog("DEBUG: waveEnd: %d",waveEnd);
-			waveLenCnt = waveEnd-waveStart;
-			if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave 
-				lastAvgWaveVal = avgWaveVal/(waveLenCnt);
-				firstFullWave = waveStart;
-				fullWaveLen=waveLenCnt;
-				//if average wave value is > graph 0 then it is an up wave or a 1
-				if (lastAvgWaveVal > 123) curPhase ^= 1;  //fudge graph 0 a little 123 vs 128
-				break;
-			} 
-			waveStart = i+1;
-			avgWaveVal = 0;
+	uint8_t fc=0;
+	size_t i=0, numBits=0, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0;
+	uint16_t fullWaveLen=0, waveLenCnt=0, avgWaveVal;
+	uint16_t errCnt=0, errCnt2=0;
+	
+	*clock = DetectPSKClock(dest, *size, *clock, &firstFullWave, &curPhase, &fc);
+	if (*clock <= 0) return -1;
+	//if clock detect found firstfullwave...
+	uint16_t tol = fc/2;
+	if (firstFullWave == 0) {
+		//find start of modulating data in trace 
+		i = findModStart(dest, *size, fc);
+		//find first phase shift
+		firstFullWave = pskFindFirstPhaseShift(dest, *size, &curPhase, i, fc, &fullWaveLen);
+		if (firstFullWave == 0) {
+			// no phase shift detected - could be all 1's or 0's - doesn't matter where we start
+			// so skip a little to ensure we are past any Start Signal
+			firstFullWave = 160;
+			memset(dest, curPhase, firstFullWave / *clock);
+		} else {
+			memset(dest, curPhase^1, firstFullWave / *clock);
 		}
-		avgWaveVal += dest[i+2];
+	} else {
+		memset(dest, curPhase^1, firstFullWave / *clock);
 	}
-	//PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);  
-	lastClkBit = firstFullWave; //set start of wave as clock align
-	//PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit);
-	waveStart = 0;
-	size_t numBits=0;
-	//set skipped bits
-	memset(dest, curPhase^1, firstFullWave / *clock);
+	//advance bits
 	numBits += (firstFullWave / *clock);
+	*startIdx = firstFullWave - (*clock * numBits)+2;
+	//set start of wave as clock align
+	lastClkBit = firstFullWave;
+	if (g_debugMode==2) prnt("DEBUG PSK: firstFullWave: %u, waveLen: %u, startIdx %i",firstFullWave,fullWaveLen, *startIdx);
+	if (g_debugMode==2) prnt("DEBUG PSK: clk: %d, lastClkBit: %u, fc: %u", *clock, lastClkBit,(unsigned int) fc);
+	waveStart = 0;
 	dest[numBits++] = curPhase; //set first read bit
-	for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){
+	for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++) {
 		//top edge of wave = start of new wave 
-		if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){
+		if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]) {
 			if (waveStart == 0) {
 				waveStart = i+1;
 				waveLenCnt = 0;
@@ -1453,24 +1590,27 @@ int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
 			} else { //waveEnd
 				waveEnd = i+1;
 				waveLenCnt = waveEnd-waveStart;
-				lastAvgWaveVal = avgWaveVal/waveLenCnt;
-				if (waveLenCnt > fc){  
-					//PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal);
+				if (waveLenCnt > fc) {
 					//this wave is a phase shift
 					//PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc);
-					if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit
+					if (i+1 >= lastClkBit + *clock - tol) { //should be a clock bit
 						curPhase ^= 1;
 						dest[numBits++] = curPhase;
 						lastClkBit += *clock;
-					} else if (i < lastClkBit+10+fc){
+					} else if (i < lastClkBit+10+fc) {
 						//noise after a phase shift - ignore
 					} else { //phase shift before supposed to based on clock
 						errCnt++;
 						dest[numBits++] = 7;
 					}
-				} else if (i+1 > lastClkBit + *clock + tol + fc){
+				} else if (i+1 > lastClkBit + *clock + tol + fc) {
 					lastClkBit += *clock; //no phase shift but clock bit
 					dest[numBits++] = curPhase;
+				} else if (waveLenCnt < fc - 1) { //wave is smaller than field clock (shouldn't happen often)
+					errCnt2++;
+					if(errCnt2 > 101) return errCnt2;
+					avgWaveVal += dest[i+1];
+					continue;
 				}
 				avgWaveVal = 0;
 				waveStart = i+1;
@@ -1481,3 +1621,300 @@ int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert)
 	*size = numBits;
 	return errCnt;
 }
+
+int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) {
+	int startIdx = 0;
+	return pskRawDemod_ext(dest, size, clock, invert, &startIdx);
+}
+
+//**********************************************************************************************
+//-----------------Tag format detection section-------------------------------------------------
+//**********************************************************************************************
+
+// by marshmellow
+// FSK Demod then try to locate an AWID ID
+int AWIDdemodFSK(uint8_t *dest, size_t *size, int *waveStartIdx) {
+	//make sure buffer has enough data
+	if (*size < 96*50) return -1;
+
+	// FSK demodulator
+	*size = fskdemod(dest, *size, 50, 1, 10, 8, waveStartIdx);  // fsk2a RF/50 
+	if (*size < 96) return -3;  //did we get a good demod?
