X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/a531720ae6e8c9882c96ba4968e5c7ce98e7fb4c..7504dc50d539f1f9b0b99064f5c7d38e373890fa:/client/cmdhfmfhard.c?ds=inline

diff --git a/client/cmdhfmfhard.c b/client/cmdhfmfhard.c
index 6e1ebc85..eac783ff 100644
--- a/client/cmdhfmfhard.c
+++ b/client/cmdhfmfhard.c
@@ -18,6 +18,7 @@
 #include <stdlib.h> 
 #include <string.h>
 #include <pthread.h>
+#include <locale.h>
 #include <math.h>
 #include "proxmark3.h"
 #include "cmdmain.h"
@@ -30,7 +31,7 @@
 // uint32_t test_state_even = 0;
 
 #define CONFIDENCE_THRESHOLD	0.95		// Collect nonces until we are certain enough that the following brute force is successfull
-#define GOOD_BYTES_REQUIRED		20
+#define GOOD_BYTES_REQUIRED		30
 
 
 static const float p_K[257] = {		// the probability that a random nonce has a Sum Property == K 
@@ -87,16 +88,16 @@ typedef struct noncelist {
 } noncelist_t;
 
 
-static uint32_t cuid;
+static uint32_t cuid = 0;
 static noncelist_t nonces[256];
+static uint8_t best_first_bytes[256];
 static uint16_t first_byte_Sum = 0;
 static uint16_t first_byte_num = 0;
 static uint16_t num_good_first_bytes = 0;
 static uint64_t maximum_states = 0;
 static uint64_t known_target_key;
-
-#define MAX_BEST_BYTES 256
-static uint8_t best_first_bytes[MAX_BEST_BYTES];
+static bool write_stats = false;
+static FILE *fstats = NULL;
 
 
 typedef enum {
@@ -176,6 +177,41 @@ static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
 }
 
 
+static void init_nonce_memory(void)
+{
+	for (uint16_t i = 0; i < 256; i++) {
+		nonces[i].num = 0;
+		nonces[i].Sum = 0;
+		nonces[i].Sum8_guess = 0;
+		nonces[i].Sum8_prob = 0.0;
+		nonces[i].updated = true;
+		nonces[i].first = NULL;
+	}
+	first_byte_num = 0;
+	first_byte_Sum = 0;
+	num_good_first_bytes = 0;
+}
+
+
+static void free_nonce_list(noncelistentry_t *p)
+{
+	if (p == NULL) {
+		return;
+	} else {
+		free_nonce_list(p->next);
+		free(p);
+	}
+}
+
+
+static void free_nonces_memory(void)
+{
+	for (uint16_t i = 0; i < 256; i++) {
+		free_nonce_list(nonces[i].first);
+	}
+}
+
+
 static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
 { 
 	uint16_t sum = 0;
@@ -200,12 +236,12 @@ static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
 }
 
 
-static uint16_t SumProperty(struct Crypto1State *s)
-{
-	uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
-	uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
-	return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
-}
+// static uint16_t SumProperty(struct Crypto1State *s)
+// {
+	// uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
+	// uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
+	// return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
+// }
 
 
 static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) 
@@ -250,20 +286,18 @@ static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
 static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
 {
 	const uint16_t N = 256;
-	
-	
 
-		if (k > K || p_K[K] == 0.0) return 0.0;
+	if (k > K || p_K[K] == 0.0) return 0.0;
 
-		double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
-		double p_S_is_K = p_K[K];
-		double p_T_is_k = 0;
-		for (uint16_t i = 0; i <= 256; i++) {
-			if (p_K[i] != 0.0) {
-				p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
-			}
+	double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
+	double p_S_is_K = p_K[K];
+	double p_T_is_k = 0;
+	for (uint16_t i = 0; i <= 256; i++) {
+		if (p_K[i] != 0.0) {
+			p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
 		}
-		return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
+	}
+	return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
 }
 
 		
@@ -296,13 +330,13 @@ static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
 
 static void Tests()
 {
-	printf("Tests: Partial Statelist sizes\n");
-	for (uint16_t i = 0; i <= 16; i+=2) {
-		printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
-	}
-	for (uint16_t i = 0; i <= 16; i+=2) {
-		printf("Partial State List Even	[%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
-	}
+	// printf("Tests: Partial Statelist sizes\n");
+	// for (uint16_t i = 0; i <= 16; i+=2) {
+		// printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
+	// }
+	// for (uint16_t i = 0; i <= 16; i+=2) {
+		// printf("Partial State List Even	[%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
+	// }
 	
