X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/a61b4976bd2085bf0495855b48fcad0d9ed4572e..a501c82b196b614295a6e3bf7481da84affb0d8e:/armsrc/iso14443a.c diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index 6fe83c6e..aed6a1fe 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -103,9 +103,9 @@ uint16_t FpgaSendQueueDelay; //variables used for timing purposes: //these are in ssp_clk cycles: -uint32_t NextTransferTime; -uint32_t LastTimeProxToAirStart; -uint32_t LastProxToAirDuration; +static uint32_t NextTransferTime; +static uint32_t LastTimeProxToAirStart; +static uint32_t LastProxToAirDuration; @@ -143,7 +143,6 @@ const uint8_t OddByteParity[256] = { 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 }; - void iso14a_set_trigger(bool enable) { trigger = enable; } @@ -170,17 +169,28 @@ byte_t oddparity (const byte_t bt) return OddByteParity[bt]; } -uint32_t GetParity(const uint8_t * pbtCmd, int iLen) +void GetParity(const uint8_t * pbtCmd, uint16_t iLen, uint8_t *par) { - int i; - uint32_t dwPar = 0; - - // Generate the parity bits - for (i = 0; i < iLen; i++) { - // and save them to a 32Bit word - dwPar |= ((OddByteParity[pbtCmd[i]]) << i); + uint16_t paritybit_cnt = 0; + uint16_t paritybyte_cnt = 0; + uint8_t parityBits = 0; + + for (uint16_t i = 0; i < iLen; i++) { + // Generate the parity bits + parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt)); + if (paritybit_cnt == 7) { + par[paritybyte_cnt] = parityBits; // save 8 Bits parity + parityBits = 0; // and advance to next Parity Byte + paritybyte_cnt++; + paritybit_cnt = 0; + } else { + paritybit_cnt++; + } } - return dwPar; + + // save remaining parity bits + par[paritybyte_cnt] = parityBits; + } void AppendCrc14443a(uint8_t* data, int len) @@ -189,33 +199,57 @@ void AppendCrc14443a(uint8_t* data, int len) } // The function LogTrace() is also used by the iClass implementation in iClass.c -bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp, uint32_t dwParity, bool readerToTag) +bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag) { if (!tracing) return FALSE; + + uint16_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity + uint16_t duration = timestamp_end - timestamp_start; + // Return when trace is full - if (traceLen + sizeof(timestamp) + sizeof(dwParity) + iLen >= TRACE_SIZE) { + if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= TRACE_SIZE) { tracing = FALSE; // don't trace any more return FALSE; } - // Trace the random, i'm curious - trace[traceLen++] = ((timestamp >> 0) & 0xff); - trace[traceLen++] = ((timestamp >> 8) & 0xff); - trace[traceLen++] = ((timestamp >> 16) & 0xff); - trace[traceLen++] = ((timestamp >> 24) & 0xff); - + // Traceformat: + // 32 bits timestamp (little endian) + // 16 bits duration (little endian) + // 16 bits data length (little endian, Highest Bit used as readerToTag flag) + // y Bytes data + // x Bytes parity (one byte per 8 bytes data) + + // timestamp (start) + trace[traceLen++] = ((timestamp_start >> 0) & 0xff); + trace[traceLen++] = ((timestamp_start >> 8) & 0xff); + trace[traceLen++] = ((timestamp_start >> 16) & 0xff); + trace[traceLen++] = ((timestamp_start >> 24) & 0xff); + + // duration + trace[traceLen++] = ((duration >> 0) & 0xff); + trace[traceLen++] = ((duration >> 8) & 0xff); + + // data length + trace[traceLen++] = ((iLen >> 0) & 0xff); + trace[traceLen++] = ((iLen >> 8) & 0xff); + + // readerToTag flag if (!readerToTag) { trace[traceLen - 1] |= 0x80; - } - trace[traceLen++] = ((dwParity >> 0) & 0xff); - trace[traceLen++] = ((dwParity >> 8) & 0xff); - trace[traceLen++] = ((dwParity >> 16) & 0xff); - trace[traceLen++] = ((dwParity >> 24) & 0xff); - trace[traceLen++] = iLen; + } + + // data bytes if (btBytes != NULL && iLen != 0) { memcpy(trace + traceLen, btBytes, iLen); } - traceLen += iLen; + traceLen += iLen; + + // parity bytes + if (parity != NULL && iLen != 0) { + memcpy(trace + traceLen, parity, num_paritybytes); + } + traceLen += num_paritybytes; + return TRUE; } @@ -251,14 +285,21 @@ void UartReset() Uart.state = STATE_UNSYNCD; Uart.bitCount = 0; Uart.len = 0; // number of decoded data bytes + Uart.parityLen = 0; // number of decoded parity bytes Uart.shiftReg = 0; // shiftreg to hold decoded data bits - Uart.parityBits = 0; // + Uart.parityBits = 0; // holds 8 parity bits Uart.twoBits = 0x0000; // buffer for 2 Bits Uart.highCnt = 0; Uart.startTime = 0; Uart.endTime = 0; } +void UartInit(uint8_t *data, uint8_t *parity) +{ + Uart.output = data; + Uart.parity = parity; + UartReset(); +} // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) @@ -266,14 +307,14 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) Uart.twoBits = (Uart.twoBits << 8) | bit; - if (Uart.state == STATE_UNSYNCD) { // not yet synced + if (Uart.state == STATE_UNSYNCD) { // not yet synced + if (Uart.highCnt < 7) { // wait for a stable unmodulated signal - if (Uart.twoBits == 0xffff) { + if (Uart.twoBits == 0xffff) Uart.highCnt++; - } else { + else Uart.highCnt = 0; - } - } else { + } else { Uart.syncBit = 0xFFFF; // not set // look for 00xx1111 (the start bit) if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; @@ -313,6 +354,10 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit Uart.bitCount = 0; Uart.shiftReg = 0; + if((Uart.len & 0x0007) == 0) { // every 8 data bytes + Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits + Uart.parityBits = 0; + } } } } @@ -328,17 +373,28 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit Uart.bitCount = 0; Uart.shiftReg = 0; + if ((Uart.len & 0x0007) == 0) { // every 8 data bytes + Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits + Uart.parityBits = 0; + } } } else { // no modulation in both halves - Sequence Y if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication Uart.state = STATE_UNSYNCD; - if(Uart.len == 0 && Uart.bitCount > 0) { // if we decoded some bits - Uart.shiftReg >>= (9 - Uart.bitCount); // add them to the output - Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); - Uart.parityBits <<= 1; // no parity bit - add "0" - Uart.bitCount--; // last "0" was part of the EOC sequence - } + Uart.bitCount--; // last "0" was part of EOC sequence + Uart.shiftReg <<= 1; // drop it + if(Uart.bitCount > 0) { // if we decoded some bits + Uart.shiftReg >>= (9 - Uart.bitCount); // right align them + Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output + Uart.parityBits <<= 1; // add a (void) parity bit + Uart.parityBits <<= (8 - (Uart.len & 0x0007)); // left align parity bits + Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it return TRUE; + } else if (Uart.len & 0x0007) { // there are some parity bits to store + Uart.parityBits <<= (8 - (Uart.len & 0x0007)); // left align remaining parity bits + Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them + return TRUE; // we are finished with decoding the raw data sequence + } } if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC UartReset(); @@ -353,12 +409,16 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit Uart.bitCount = 0; Uart.shiftReg = 0; + if ((Uart.len & 0x0007) == 0) { // every 8 data bytes + Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits + Uart.parityBits = 0; + } } } } } - } + } return FALSE; // not finished yet, need more data } @@ -397,6 +457,7 @@ void DemodReset() { Demod.state = DEMOD_UNSYNCD; Demod.len = 0; // number of decoded data bytes + Demod.parityLen = 0; Demod.shiftReg = 0; // shiftreg to hold decoded data bits Demod.parityBits = 0; // Demod.collisionPos = 0; // Position of collision bit @@ -406,6 +467,13 @@ void DemodReset() Demod.endTime = 0; } +void DemodInit(uint8_t *data, uint8_t *parity) +{ + Demod.output = data; + Demod.parity = parity; + DemodReset(); +} + // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) { @@ -454,6 +522,10 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit Demod.bitCount = 0; Demod.shiftReg = 0; + if((Demod.len & 0x0007) == 0) { // every 8 data bytes + Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits + Demod.parityBits = 0; + } } Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4; } else { // no modulation in first half @@ -466,17 +538,24 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit Demod.bitCount = 0; Demod.shiftReg = 0; + if ((Demod.len & 0x0007) == 0) { // every 8 data bytes + Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1 + Demod.parityBits = 0; + } } Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1); } else { // no modulation in both halves - End of communication - if (Demod.len > 0 || Demod.bitCount > 0) { // received something - if(Demod.bitCount > 0) { // if we decoded bits - Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output - Demod.output[Demod.len++] = Demod.shiftReg & 0xff; - // No parity bit, so just shift a 0 - Demod.parityBits <<= 1; - } - return TRUE; // we are finished with decoding the raw data sequence + if(Demod.bitCount > 0) { // there are some remaining data bits + Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits + Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output + Demod.parityBits <<= 1; // add a (void) parity bit + Demod.parityBits <<= (8 - (Demod.len & 0x0007)); // left align remaining parity bits + Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them + return TRUE; + } else if (Demod.len & 0x0007) { // there are some parity bits to store + Demod.parityBits <<= (8 - (Demod.len & 0x0007)); // left align remaining parity bits + Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them + return TRUE; // we are finished with decoding the raw data sequence } else { // nothing received. Start over DemodReset(); } @@ -517,10 +596,13 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! - uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); + uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET; + uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET; + // The response (tag -> reader) that we're receiving. - uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); - + uint8_t *receivedResponse = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET; + uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET; + // As we receive stuff, we copy it from receivedCmd or receivedResponse // into trace, along with its length and other annotations. //uint8_t *trace = (uint8_t *)BigBuf; @@ -537,10 +619,10 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); // Set up the demodulator for tag -> reader responses. - Demod.output = receivedResponse; + DemodInit(receivedResponse, receivedResponsePar); // Set up the demodulator for the reader -> tag commands - Uart.output = receivedCmd; + UartInit(receivedCmd, receivedCmdPar); // Setup and start DMA. FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); @@ -598,8 +680,12 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE; if(triggered) { - if (!LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.parityBits, TRUE)) break; - if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; + if (!LogTrace(receivedCmd, + Uart.len, + Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, + Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, + Uart.parity, + TRUE)) break; } /* And ready to receive another command. */ UartReset(); @@ -616,8 +702,12 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) { LED_B_ON(); - if (!LogTrace(receivedResponse, Demod.len, Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parityBits, FALSE)) break; - if (!LogTrace(NULL, 0, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 0, FALSE)) break; + if (!LogTrace(receivedResponse, + Demod.len, + Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, + Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, + Demod.parity, + FALSE)) break; if ((!triggered) && (param & 0x01)) triggered = TRUE; @@ -648,10 +738,8 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { //----------------------------------------------------------------------------- // Prepare tag messages //----------------------------------------------------------------------------- -static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity) +static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) { - int i; - ToSendReset(); // Correction bit, might be removed when not needed @@ -668,12 +756,11 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity ToSend[++ToSendMax] = SEC_D; LastProxToAirDuration = 8 * ToSendMax - 4; - for(i = 0; i < len; i++) { - int j; + for( uint16_t i = 0; i < len; i++) { uint8_t b = cmd[i]; // Data bits - for(j = 0; j < 8; j++) { + for(uint16_t j = 0; j < 8; j++) { if(b & 1) { ToSend[++ToSendMax] = SEC_D; } else { @@ -683,7 +770,7 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity } // Get the parity bit - if ((dwParity >> i) & 0x01) { + if (parity[i>>3] & (0x80>>(i&0x0007))) { ToSend[++ToSendMax] = SEC_D; LastProxToAirDuration = 8 * ToSendMax - 4; } else { @@ -699,8 +786,12 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity ToSendMax++; } -static void CodeIso14443aAsTag(const uint8_t *cmd, int len){ - CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len)); +static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) +{ + uint8_t par[MAX_PARITY_SIZE]; + + GetParity(cmd, len, par); + CodeIso14443aAsTagPar(cmd, len, par); } @@ -747,7 +838,7 @@ static void Code4bitAnswerAsTag(uint8_t cmd) // Stop when button is pressed // Or return TRUE when command is captured //----------------------------------------------------------------------------- -static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen) +static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) { // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen // only, since we are receiving, not transmitting). @@ -756,8 +847,7 @@ static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); // Now run a `software UART' on the stream of incoming samples. - UartReset(); - Uart.output = received; + UartInit(received, parity); // clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; @@ -777,16 +867,15 @@ static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen } } -static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded); +static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded); int EmSend4bitEx(uint8_t resp, bool correctionNeeded); int EmSend4bit(uint8_t resp); -int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par); -int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par); -int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded); -int EmSendCmd(uint8_t *resp, int respLen); -int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par); -bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity, - uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity); +int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par); +int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded); +int EmSendCmd(uint8_t *resp, uint16_t respLen); +int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par); +bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, + uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity); static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); @@ -839,7 +928,7 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { response_info->modulation = free_buffer_pointer; // Determine the maximum size we can use from our buffer - size_t max_buffer_size = (((uint8_t *)BigBuf)+FREE_BUFFER_OFFSET+FREE_BUFFER_SIZE)-free_buffer_pointer; + size_t max_buffer_size = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + FREE_BUFFER_SIZE) - free_buffer_pointer; // Forward the prepare tag modulation function to the inner function if (prepare_tag_modulation(response_info,max_buffer_size)) { @@ -891,6 +980,12 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) response1[1] = 0x00; sak = 0x28; } break; + case 5: { // MIFARE TNP3XXX + // Says: I am a toy + response1[0] = 0x01; + response1[1] = 0x0f; + sak = 0x01; + } break; default: { Dbprintf("Error: unkown tagtype (%d)",tagType); return; @@ -932,7 +1027,11 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce - uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS + uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: + // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, + // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1 + // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us) + // TC(1) = 0x02: CID supported, NAD not supported ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); #define TAG_RESPONSE_COUNT 7 @@ -968,7 +1067,6 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) prepare_allocated_tag_modulation(&responses[i]); } - uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); int len = 0; // To control where we are in the protocol @@ -983,6 +1081,10 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) // We need to listen to the high-frequency, peak-detected path. iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); + // buffers used on software Uart: + uint8_t *receivedCmd = ((uint8_t *)BigBuf) + RECV_CMD_OFFSET; + uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET; + cmdsRecvd = 0; tag_response_info_t* p_response; @@ -990,14 +1092,13 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) for(;;) { // Clean receive command buffer - if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) { + if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) { DbpString("Button