+
+	uint8_t preamble[] = {0,0,0,0,0,0,0,1};
+	size_t startIdx = 0;
+	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+	if (errChk == 0) return -4; //preamble not found
+	if (*size != 96) return -5;
+	return (int)startIdx;
+}
+
+//by marshmellow
+//takes 1s and 0s and searches for EM410x format - output EM ID
+uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo)
+{
+	//sanity checks
+	if (*size < 64) return 0;
+	if (BitStream[1]>1) return 0;  //allow only 1s and 0s
+
+	// 111111111 bit pattern represent start of frame
+	//  include 0 in front to help get start pos
+	uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1};
+	uint8_t errChk = 0;
+	uint8_t FmtLen = 10; // sets of 4 bits = end data 
+	*startIdx = 0;
+	errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx);
+	if ( errChk == 0 || (*size != 64 && *size != 128) ) return 0;
+	if (*size == 128) FmtLen = 22; // 22 sets of 4 bits
+
+	//skip last 4bit parity row for simplicity
+	*size = removeParity(BitStream, *startIdx + sizeof(preamble), 5, 0, FmtLen * 5);
+	if (*size == 40) { // std em410x format
+		*hi = 0;
+		*lo = ((uint64_t)(bytebits_to_byte(BitStream, 8)) << 32) | (bytebits_to_byte(BitStream + 8, 32));
+	} else if (*size == 88) { // long em format
+		*hi = (bytebits_to_byte(BitStream, 24)); 
+		*lo = ((uint64_t)(bytebits_to_byte(BitStream + 24, 32)) << 32) | (bytebits_to_byte(BitStream + 24 + 32, 32));
+	} else {
+		if (g_debugMode) prnt("Error removing parity: %u", *size);
+		return 0;
+	}
+	return 1;
+}
+
+// Ask/Biphase Demod then try to locate an ISO 11784/85 ID
+// BitStream must contain previously askrawdemod and biphasedemoded data
+int FDXBdemodBI(uint8_t *dest, size_t *size) {
+	//make sure buffer has enough data
+	if (*size < 128) return -1;
+
+	size_t startIdx = 0;
+	uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1};
+
+	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+	if (errChk == 0) return -2; //preamble not found
+	if (*size != 128) return -3; //wrong size for fdxb
+	//return start position
+	return (int)startIdx;
+}
+
+// by marshmellow
+// demod gProxIIDemod 
+// error returns as -x 
+// success returns start position in BitStream
+// BitStream must contain previously askrawdemod and biphasedemoded data
+int gProxII_Demod(uint8_t BitStream[], size_t *size) {
+	size_t startIdx=0;
+	uint8_t preamble[] = {1,1,1,1,1,0};
+
+	uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx);
+	if (errChk == 0) return -3; //preamble not found
+	if (*size != 96) return -2; //should have found 96 bits
+	//check first 6 spacer bits to verify format
+	if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){
+		//confirmed proper separator bits found
+		//return start position
+		return (int) startIdx;
+	}
+	return -5; //spacer bits not found - not a valid gproxII
+}
+
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
+int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo, int *waveStartIdx) {
+	size_t numStart=0, size2=*size, startIdx=0; 
+	// FSK demodulator  fsk2a so invert and fc/10/8
+	*size = fskdemod(dest, size2, 50, 1, 10, 8, waveStartIdx);
+	if (*size < 96*2) return -2;
+	// 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
+	uint8_t preamble[] = {0,0,0,1,1,1,0,1};
+	// find bitstring in array  
+	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+	if (errChk == 0) return -3; //preamble not found
+
+	numStart = startIdx + sizeof(preamble);