  	// #define NUM_STATISTICS 100000
 	// uint32_t statistics_odd[17];
@@ -375,65 +409,64 @@ static void Tests()
 	// printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
 	// printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
 	
-	struct Crypto1State *pcs;
-	pcs = crypto1_create(0xffffffffffff);
-	printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n", 
-		SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
-	crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
-	printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
-		best_first_bytes[0],
-		SumProperty(pcs),
-		pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
-	//test_state_odd = pcs->odd & 0x00ffffff;
-	//test_state_even = pcs->even & 0x00ffffff;
-	crypto1_destroy(pcs);
-	pcs = crypto1_create(0xa0a1a2a3a4a5);
-	printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
-		SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
-	crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
-	printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
-		best_first_bytes[0],
-		SumProperty(pcs),
-		pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
-	// test_state_odd = pcs->odd & 0x00ffffff;
-	// test_state_even = pcs->even & 0x00ffffff;
-	crypto1_destroy(pcs);
-	pcs = crypto1_create(0xa6b9aa97b955);
-	printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
-		SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
-	crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
-	printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
-		best_first_bytes[0],
-		SumProperty(pcs),
-		pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+	// struct Crypto1State *pcs;
+	// pcs = crypto1_create(0xffffffffffff);
+	// printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n", 
+		// SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+	// crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
+	// printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
+		// best_first_bytes[0],
+		// SumProperty(pcs),
+		// pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+	// //test_state_odd = pcs->odd & 0x00ffffff;
+	// //test_state_even = pcs->even & 0x00ffffff;
+	// crypto1_destroy(pcs);
+	// pcs = crypto1_create(0xa0a1a2a3a4a5);
+	// printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
+		// SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+	// crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
+	// printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
+		// best_first_bytes[0],
+		// SumProperty(pcs),
+		// pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+	// //test_state_odd = pcs->odd & 0x00ffffff;
+	// //test_state_even = pcs->even & 0x00ffffff;
+	// crypto1_destroy(pcs);
+	// pcs = crypto1_create(0xa6b9aa97b955);
+	// printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
+		// SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
+	// crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
+	// printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state =  0x%06x\neven_state = 0x%06x\n",
+		// best_first_bytes[0],
+		// SumProperty(pcs),
+		// pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
 	//test_state_odd = pcs->odd & 0x00ffffff;
 	//test_state_even = pcs->even & 0x00ffffff;
-	crypto1_destroy(pcs);
-
+	// crypto1_destroy(pcs);
 
 	
-	printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
+	
+	// printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
 
 	printf("\nTests: Actual BitFlipProperties odd/even:\n");
 	for (uint16_t i = 0; i < 256; i++) {
-		printf("[%02x]:%c%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':' ', nonces[i].BitFlip[EVEN_STATE]?'e':' ');
+		printf("[%02x]:%c  ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
 		if (i % 8 == 7) {
 			printf("\n");
 		}
 	}
 	
-	printf("\nTests: Best %d first bytes:\n", MAX_BEST_BYTES);
-	for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) {
+	printf("\nTests: Sorted First Bytes:\n");
+	for (uint16_t i = 0; i < 256; i++) {
 		uint8_t best_byte = best_first_bytes[i];
-		printf("#%03d Byte: %02x, n = %2d, k = %2d, Sum(a8): %3d, Confidence: %2.1f%%, Bitflip: %c%c\n", 
-		//printf("#%03d Byte: %02x, n = %2d, k = %2d, Sum(a8): %3d, Confidence: %2.1f%%, Bitflip: %c%c, score1: %f, score2: %f\n", 
+		printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n", 
+		//printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n", 
 			i, best_byte, 
 			nonces[best_byte].num,
 			nonces[best_byte].Sum,
 			nonces[best_byte].Sum8_guess,
 			nonces[best_byte].Sum8_prob * 100,
-			nonces[best_byte].BitFlip[ODD_STATE]?'o':' ', 
-			nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
+			nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
 			//nonces[best_byte].score1,
 			//nonces[best_byte].score2
 			);
@@ -460,26 +493,26 @@ static void Tests()
 