press"); - break; + break; } p_response = NULL; - // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated // Okay, look at the command now. lastorder = order; if(receivedCmd[0] == 0x26) { // Received a REQUEST @@ -1006,22 +1107,21 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) p_response = &responses[0]; order = 6; } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1) p_response = &responses[1]; order = 2; - } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2) + } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2) p_response = &responses[2]; order = 20; } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1) p_response = &responses[3]; order = 3; } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2) p_response = &responses[4]; order = 30; } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ - EmSendCmdEx(data+(4*receivedCmd[0]),16,false); + EmSendCmdEx(data+(4*receivedCmd[1]),16,false); // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]); // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below p_response = NULL; } else if(receivedCmd[0] == 0x50) { // Received a HALT -// DbpString("Reader requested we HALT!:"); + if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); } p_response = NULL; } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request @@ -1033,10 +1133,9 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) } else { p_response = &responses[6]; order = 70; } - } else if (order == 7 && len == 8) { // Received authentication request + } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication) if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); } uint32_t nr = bytes_to_num(receivedCmd,4); uint32_t ar = bytes_to_num(receivedCmd+4,4); @@ -1080,8 +1179,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) default: { // Never seen this command before if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); } Dbprintf("Received unknown command (len=%d):",len); Dbhexdump(len,receivedCmd,false); @@ -1101,8 +1199,7 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { Dbprintf("Error preparing tag response"); if (tracing) { - LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); } break; } @@ -1125,16 +1222,19 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) if (p_response != NULL) { EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); // do the tracing for the previous reader request and this tag answer: + uint8_t par[MAX_PARITY_SIZE]; + GetParity(p_response->response, p_response->response_n, par); + EmLogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.parityBits, + Uart.parity, p_response->response, p_response->response_n, LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, - SwapBits(GetParity(p_response->response, p_response->response_n), p_response->response_n)); + par); } if (!tracing) { @@ -1180,7 +1280,7 @@ void PrepareDelayedTransfer(uint16_t delay) // if == 0: transfer immediately and return time of transfer // if != 0: delay transfer until time specified //------------------------------------------------------------------------------------- -static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing) +static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) { FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); @@ -1223,7 +1323,7 @@ static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing) //----------------------------------------------------------------------------- // Prepare reader command (in bits, support short frames) to send to FPGA //----------------------------------------------------------------------------- -void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity) +void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, uint16_t bits, const uint8_t *parity) { int i, j; int last; @@ -1263,10 +1363,10 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwPari b >>= 1; } - // Only transmit (last) parity bit if we transmitted a complete byte + // Only transmit parity bit if we transmitted a complete byte if (j == 8) { // Get the parity bit - if ((dwParity >> i) & 0x01) { + if (parity[i>>3] & (0x80 >> (i&0x0007))) { // Sequence X ToSend[++ToSendMax] = SEC_X; LastProxToAirDuration = 8 * (ToSendMax+1) - 2; @@ -1304,9 +1404,9 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwPari //----------------------------------------------------------------------------- // Prepare reader command to send to FPGA //----------------------------------------------------------------------------- -void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) +void CodeIso14443aAsReaderPar(const uint8_t * cmd, uint16_t len, const uint8_t *parity) { - CodeIso14443aBitsAsReaderPar(cmd,len*8,dwParity); + CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); } //----------------------------------------------------------------------------- @@ -1314,7 +1414,7 @@ void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) // Stop when button is pressed (return 1) or field was gone (return 2) // Or return 0 when command is captured //----------------------------------------------------------------------------- -static int EmGetCmd(uint8_t *received, int *len) +static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) { *len = 0; @@ -1339,8 +1439,7 @@ static int EmGetCmd(uint8_t *received, int *len) AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; // Now run a 'software UART' on the stream of incoming samples. - UartReset(); - Uart.output = received; + UartInit(received, parity); // Clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; @@ -1381,7 +1480,7 @@ static int EmGetCmd(uint8_t *received, int *len) } -static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded) +static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) { uint8_t b; uint16_t