X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/abd6112fc4075484480914590b09144c5b9db80b..0691975406414516cdc977454a7965a8ca40b88d:/armsrc/lfops.c?ds=inline diff --git a/armsrc/lfops.c b/armsrc/lfops.c index 780af199..75aa1342 100644 --- a/armsrc/lfops.c +++ b/armsrc/lfops.c @@ -16,7 +16,8 @@ #include "string.h" #include "lfdemod.h" #include "lfsampling.h" - +#include "protocols.h" +#include "usb_cdc.h" // for usb_poll_validate_length /** * Function to do a modulation and then get samples. @@ -25,17 +26,19 @@ * @param period_1 * @param command */ -void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) +void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command) { - int divisor_used = 95; // 125 KHz - // see if 'h' was specified + int divisor_used = 95; // 125 KHz + // see if 'h' was specified - if (command[strlen((char *) command) - 1] == 'h') - divisor_used = 88; // 134.8 KHz + if (command[strlen((char *) command) - 1] == 'h') + divisor_used = 88; // 134.8 KHz sample_config sc = { 0,0,1, divisor_used, 0}; setSamplingConfig(&sc); + //clear read buffer + BigBuf_Clear_keep_EM(); /* Make sure the tag is reset */ FpgaDownloadAndGo(FPGA_BITSTREAM_LF); @@ -47,33 +50,31 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, // And a little more time for the tag to fully power up SpinDelay(2000); - // now modulate the reader field - while(*command != '\0' && *command != ' ') { - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - LED_D_OFF(); - SpinDelayUs(delay_off); + // now modulate the reader field + while(*command != '\0' && *command != ' ') { + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_D_OFF(); + SpinDelayUs(delay_off); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - LED_D_ON(); - if(*(command++) == '0') - SpinDelayUs(period_0); - else - SpinDelayUs(period_1); - } - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - LED_D_OFF(); - SpinDelayUs(delay_off); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + LED_D_ON(); + if(*(command++) == '0') + SpinDelayUs(period_0); + else + SpinDelayUs(period_1); + } + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_D_OFF(); + SpinDelayUs(delay_off); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - // now do the read + // now do the read DoAcquisition_config(false); } - - /* blank r/w tag data stream ...0000000000000000 01111111 1010101010101010101010101010101010101010101010101010101010101010 @@ -85,228 +86,228 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, */ void ReadTItag(void) { - // some hardcoded initial params - // when we read a TI tag we sample the zerocross line at 2Mhz - // TI tags modulate a 1 as 16 cycles of 123.2Khz - // TI tags modulate a 0 as 16 cycles of 134.2Khz + // some hardcoded initial params + // when we read a TI tag we sample the zerocross line at 2Mhz + // TI tags modulate a 1 as 16 cycles of 123.2Khz + // TI tags modulate a 0 as 16 cycles of 134.2Khz #define FSAMPLE 2000000 #define FREQLO 123200 #define FREQHI 134200 - signed char *dest = (signed char *)BigBuf_get_addr(); - uint16_t n = BigBuf_max_traceLen(); - // 128 bit shift register [shift3:shift2:shift1:shift0] - uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; - - int i, cycles=0, samples=0; - // how many sample points fit in 16 cycles of each frequency - uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; - // when to tell if we're close enough to one freq or another - uint32_t threshold = (sampleslo - sampleshi + 1)>>1; - - // TI tags charge at 134.2Khz - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - - // Place FPGA in passthrough mode, in this mode the CROSS_LO line - // connects to SSP_DIN and the SSP_DOUT logic level controls - // whether we're modulating the antenna (high) - // or listening to the antenna (low) - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); - - // get TI tag data into the buffer - AcquireTiType(); - - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - - for (i=0; i<n-1; i++) { - // count cycles by looking for lo to hi zero crossings - if ( (dest[i]<0) && (dest[i+1]>0) ) { - cycles++; - // after 16 cycles, measure the frequency - if (cycles>15) { - cycles=0; - samples=i-samples; // number of samples in these 16 cycles - - // TI bits are coming to us lsb first so shift them - // right through our 128 bit right shift register - shift0 = (shift0>>1) | (shift1 << 31); - shift1 = (shift1>>1) | (shift2 << 31); - shift2 = (shift2>>1) | (shift3 << 31); - shift3 >>= 1; - - // check if the cycles fall close to the number - // expected for either the low or high frequency - if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { - // low frequency represents a 1 - shift3 |= (1<<31); - } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { - // high frequency represents a 0 - } else { - // probably detected a gay waveform or noise - // use this as gaydar or discard shift register and start again - shift3 = shift2 = shift1 = shift0 = 0; - } - samples = i; - - // for each bit we receive, test if we've detected a valid tag - - // if we see 17 zeroes followed by 6 ones, we might have a tag - // remember the bits are backwards - if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { - // if start and end bytes match, we have a tag so break out of the loop - if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { - cycles = 0xF0B; //use this as a flag (ugly but whatever) - break; - } - } - } - } - } - - // if flag is set we have a tag - if (cycles!=0xF0B) { - DbpString("Info: No valid tag detected."); - } else { - // put 64 bit data into shift1 and shift0 - shift0 = (shift0>>24) | (shift1 << 8); - shift1 = (shift1>>24) | (shift2 << 8); - - // align 16 bit crc into lower half of shift2 - shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; - - // if r/w tag, check ident match + signed char *dest = (signed char *)BigBuf_get_addr(); + uint16_t n = BigBuf_max_traceLen(); + // 128 bit shift register [shift3:shift2:shift1:shift0] + uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; + + int i, cycles=0, samples=0; + // how many sample points fit in 16 cycles of each frequency + uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; + // when to tell if we're close enough to one freq or another + uint32_t threshold = (sampleslo - sampleshi + 1)>>1; + + // TI tags charge at 134.2Khz + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz + + // Place FPGA in passthrough mode, in this mode the CROSS_LO line + // connects to SSP_DIN and the SSP_DOUT logic level controls + // whether we're modulating the antenna (high) + // or listening to the antenna (low) + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); + + // get TI tag data into the buffer + AcquireTiType(); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + + for (i=0; i<n-1; i++) { + // count cycles by looking for lo to hi zero crossings + if ( (dest[i]<0) && (dest[i+1]>0) ) { + cycles++; + // after 16 cycles, measure the frequency + if (cycles>15) { + cycles=0; + samples=i-samples; // number of samples in these 16 cycles + + // TI bits are coming to us lsb first so shift them + // right through our 128 bit right shift register + shift0 = (shift0>>1) | (shift1 << 31); + shift1 = (shift1>>1) | (shift2 << 31); + shift2 = (shift2>>1) | (shift3 << 31); + shift3 >>= 1; + + // check if the cycles fall close to the number + // expected for either the low or high frequency + if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { + // low frequency represents a 1 + shift3 |= (1<<31); + } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { + // high frequency represents a 0 + } else { + // probably detected a gay waveform or noise + // use this as gaydar or discard shift register and start again + shift3 = shift2 = shift1 = shift0 = 0; + } + samples = i; + + // for each bit we receive, test if we've detected a valid tag + + // if we see 17 zeroes followed by 6 ones, we might have a tag + // remember the bits are backwards + if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { + // if start and end bytes match, we have a tag so break out of the loop + if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { + cycles = 0xF0B; //use this as a flag (ugly but whatever) + break; + } + } + } + } + } + + // if flag is set we have a tag + if (cycles!