 static void sort_best_first_bytes(void)
 {
-	// first, sort based on probability for correct guess	
+	// sort based on probability for correct guess	
 	for (uint16_t i = 0; i < 256; i++ ) {
 		uint16_t j = 0;
 		float prob1 = nonces[i].Sum8_prob;
 		float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
-		while (prob1 < prob2 && j < MAX_BEST_BYTES-1) {
+		while (prob1 < prob2 && j < i) {
 			prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
 		}
-		if (prob1 >= prob2) {
-			for (uint16_t k = MAX_BEST_BYTES-1; k > j; k--) {
+		if (j < i) {
+			for (uint16_t k = i; k > j; k--) {
 				best_first_bytes[k] = best_first_bytes[k-1];
 			}
+		}
 			best_first_bytes[j] = i;
 		}
-	}
 
-	// determine, how many are above the CONFIDENCE_THRESHOLD
+	// determine how many are above the CONFIDENCE_THRESHOLD
 	uint16_t num_good_nonces = 0;
-	for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) {
-		if (nonces[best_first_bytes[i]].Sum8_prob > CONFIDENCE_THRESHOLD) {
+	for (uint16_t i = 0; i < 256; i++) {
+		if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
 			++num_good_nonces;
 		}
 	}
@@ -546,9 +579,6 @@ static void sort_best_first_bytes(void)
 
 static uint16_t estimate_second_byte_sum(void) 
 {
-	for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) {
-		best_first_bytes[i] = 0;
-	}
 	
 	for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
 		float Sum8_prob = 0.0;
@@ -570,8 +600,8 @@ static uint16_t estimate_second_byte_sum(void)
 	sort_best_first_bytes();
 
 	uint16_t num_good_nonces = 0;
-	for (uint16_t i = 0; i < MAX_BEST_BYTES; i++) {
-		if (nonces[best_first_bytes[i]].Sum8_prob > CONFIDENCE_THRESHOLD) {
+	for (uint16_t i = 0; i < 256; i++) {
+		if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
 			++num_good_nonces;
 		}
 	}
@@ -596,7 +626,8 @@ static int read_nonce_file(void)
 	}
 
 	PrintAndLog("Reading nonces from file nonces.bin...");
-	if (fread(read_buf, 1, 6, fnonces) == 0) {
+	size_t bytes_read = fread(read_buf, 1, 6, fnonces);
+	if ( bytes_read == 0) {
 		PrintAndLog("File reading error.");
 		fclose(fnonces);
 		return 1;
@@ -626,6 +657,8 @@ static void Check_for_FilterFlipProperties(void)
 {
 	printf("Checking for Filter Flip Properties...\n");
 
+	uint16_t num_bitflips = 0;
+	
 	for (uint16_t i = 0; i < 256; i++) {
 		nonces[i].BitFlip[ODD_STATE] = false;
 		nonces[i].BitFlip[EVEN_STATE] = false;
@@ -638,10 +671,95 @@ static void Check_for_FilterFlipProperties(void)
 		
 		if (parity1 == parity2_odd) {				// has Bit Flip Property for odd bits
 			nonces[i].BitFlip[ODD_STATE] = true;
+			num_bitflips++;
 		} else if (parity1 == parity2_even) {		// has Bit Flip Property for even bits
 			nonces[i].BitFlip[EVEN_STATE] = true;
+			num_bitflips++;
+		}
+	}
+	
+	if (write_stats) {
+		fprintf(fstats, "%d;", num_bitflips);
+	}
+}
+
+
+static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
+{
+	struct Crypto1State sim_cs = {0, 0};
+//	sim_cs.odd = sim_cs.even = 0;
+
+	// init cryptostate with key:
+	for(int8_t i = 47; i > 0; i -= 2) {
+		sim_cs.odd  = sim_cs.odd  << 1 | BIT(test_key, (i - 1) ^ 7);
+		sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
+	}
+
+	*par_enc = 0;
+	uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
+	for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
+		uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
+		uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; 	// encode the nonce byte
+		*nt_enc = (*nt_enc << 8) | nt_byte_enc;		
+		uint8_t ks_par = filter(sim_cs.odd);											// the keystream bit to encode/decode the parity bit
+		uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec);						// determine the nt byte's parity and encode it
+		*par_enc = (*par_enc << 1) | nt_byte_par_enc;
+	}
+	
+}
+
+
+static void simulate_acquire_nonces()
+{
+	clock_t time1 = clock();
+	bool filter_flip_checked = false;
+	uint32_t total_num_nonces = 0;
+	uint32_t next_fivehundred = 500;
+	uint32_t total_added_nonces = 0;
+
+	cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
+	known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
+	
+	printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
+	fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
+	
+	do {
+		uint32_t nt_enc = 0;
+		uint8_t par_enc = 0;
+
+		simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
+		//printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
+		total_added_nonces += add_nonce(nt_enc, par_enc);
+		total_num_nonces++;
+		
+		if (first_byte_num == 256 ) {
+			// printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
+			if (!filter_flip_checked) {
+				Check_for_FilterFlipProperties();
+				filter_flip_checked = true;
+			}
+			num_good_first_bytes = estimate_second_byte_sum();
+			if (total_num_nonces > next_fivehundred) {
+				next_fivehundred = (total_num_nonces/500+1) * 500;
+				printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
+					total_num_nonces, 
+					total_added_nonces,
+					CONFIDENCE_THRESHOLD * 100.0,
+					num_good_first_bytes);
+			}
 		}
+
+	} while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
+	
+	time1 = clock() - time1;
+	if ( time1 > 0 ) {
+	PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", 
+		total_num_nonces, 
+		((float)time1)/CLOCKS_PER_SEC, 
+		total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
 	}
+	fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
+		
 }
 