i = 0; @@ -1448,16 +1547,18 @@ int EmSend4bitEx(uint8_t resp, bool correctionNeeded){ Code4bitAnswerAsTag(resp); int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); // do the tracing for the previous reader request and this tag answer: + uint8_t par[1]; + GetParity(&resp, 1, par); EmLogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.parityBits, + Uart.parity, &resp, 1, LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, - SwapBits(GetParity(&resp, 1), 1)); + par); return res; } @@ -1465,7 +1566,7 @@ int EmSend4bit(uint8_t resp){ return EmSend4bitEx(resp, false); } -int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par){ +int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){ CodeIso14443aAsTagPar(resp, respLen, par); int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); // do the tracing for the previous reader request and this tag answer: @@ -1473,51 +1574,48 @@ int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t p Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, - Uart.parityBits, + Uart.parity, resp, respLen, LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, - SwapBits(GetParity(resp, respLen), respLen)); + par); return res; } -int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded){ - return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen)); +int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){ + uint8_t par[MAX_PARITY_SIZE]; + GetParity(resp, respLen, par); + return EmSendCmdExPar(resp, respLen, correctionNeeded, par); } - -int EmSendCmd(uint8_t *resp, int respLen){ - return EmSendCmdExPar(resp, respLen, false, GetParity(resp, respLen)); + +int EmSendCmd(uint8_t *resp, uint16_t respLen){ + uint8_t par[MAX_PARITY_SIZE]; + GetParity(resp, respLen, par); + return EmSendCmdExPar(resp, respLen, false, par); } -int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){ +int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ return EmSendCmdExPar(resp, respLen, false, par); } -bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity, - uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity) +bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, + uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity) { - if (tracing) { - // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from - // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. - // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: - uint16_t reader_modlen = reader_EndTime - reader_StartTime; - uint16_t approx_fdt = tag_StartTime - reader_EndTime; - uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; - reader_EndTime = tag_StartTime - exact_fdt; - reader_StartTime = reader_EndTime - reader_modlen; - if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_Parity, TRUE)) { - return FALSE; - } else if (!LogTrace(NULL, 0, reader_EndTime, 0, TRUE)) { - return FALSE; - } else if (!LogTrace(tag_data, tag_len, tag_StartTime, tag_Parity, FALSE)) { - return FALSE; - } else { - return (!LogTrace(NULL, 0, tag_EndTime, 0, FALSE)); - } - } else { - return TRUE; - } + if (!tracing) return true; + + // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from + // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. + // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: + uint16_t reader_modlen = reader_EndTime - reader_StartTime; + uint16_t approx_fdt = tag_StartTime - reader_EndTime; + uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; + reader_EndTime = tag_StartTime - exact_fdt; + reader_StartTime = reader_EndTime - reader_modlen; + if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) { + return FALSE; + } else + return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE)); } //----------------------------------------------------------------------------- @@ -1525,7 +1623,7 @@ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_Start // If a response is captured return TRUE // If it takes too long return FALSE //----------------------------------------------------------------------------- -static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen) +static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) { uint16_t c; @@ -1536,9 +1634,8 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); // Now get the answer from the card - DemodReset(); - Demod.output = receivedResponse; - + DemodInit(receivedResponse, receivedResponsePar); + // clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; @@ -1551,17 +1648,16 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, if(ManchesterDecoding(b, offset, 0)) { NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD); return TRUE; - } else if(c++ > iso14a_timeout) { + } else if (c++ > iso14a_timeout) { return FALSE; } } } } -void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing) +void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) { - - CodeIso14443aBitsAsReaderPar(frame,bits,par); + CodeIso14443aBitsAsReaderPar(frame, bits, par); // Send command to tag TransmitFor14443a(ToSend, ToSendMax, timing); @@ -1570,51 +1666,47 @@ void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *tim // Log reader command in trace buffer if (tracing) { - LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); - LogTrace(NULL, 0, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, 0, TRUE); + LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); } } -void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing) +void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) { - ReaderTransmitBitsPar(frame,len*8,par, timing); + ReaderTransmitBitsPar(frame, len*8, par, timing); } -void ReaderTransmitBits(uint8_t* frame, int len, uint32_t *timing) +void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) { - // Generate parity and redirect - ReaderTransmitBitsPar(frame,len,GetParity(frame,len/8), timing); + // Generate parity and redirect + uint8_t par[MAX_PARITY_SIZE]; + GetParity(frame, len/8, par); + ReaderTransmitBitsPar(frame, len, par, timing); } -void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing) +void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) { - // Generate parity and redirect - ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing); + // Generate parity and redirect + uint8_t par[MAX_PARITY_SIZE]; + GetParity(frame, len, par); + ReaderTransmitBitsPar(frame, len*8, par, timing); } -int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset) +int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) { - if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160)) return FALSE; + if (!GetIso14443aAnswerFromTag(receivedAnswer,parity,offset)) return FALSE; if (tracing) { - LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE); - LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE); + LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); } return Demod.len; } -int ReaderReceive(uint8_t* receivedAnswer) +int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) { - return ReaderReceiveOffset(receivedAnswer, 0); -} + if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE; -int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr) -{ - if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160)) return FALSE; if (tracing) { - LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE); - LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE); + LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); } - *parptr = Demod.parityBits; return Demod.len; } @@ -1622,23 +1714,29 @@ int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr) * fills the uid pointer unless NULL * fills resp_data unless NULL */ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, uint32_t* cuid_ptr) { - uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP - uint8_t sel_all[] = { 0x93,0x20 }; - uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; - uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 - uint8_t* resp = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); // was 3560 - tied to other size changes - byte_t uid_resp[4]; - size_t uid_resp_len; + uint8_t halt[] = { 0x50 }; // HALT + uint8_t wupa[] = { 0x52 }; // WAKE-UP + //uint8_t reqa[] = { 0x26 }; // REQUEST A + uint8_t sel_all[] = { 0x93,0x20 }; + uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; + uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 + uint8_t *resp = ((uint8_t *)BigBuf) + RECV_RESP_OFFSET; + uint8_t *resp_par = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET; + + byte_t uid_resp[4]; + size_t uid_resp_len; uint8_t sak = 0x04; // cascade uid int cascade_level = 0; int len; - + + ReaderTransmit(halt,sizeof(halt), NULL); + // Broadcast for a card, WUPA (0x52) will force response from all cards in the field - ReaderTransmitBitsPar(wupa,7,0, NULL); + ReaderTransmitBitsPar(wupa,7,0, NULL); // Receive the ATQA - if(!ReaderReceive(resp)) return 0; + if(!ReaderReceive(resp, resp_par)) return 0; // Dbprintf("atqa: %02x %02x",resp[0],resp[1]); if(p_hi14a_card) { @@ -1661,7 +1759,7 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u // SELECT_ALL ReaderTransmit(sel_all,sizeof(sel_all), NULL); - if (!ReaderReceive(resp)) return 0; + if (!ReaderReceive(resp, resp_par)) return 0; if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit memset(uid_resp, 0, 4); @@ -1683,7 +1781,7 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u } collision_answer_offset = uid_resp_bits%8; ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); - if (!ReaderReceiveOffset(resp, collision_answer_offset)) return 0; + if (!ReaderReceiveOffset(resp, collision_answer_offset,resp_par)) return 0; } // finally, add the last bits and BCC of the UID for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { @@ -1695,7 +1793,7 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u memcpy(uid_resp,resp,4); } uid_resp_len = 4; - // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]); + // calculate crypto UID. Always use last 4 Bytes. if(cuid_ptr) { @@ -1710,21 +1808,25 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u ReaderTransmit(sel_uid,sizeof(sel_uid), NULL); // Receive the SAK - if (!ReaderReceive(resp)) return 0; + if (!ReaderReceive(resp, resp_par)) return 0; sak = resp[0]; + //Dbprintf("SAK: %02x",resp[0]); + // Test if more parts of the uid are comming if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { - // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: - // http://www.nxp.com/documents/application_note/AN10927.pdf - // This was earlier: - //memcpy(uid_resp, uid_resp + 1, 3); - // But memcpy should not be used for overlapping arrays, - // and memmove appears to not be available in the arm build. - // So this has been replaced with a for-loop: - for(int xx = 0; xx < 3; xx++) - uid_resp[xx] = uid_resp[xx+1]; - uid_resp_len = 3; + // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: + // http://www.nxp.com/documents/application_note/AN10927.pdf + // This was earlier: + //memcpy(uid_resp, uid_resp + 1, 3); + // But memcpy should not be used for overlapping arrays, + // and memmove appears to not be available in the arm build. + // Therefore: + uid_resp[0] = uid_resp[1]; + uid_resp[1] = uid_resp[2]; + uid_resp[2] = uid_resp[3]; + + uid_resp_len = 3; } if(uid_ptr) { @@ -1750,7 +1852,7 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u AppendCrc14443a(rats, 2); ReaderTransmit(rats, sizeof(rats), NULL); - if (!(len = ReaderReceive(resp))) return 0; + if (!