+	// final loop, go over previously decoded FSK data and manchester decode into usable tag ID
+	for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
+		if (dest[idx] == dest[idx+1]){
+			return -4; //not manchester data
+		}
+		*hi2 = (*hi2<<1)|(*hi>>31);
+		*hi = (*hi<<1)|(*lo>>31);
+		//Then, shift in a 0 or one into low
+		if (dest[idx] && !dest[idx+1])  // 1 0
+			*lo=(*lo<<1)|1;
+		else // 0 1
+			*lo=(*lo<<1)|0;
+	}
+	return (int)startIdx;
+}
+
+int IOdemodFSK(uint8_t *dest, size_t size, int *waveStartIdx) {
+	//make sure buffer has data
+	if (size < 66*64) return -2;
+	// FSK demodulator  RF/64, fsk2a so invert, and fc/10/8
+	size = fskdemod(dest, size, 64, 1, 10, 8, waveStartIdx); 
+	if (size < 65) return -3;  //did we get a good demod?
+	//Index map
+	//0           10          20          30          40          50          60
+	//|           |           |           |           |           |           |
+	//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+	//-----------------------------------------------------------------------------
+	//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+	//
+	//XSF(version)facility:codeone+codetwo
+	//Handle the data
+	size_t startIdx = 0;
+	uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1};
+	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx);
+	if (errChk == 0) return -4; //preamble not found
+
+	if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){
+		//confirmed proper separator bits found
+		//return start position
+		return (int) startIdx;
+	}
+	return -5;
+} 
+
+// redesigned by marshmellow adjusted from existing decode functions
+// indala id decoding
+int indala64decode(uint8_t *bitStream, size_t *size, uint8_t *invert) {
+	//standard 64 bit indala formats including 26 bit 40134 format
+	uint8_t preamble64[] = {1,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1};
+	uint8_t preamble64_i[] = {0,1,0,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 0};
+	size_t startidx = 0;
+	size_t found_size = *size;
+	bool found = preambleSearch(bitStream, preamble64, sizeof(preamble64), &found_size, &startidx);
+	if (!found) {
+		found = preambleSearch(bitStream, preamble64_i, sizeof(preamble64_i), &found_size, &startidx);
+		if (!found) return -1;
+		*invert ^= 1;
+	}
+	if (found_size != 64) return -2;
+	if (*invert==1)
+		for (size_t i = startidx; i < found_size + startidx; i++) 
+			bitStream[i] ^= 1;
+
+	// note: don't change *size until we are sure we got it... 
+	*size = found_size;
+	return (int) startidx;
+}
+
+int indala224decode(uint8_t *bitStream, size_t *size, uint8_t *invert) {
+	//large 224 bit indala formats (different preamble too...)
+	uint8_t preamble224[] = {1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,1};
+	uint8_t preamble224_i[] = {0,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0};
+	size_t startidx = 0;
+	size_t found_size = *size;
+	bool found = preambleSearch(bitStream, preamble224, sizeof(preamble224), &found_size, &startidx);
+	if (!found) {
+		found = preambleSearch(bitStream, preamble224_i, sizeof(preamble224_i), &found_size, &startidx);
+		if (!found) return -1;
+		*invert ^= 1;
+	}
+	if (found_size != 224) return -2;
+	if (*invert==1 && startidx > 0)
+		for (size_t i = startidx-1; i < found_size + startidx + 2; i++) 
+			bitStream[i] ^= 1;
+
+	// 224 formats are typically PSK2 (afaik 2017 Marshmellow)
+	// note loses 1 bit at beginning of transformation...