=0xF0B) { + DbpString("Info: No valid tag detected."); + } else { + // put 64 bit data into shift1 and shift0 + shift0 = (shift0>>24) | (shift1 << 8); + shift1 = (shift1>>24) | (shift2 << 8); + + // align 16 bit crc into lower half of shift2 + shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; + + // if r/w tag, check ident match if (shift3 & (1<<15) ) { - DbpString("Info: TI tag is rewriteable"); - // only 15 bits compare, last bit of ident is not valid + DbpString("Info: TI tag is rewriteable"); + // only 15 bits compare, last bit of ident is not valid if (((shift3 >> 16) ^ shift0) & 0x7fff ) { - DbpString("Error: Ident mismatch!"); - } else { - DbpString("Info: TI tag ident is valid"); - } - } else { - DbpString("Info: TI tag is readonly"); - } - - // WARNING the order of the bytes in which we calc crc below needs checking - // i'm 99% sure the crc algorithm is correct, but it may need to eat the - // bytes in reverse or something - // calculate CRC - uint32_t crc=0; - - crc = update_crc16(crc, (shift0)&0xff); - crc = update_crc16(crc, (shift0>>8)&0xff); - crc = update_crc16(crc, (shift0>>16)&0xff); - crc = update_crc16(crc, (shift0>>24)&0xff); - crc = update_crc16(crc, (shift1)&0xff); - crc = update_crc16(crc, (shift1>>8)&0xff); - crc = update_crc16(crc, (shift1>>16)&0xff); - crc = update_crc16(crc, (shift1>>24)&0xff); - - Dbprintf("Info: Tag data: %x%08x, crc=%x", - (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); - if (crc != (shift2&0xffff)) { - Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); - } else { - DbpString("Info: CRC is good"); - } - } + DbpString("Error: Ident mismatch!"); + } else { + DbpString("Info: TI tag ident is valid"); + } + } else { + DbpString("Info: TI tag is readonly"); + } + + // WARNING the order of the bytes in which we calc crc below needs checking + // i'm 99% sure the crc algorithm is correct, but it may need to eat the + // bytes in reverse or something + // calculate CRC + uint32_t crc=0; + + crc = update_crc16(crc, (shift0)&0xff); + crc = update_crc16(crc, (shift0>>8)&0xff); + crc = update_crc16(crc, (shift0>>16)&0xff); + crc = update_crc16(crc, (shift0>>24)&0xff); + crc = update_crc16(crc, (shift1)&0xff); + crc = update_crc16(crc, (shift1>>8)&0xff); + crc = update_crc16(crc, (shift1>>16)&0xff); + crc = update_crc16(crc, (shift1>>24)&0xff); + + Dbprintf("Info: Tag data: %x%08x, crc=%x", + (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); + if (crc != (shift2&0xffff)) { + Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); + } else { + DbpString("Info: CRC is good"); + } + } } void WriteTIbyte(uint8_t b) { - int i = 0; - - // modulate 8 bits out to the antenna - for (i=0; i<8; i++) - { - if (b&(1<<i)) { - // stop modulating antenna - LOW(GPIO_SSC_DOUT); - SpinDelayUs(1000); - // modulate antenna - HIGH(GPIO_SSC_DOUT); - SpinDelayUs(1000); - } else { - // stop modulating antenna - LOW(GPIO_SSC_DOUT); - SpinDelayUs(300); - // modulate antenna - HIGH(GPIO_SSC_DOUT); - SpinDelayUs(1700); - } - } + int i = 0; + + // modulate 8 bits out to the antenna + for (i=0; i<8; i++) + { + if (b&(1<<i)) { + // stop modulating antenna + LOW(GPIO_SSC_DOUT); + SpinDelayUs(1000); + // modulate antenna + HIGH(GPIO_SSC_DOUT); + SpinDelayUs(1000); + } else { + // stop modulating antenna + LOW(GPIO_SSC_DOUT); + SpinDelayUs(300); + // modulate antenna + HIGH(GPIO_SSC_DOUT); + SpinDelayUs(1700); + } + } } void AcquireTiType(void) { - int i, j, n; - // tag transmission is <20ms, sampling at 2M gives us 40K samples max - // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t + int i, j, n; + // tag transmission is <20ms, sampling at 2M gives us 40K samples max + // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t #define TIBUFLEN 1250 - // clear buffer + // clear buffer uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr(); - memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t)); - - // Set up the synchronous serial port - AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; - AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; - - // steal this pin from the SSP and use it to control the modulation - AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; - AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; - - AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; - AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; - - // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long - // 48/2 = 24 MHz clock must be divided by 12 - AT91C_BASE_SSC->SSC_CMR = 12; - - AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); - AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; - AT91C_BASE_SSC->SSC_TCMR = 0; - AT91C_BASE_SSC->SSC_TFMR = 0; - - LED_D_ON(); - - // modulate antenna - HIGH(GPIO_SSC_DOUT); - - // Charge TI tag for 50ms. - SpinDelay(50); - - // stop modulating antenna and listen - LOW(GPIO_SSC_DOUT); - - LED_D_OFF(); - - i = 0; - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer - i++; if(i >= TIBUFLEN) break; - } - WDT_HIT(); - } - - // return stolen pin to SSP - AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; - AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; - - char *dest = (char *)BigBuf_get_addr(); - n = TIBUFLEN*32; - // unpack buffer - for (i=TIBUFLEN-1; i>=0; i--) { - for (j=0; j<32; j++) { - if(BigBuf[i] & (1 << j)) { - dest[--n] = 1; - } else { - dest[--n] = -1; - } - } - } + BigBuf_Clear_ext(false); + + // Set up the synchronous serial port + AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; + AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; + + // steal this pin from the SSP and use it to control the modulation + AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; + AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; + + AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; + AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; + + // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long + // 48/2 = 24 MHz clock must be divided by 12 + AT91C_BASE_SSC->SSC_CMR = 12; + + AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); + AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; + AT91C_BASE_SSC->SSC_TCMR = 0; + AT91C_BASE_SSC->SSC_TFMR = 0; + + LED_D_ON(); + + // modulate antenna + HIGH(GPIO_SSC_DOUT); + + // Charge TI tag for 50ms. + SpinDelay(50); + + // stop modulating antenna and listen + LOW(GPIO_SSC_DOUT); + + LED_D_OFF(); + + i = 0; + for(;;) { + if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer + i++; if(i >= TIBUFLEN) break; + } + WDT_HIT(); + } + + // return stolen pin to SSP + AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; + AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; + + char *dest = (char *)BigBuf_get_addr(); + n = TIBUFLEN*32; + // unpack buffer + for (i=TIBUFLEN-1; i>=0; i--) { + for (j=0; j<32; j++) { + if(BigBuf[i] & (1 << j)) { + dest[--n] = 1; + } else { + dest[--n] = -1; + } + } + } } // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc @@ -314,127 +315,131 @@ void AcquireTiType(void) // if not provided a valid crc will be computed from the data and written. void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) { - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - if(crc == 0) { - crc = update_crc16(crc, (idlo)&0xff); - crc = update_crc16(crc, (idlo>>8)&0xff); - crc = update_crc16(crc, (idlo>>16)&0xff); - crc = update_crc16(crc, (idlo>>24)&0xff); - crc = update_crc16(crc, (idhi)&0xff); - crc = update_crc16(crc, (idhi>>8)&0xff); - crc = update_crc16(crc, (idhi>>16)&0xff); - crc = update_crc16(crc, (idhi>>24)&0xff); - } - Dbprintf("Writing to tag: %x%08x, crc=%x", - (unsigned int) idhi, (unsigned int) idlo, crc); - - // TI tags charge at 134.2Khz - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - // Place FPGA in passthrough mode, in this mode the CROSS_LO line - // connects to SSP_DIN and the SSP_DOUT logic level controls - // whether we're modulating the antenna (high) - // or listening to the antenna (low) - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); - LED_A_ON(); - - // steal this pin from the SSP and use it to control the modulation - AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; - AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; - - // writing algorithm: - // a high bit consists of a field off for 1ms and field on for 1ms - // a low bit consists of a field off