(len = ReaderReceive(resp,resp_par))) return 0; if(p_hi14a_card) { memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); @@ -1770,8 +1872,7 @@ void iso14443a_setup(uint8_t fpga_minor_mode) { SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Signal field is on with the appropriate LED - if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD - || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) { + if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) { LED_D_ON(); } else { LED_D_OFF(); @@ -1787,7 +1888,8 @@ void iso14443a_setup(uint8_t fpga_minor_mode) { iso14a_set_timeout(1050); // 10ms default 10*105 = } -int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { +int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { + uint8_t parity[MAX_PARITY_SIZE]; uint8_t real_cmd[cmd_len+4]; real_cmd[0] = 0x0a; //I-Block // put block number into the PCB @@ -1797,7 +1899,7 @@ int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { AppendCrc14443a(real_cmd,cmd_len+2); ReaderTransmit(real_cmd, cmd_len+4, NULL); - size_t len = ReaderReceive(data); + size_t len = ReaderReceive(data, parity); uint8_t * data_bytes = (uint8_t *) data; if (!len) return 0; //DATA LINK ERROR @@ -1822,10 +1924,11 @@ void ReaderIso14443a(UsbCommand *c) { iso14a_command_t param = c->arg[0]; uint8_t *cmd = c->d.asBytes; - size_t len = c->arg[1] & 0xFFFF; - size_t lenbits = c->arg[1] >> 16; + size_t len = c->arg[1]; + size_t lenbits = c->arg[2]; uint32_t arg0 = 0; byte_t buf[USB_CMD_DATA_SIZE]; + uint8_t par[MAX_PARITY_SIZE]; if(param & ISO14A_CONNECT) { iso14a_clear_trace(); @@ -1859,15 +1962,15 @@ void ReaderIso14443a(UsbCommand *c) if(param & ISO14A_APPEND_CRC) { AppendCrc14443a(cmd,len); len += 2; - lenbits += 16; + if (lenbits) lenbits += 16; } - if(lenbits>0) { - - ReaderTransmitBitsPar(cmd,lenbits,GetParity(cmd,lenbits/8), NULL); + if(lenbits>0) { + GetParity(cmd, lenbits/8, par); + ReaderTransmitBitsPar(cmd, lenbits, par, NULL); } else { ReaderTransmit(cmd,len, NULL); } - arg0 = ReaderReceive(buf); + arg0 = ReaderReceive(buf, par); cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); } @@ -1921,24 +2024,24 @@ void ReaderMifare(bool first_try) uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; static uint8_t mf_nr_ar3; - uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); + uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET); + uint8_t* receivedAnswerPar = (((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET); iso14a_clear_trace(); iso14a_set_tracing(TRUE); byte_t nt_diff = 0; - byte_t par = 0; - //byte_t par_mask = 0xff; + uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough static byte_t par_low = 0; bool led_on = TRUE; - uint8_t uid[10]; + uint8_t uid[10] ={0}; uint32_t cuid; uint32_t nt = 0; uint32_t previous_nt = 0; static uint32_t nt_attacked = 0; - byte_t par_list[8] = {0,0,0,0,0,0,0,0}; - byte_t ks_list[8] = {0,0,0,0,0,0,0,0}; + byte_t par_list[8] = {0x00}; + byte_t ks_list[8] = {0x00}; static uint32_t sync_time; static uint32_t sync_cycles; @@ -1947,8 +2050,6 @@ void ReaderMifare(bool first_try) uint16_t consecutive_resyncs = 0; int isOK = 0; - - if (first_try) { mf_nr_ar3 = 0; iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); @@ -1956,14 +2057,13 @@ void ReaderMifare(bool first_try) sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). nt_attacked = 0; nt = 0; - par = 0; + par[0] = 0; } else { // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) - // nt_attacked = prng_successor(nt_attacked, 1); mf_nr_ar3++; mf_nr_ar[3] = mf_nr_ar3; - par = par_low; + par[0] = par_low; } LED_A_ON(); @@ -1999,7 +2099,7 @@ void ReaderMifare(bool first_try) ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); // Receive the (4 Byte) "random" nonce - if (!ReaderReceive(receivedAnswer)) { + if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) { if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); continue; } @@ -2051,19 +2151,19 @@ void ReaderMifare(bool first_try) consecutive_resyncs = 0; // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding - if (ReaderReceive(receivedAnswer)) + if (ReaderReceive(receivedAnswer, receivedAnswerPar)) { catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer if (nt_diff == 0) { - par_low = par & 0x07; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change + par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change } led_on = !led_on; if(led_on) LED_B_ON(); else LED_B_OFF(); - par_list[nt_diff] = par; + par_list[nt_diff] = SwapBits(par[0], 8); ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; // Test if the information is complete @@ -2074,13 +2174,13 @@ void ReaderMifare(bool first_try) nt_diff = (nt_diff + 1) & 0x07; mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); - par = par_low; + par[0] = par_low; } else { if (nt_diff == 0 && first_try) { - par++; + par[0]++; } else { - par = (((par >> 3) + 1) << 3) | par_low; + par[0] = ((par[0] & 0x1F) + 1) | par_low; } } } @@ -2122,8 +2222,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * int res; uint32_t selTimer = 0; uint32_t authTimer = 0; - uint32_t par = 0; - int len = 0; + uint16_t len = 0; uint8_t cardWRBL = 0; uint8_t cardAUTHSC = 0; uint8_t cardAUTHKEY = 0xff; // no authentication @@ -2137,8 +2236,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * struct Crypto1State *pcs; pcs = &mpcs; uint32_t numReads = 0;//Counts numer of times reader read a block - uint8_t* receivedCmd = eml_get_bigbufptr_recbuf(); - uint8_t *response = eml_get_bigbufptr_sendbuf(); + uint8_t* receivedCmd = get_bigbufptr_recvcmdbuf(); + uint8_t* receivedCmd_par = receivedCmd + MAX_FRAME_SIZE; + uint8_t* response = get_bigbufptr_recvrespbuf(); + uint8_t* response_par = response + MAX_FRAME_SIZE; uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; @@ -2205,9 +2306,12 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if (MF_DBGLEVEL >= 1) { if (!