 
@@ -742,8 +860,14 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
 		}
 
 		if (!initialize) {
-			if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
-			if (resp.arg[0]) return resp.arg[0];  // error during nested_hard
+			if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
+				fclose(fnonces);
+				return 1;
+			}
+			if (resp.arg[0]) {
+				fclose(fnonces);
+				return resp.arg[0];  // error during nested_hard
+			}
 		}
 
 		initialize = false;
@@ -755,11 +879,14 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
 		fclose(fnonces);
 	}
 	
+	time1 = clock() - time1;
+	if ( time1 > 0 ) {
 	PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", 
 		total_num_nonces, 
-		((float)clock()-time1)/CLOCKS_PER_SEC, 
-		total_num_nonces*60.0*CLOCKS_PER_SEC/((float)clock()-time1));
-	
+		((float)time1)/CLOCKS_PER_SEC, 
+		total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
+		);
+	}
 	return 0;
 }
 
@@ -1034,7 +1161,6 @@ static struct sl_cache_entry {
 
 static void init_statelist_cache(void)
 {
-
 	for (uint16_t i = 0; i < 17; i+=2) {
 		for (uint16_t j = 0; j < 17; j+=2) {
 			for (uint16_t k = 0; k < 2; k++) {
@@ -1148,13 +1274,19 @@ static void TestIfKeyExists(uint64_t key)
 			PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.", 
 				count, log(count)/log(2), 
 				maximum_states, log(maximum_states)/log(2),
-				(count>>22)/60);
+				(count>>23)/60);
+			if (write_stats) {
+				fprintf(fstats, "1\n");
+			}
 			crypto1_destroy(pcs);
 			return;
 		}
 	}
 
 	printf("Key NOT found!\n");
+	if (write_stats) {
+		fprintf(fstats, "0\n");
+	}
 	crypto1_destroy(pcs);
 }
 
@@ -1173,7 +1305,7 @@ static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
 			}
 		}
 	}
-	printf("Number of possible keys with Sum(a0) = %d: %lld (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
+	printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
 	
 	init_statelist_cache();
 	
@@ -1222,8 +1354,37 @@ static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
 	for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
 		maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
 	}
-	printf("Number of remaining possible keys: %lld (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
+	printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
+	if (write_stats) {
+		if (maximum_states != 0) {
+			fprintf(fstats, "%1.1f;", log(maximum_states)/log(2.0));
+		} else {
+			fprintf(fstats, "%1.1f;", 0.0);
+		}
+	}
+}
+
 
+static void	free_candidates_memory(statelist_t *sl)
+{
+	if (sl == NULL) {
+		return;
+	} else {
+		free_candidates_memory(sl->next);
+		free(sl);
+	}
+}
+
+
+static void free_statelist_cache(void)
+{
+	for (uint16_t i = 0; i < 17; i+=2) {
+		for (uint16_t j = 0; j < 17; j+=2) {
+			for (uint16_t k = 0; k < 2; k++) {
+				free(sl_cache[i][j][k].sl);
+			}
+		}
+	}		
 }
 