+	// don't need to verify array is big enough as to get here there has to be a full preamble after all of our data
+	psk1TOpsk2(bitStream + (startidx-1), found_size+2);
+	startidx++;
+
+	*size = found_size;
+	return (int) startidx;
+}
+
+// loop to get raw paradox waveform then FSK demodulate the TAG ID from it
+int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo, int *waveStartIdx) {
+	size_t numStart=0, size2=*size, startIdx=0;
+	// FSK demodulator
+	*size = fskdemod(dest, size2,50,1,10,8,waveStartIdx); //fsk2a
+	if (*size < 96) return -2;
+
+	// 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1
+	uint8_t preamble[] = {0,0,0,0,1,1,1,1};
+
+	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+	if (errChk == 0) return -3; //preamble not found
+
+	numStart = startIdx + sizeof(preamble);
+	// final loop, go over previously decoded FSK data and manchester decode into usable tag ID
+	for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){
+		if (dest[idx] == dest[idx+1]) 
+			return -4; //not manchester data
+		*hi2 = (*hi2<<1)|(*hi>>31);
+		*hi = (*hi<<1)|(*lo>>31);
+		//Then, shift in a 0 or one into low
+		if (dest[idx] && !dest[idx+1])	// 1 0
+			*lo=(*lo<<1)|1;
+		else // 0 1
+			*lo=(*lo<<1)|0;
+	}
+	return (int)startIdx;
+}
+
+// find presco preamble 0x10D in already demoded data
+int PrescoDemod(uint8_t *dest, size_t *size) {
+	//make sure buffer has data
+	if (*size < 64*2) return -2;
+
+	size_t startIdx = 0;
+	uint8_t preamble[] = {1,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0};
+	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+	if (errChk == 0) return -4; //preamble not found
+	//return start position
+	return (int) startIdx;
+}
+
+// by marshmellow
+// FSK Demod then try to locate a Farpointe Data (pyramid) ID
+int PyramiddemodFSK(uint8_t *dest, size_t *size, int *waveStartIdx) {
+	//make sure buffer has data
+	if (*size < 128*50) return -5;
+
+	// FSK demodulator
+	*size = fskdemod(dest, *size, 50, 1, 10, 8, waveStartIdx);  // fsk2a RF/50 
+	if (*size < 128) return -2;  //did we get a good demod?
+
+	uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
+	size_t startIdx = 0;
+	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+	if (errChk == 0) return -4; //preamble not found
+	if (*size != 128) return -3;
+	return (int)startIdx;
+}
+
+// by marshmellow
+// find viking preamble 0xF200 in already demoded data
+int VikingDemod_AM(uint8_t *dest, size_t *size) {
+	//make sure buffer has data
+	if (*size < 64*2) return -2;
+
+	size_t startIdx = 0;
+	uint8_t preamble[] = {1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
+	uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx);
+	if (errChk == 0) return -4; //preamble not found
+	uint32_t checkCalc = bytebits_to_byte(dest+startIdx,8) ^ bytebits_to_byte(dest+startIdx+8,8) ^ bytebits_to_byte(dest+startIdx+16,8)
+	    ^ bytebits_to_byte(dest+startIdx+24,8) ^ bytebits_to_byte(dest+startIdx+32,8) ^ bytebits_to_byte(dest+startIdx+40,8) 
+	    ^ bytebits_to_byte(dest+startIdx+48,8) ^ bytebits_to_byte(dest+startIdx+56,8);
+	if ( checkCalc != 0xA8 ) return -5;
+	if (*size != 64) return -6;
+	//return start position
+	return (int) startIdx;
+}
+
+// by iceman
+// find Visa2000 preamble in already demoded data
+int Visa2kDemod_AM(uint8_t *dest, size_t *size) {
+	if (*size < 96) return -1; //make sure buffer has data
+	size_t startIdx = 0;
+	uint8_t preamble[] = {0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0};
+	if (preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx) == 0)
+		return -2; //preamble not found
+	if (*size != 96) return -3; //wrong demoded size
+	//return start position
+	return (int)startIdx;
+}