_7BUID) { - Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3]); + Dbprintf("4B UID: %02x%02x%02x%02x", + rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]); } else { - Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3],rUIDBCC2[0],rUIDBCC2[1] ,rUIDBCC2[2] , rUIDBCC2[3]); + Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x", + rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], + rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]); } } @@ -2229,7 +2333,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * //Now, get data - res = EmGetCmd(receivedCmd, &len); + res = EmGetCmd(receivedCmd, &len, receivedCmd_par); if (res == 2) { //Field is off! cardSTATE = MFEMUL_NOFIELD; LEDsoff(); @@ -2256,8 +2360,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * case MFEMUL_NOFIELD: case MFEMUL_HALTED: case MFEMUL_IDLE:{ - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } case MFEMUL_SELECT1:{ @@ -2292,12 +2395,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if( len != 8) { cardSTATE_TO_IDLE(); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } uint32_t ar = bytes_to_num(receivedCmd, 4); - uint32_t nr= bytes_to_num(&receivedCmd[4], 4); + uint32_t nr = bytes_to_num(&receivedCmd[4], 4); //Collect AR/NR if(ar_nr_collected < 2){ @@ -2317,14 +2419,15 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * // test if auth OK if (cardRr != prng_successor(nonce, 64)){ - if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr, prng_successor(nonce, 64)); + if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", + cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', + cardRr, prng_successor(nonce, 64)); // Shouldn't we respond anything here? // Right now, we don't nack or anything, which causes the // reader to do a WUPA after a while. /Martin // -- which is the correct response. /piwi cardSTATE_TO_IDLE(); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } @@ -2342,8 +2445,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } case MFEMUL_SELECT2:{ if (!len) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) { @@ -2364,8 +2466,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * // i guess there is a command). go into the work state. if (len != 4) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } cardSTATE = MFEMUL_WORK; @@ -2375,8 +2476,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * case MFEMUL_WORK:{ if (len == 0) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } @@ -2424,8 +2524,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } if(len != 4) { - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } @@ -2454,8 +2553,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } emlGetMem(response, receivedCmd[1], 1); AppendCrc14443a(response, 16); - mf_crypto1_encrypt(pcs, response, 18, &par); - EmSendCmdPar(response, 18, par); + mf_crypto1_encrypt(pcs, response, 18, response_par); + EmSendCmdPar(response, 18, response_par); numReads++; if(exitAfterNReads > 0 && numReads == exitAfterNReads) { Dbprintf("%d reads done, exiting", numReads); @@ -2504,8 +2603,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * LED_C_OFF(); cardSTATE = MFEMUL_HALTED; if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); break; } // RATS @@ -2526,8 +2624,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardSTATE = MFEMUL_WORK; } else { cardSTATE_TO_IDLE(); - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); } break; } @@ -2540,8 +2637,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardSTATE_TO_IDLE(); break; } - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); cardINTREG = cardINTREG + ans; cardSTATE = MFEMUL_WORK; break; @@ -2554,8 +2650,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardSTATE_TO_IDLE(); break; } - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); cardINTREG = cardINTREG - ans; cardSTATE = MFEMUL_WORK; break; @@ -2568,8 +2663,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardSTATE_TO_IDLE(); break; } - LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); - LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); cardSTATE = MFEMUL_WORK; break; } @@ -2633,9 +2727,11 @@ void RAMFUNC SniffMifare(uint8_t param) { // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); + uint8_t *receivedCmdPar = ((uint8_t *)BigBuf) + RECV_CMD_PAR_OFFSET; // The response (tag -> reader) that we're receiving. - uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); - + uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET); + uint8_t *receivedResponsePar = ((uint8_t *)BigBuf) + RECV_RESP_PAR_OFFSET; + // As we receive stuff, we copy it from receivedCmd or receivedResponse // into trace, along with its length and other annotations. //uint8_t *trace = (uint8_t *)BigBuf; @@ -2652,10 +2748,10 @@ void RAMFUNC SniffMifare(uint8_t param) { iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); // Set up the demodulator for tag -> reader responses. - Demod.output = receivedResponse; + DemodInit(receivedResponse, receivedResponsePar); // Set up the demodulator for the reader -> tag commands - Uart.output = receivedCmd; + UartInit(receivedCmd, receivedCmdPar); // Setup for the DMA. FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. @@ -2727,7 +2823,7 @@ void RAMFUNC SniffMifare(uint8_t param) { uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { LED_C_INV(); - if (MfSniffLogic(receivedCmd, Uart.len, Uart.parityBits, Uart.bitCount, TRUE)) break; + if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break; /* And ready to receive another command. */ UartReset(); @@ -2743,7 +2839,7 @@ void RAMFUNC SniffMifare(uint8_t param) { if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { LED_C_INV(); - if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break; + if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break; // And ready to receive another response. DemodReset();