 
@@ -1232,77 +1393,95 @@ static void brute_force(void)
 	if (known_target_key != -1) {
 		PrintAndLog("Looking for known target key in remaining key space...");
 		TestIfKeyExists(known_target_key);
-		return;
 	} else {
 		PrintAndLog("Brute Force phase is not implemented.");
-		return;
 	}
-	
 
 }
 
 
-int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow) 
+int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) 
 {
+	// initialize Random number generator
+	time_t t;
+	srand((unsigned) time(&t));
+	
 	if (trgkey != NULL) {
 		known_target_key = bytes_to_num(trgkey, 6);
 	} else {
 		known_target_key = -1;
 	}
 	
-	// initialize the list of nonces
-	for (uint16_t i = 0; i < 256; i++) {
-		nonces[i].num = 0;
-		nonces[i].Sum = 0;
-		nonces[i].Sum8_guess = 0;
-		nonces[i].Sum8_prob = 0.0;
-		nonces[i].updated = true;
-		nonces[i].first = NULL;
-	}
-	first_byte_num = 0;
-	first_byte_Sum = 0;
-	num_good_first_bytes = 0;
-
 	init_partial_statelists();
 	init_BitFlip_statelist();
+	write_stats = false;
 	
-	if (nonce_file_read) {  	// use pre-acquired data from file nonces.bin
-		if (read_nonce_file() != 0) {
+	if (tests) {
+		// set the correct locale for the stats printing
+		setlocale(LC_ALL, "");
+		write_stats = true;
+		if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) { 
+			PrintAndLog("Could not create/open file hardnested_stats.txt");
 			return 3;
 		}
-		Check_for_FilterFlipProperties();
-		num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
-	} else {					// acquire nonces.
-		uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
-		if (is_OK != 0) {
-			return is_OK;
+		for (uint32_t i = 0; i < tests; i++) {
+			init_nonce_memory();
+			simulate_acquire_nonces();
+			Tests();
+			printf("Sum(a0) = %d\n", first_byte_Sum);
+			fprintf(fstats, "%d;", first_byte_Sum);
+			generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+			brute_force();
+			free_nonces_memory();
+			free_statelist_cache();
+			free_candidates_memory(candidates);
+			candidates = NULL;
+		}
+		fclose(fstats);
+	} else {
+		init_nonce_memory();
+		if (nonce_file_read) {  	// use pre-acquired data from file nonces.bin
+			if (read_nonce_file() != 0) {
+				return 3;
+			}
+			Check_for_FilterFlipProperties();
+			num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
+		} else {					// acquire nonces.
+			uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
+			if (is_OK != 0) {
+				return is_OK;
+			}
 		}
-	}
-
-
-	Tests();
 
-	PrintAndLog("");
-	PrintAndLog("Sum(a0) = %d", first_byte_Sum);
-	// PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
-		// best_first_bytes[0],
-		// best_first_bytes[1],
-		// best_first_bytes[2],
-		// best_first_bytes[3],
-		// best_first_bytes[4],
-		// best_first_bytes[5],
-		// best_first_bytes[6],
-		// best_first_bytes[7],
-		// best_first_bytes[8],
-		// best_first_bytes[9]  );
-	PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
-
-	time_t start_time = clock();
-	generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
-	PrintAndLog("Time for generating key candidates list: %1.0f seconds", (float)(clock() - start_time)/CLOCKS_PER_SEC);
-	
-	brute_force();
+		Tests();
+
+		PrintAndLog("");
+		PrintAndLog("Sum(a0) = %d", first_byte_Sum);
+		// PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
+			// best_first_bytes[0],
+			// best_first_bytes[1],
+			// best_first_bytes[2],
+			// best_first_bytes[3],
+			// best_first_bytes[4],
+			// best_first_bytes[5],
+			// best_first_bytes[6],
+			// best_first_bytes[7],
+			// best_first_bytes[8],
+			// best_first_bytes[9]  );
+		PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
+
+		clock_t time1 = clock();
+		generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
+		time1 = clock() - time1;
+		if ( time1 > 0 )
+			PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
 	
+		brute_force();
+		free_nonces_memory();
+		free_statelist_cache();
+		free_candidates_memory(candidates);
+		candidates = NULL;
+	}	
 	return 0;
 }