for 0.3ms and field on for 1.7ms - // initiate a charge time of 50ms (field on) then immediately start writing bits - // start by writing 0xBB (keyword) and 0xEB (password) - // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) - // finally end with 0x0300 (write frame) - // all data is sent lsb firts - // finish with 15ms programming time - - // modulate antenna - HIGH(GPIO_SSC_DOUT); - SpinDelay(50); // charge time - - WriteTIbyte(0xbb); // keyword - WriteTIbyte(0xeb); // password - WriteTIbyte( (idlo )&0xff ); - WriteTIbyte( (idlo>>8 )&0xff ); - WriteTIbyte( (idlo>>16)&0xff ); - WriteTIbyte( (idlo>>24)&0xff ); - WriteTIbyte( (idhi )&0xff ); - WriteTIbyte( (idhi>>8 )&0xff ); - WriteTIbyte( (idhi>>16)&0xff ); - WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo - WriteTIbyte( (crc )&0xff ); // crc lo - WriteTIbyte( (crc>>8 )&0xff ); // crc hi - WriteTIbyte(0x00); // write frame lo - WriteTIbyte(0x03); // write frame hi - HIGH(GPIO_SSC_DOUT); - SpinDelay(50); // programming time - - LED_A_OFF(); - - // get TI tag data into the buffer - AcquireTiType(); - - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - DbpString("Now use tiread to check"); + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + if(crc == 0) { + crc = update_crc16(crc, (idlo)&0xff); + crc = update_crc16(crc, (idlo>>8)&0xff); + crc = update_crc16(crc, (idlo>>16)&0xff); + crc = update_crc16(crc, (idlo>>24)&0xff); + crc = update_crc16(crc, (idhi)&0xff); + crc = update_crc16(crc, (idhi>>8)&0xff); + crc = update_crc16(crc, (idhi>>16)&0xff); + crc = update_crc16(crc, (idhi>>24)&0xff); + } + Dbprintf("Writing to tag: %x%08x, crc=%x", + (unsigned int) idhi, (unsigned int) idlo, crc); + + // TI tags charge at 134.2Khz + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz + // Place FPGA in passthrough mode, in this mode the CROSS_LO line + // connects to SSP_DIN and the SSP_DOUT logic level controls + // whether we're modulating the antenna (high) + // or listening to the antenna (low) + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); + LED_A_ON(); + + // steal this pin from the SSP and use it to control the modulation + AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; + AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; + + // writing algorithm: + // a high bit consists of a field off for 1ms and field on for 1ms + // a low bit consists of a field off for 0.3ms and field on for 1.7ms + // initiate a charge time of 50ms (field on) then immediately start writing bits + // start by writing 0xBB (keyword) and 0xEB (password) + // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) + // finally end with 0x0300 (write frame) + // all data is sent lsb firts + // finish with 15ms programming time + + // modulate antenna + HIGH(GPIO_SSC_DOUT); + SpinDelay(50); // charge time + + WriteTIbyte(0xbb); // keyword + WriteTIbyte(0xeb); // password + WriteTIbyte( (idlo )&0xff ); + WriteTIbyte( (idlo>>8 )&0xff ); + WriteTIbyte( (idlo>>16)&0xff ); + WriteTIbyte( (idlo>>24)&0xff ); + WriteTIbyte( (idhi )&0xff ); + WriteTIbyte( (idhi>>8 )&0xff ); + WriteTIbyte( (idhi>>16)&0xff ); + WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo + WriteTIbyte( (crc )&0xff ); // crc lo + WriteTIbyte( (crc>>8 )&0xff ); // crc hi + WriteTIbyte(0x00); // write frame lo + WriteTIbyte(0x03); // write frame hi + HIGH(GPIO_SSC_DOUT); + SpinDelay(50); // programming time + + LED_A_OFF(); + + // get TI tag data into the buffer + AcquireTiType(); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + DbpString("Now use `lf ti read` to check"); } void SimulateTagLowFrequency(int period, int gap, int ledcontrol) { - int i; - uint8_t *tab = BigBuf_get_addr(); - - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); - - AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; - - AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; - AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; - - #define SHORT_COIL() LOW(GPIO_SSC_DOUT) - #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) - - i = 0; - for(;;) { - while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { - if(BUTTON_PRESS()) { - DbpString("Stopped"); - return; - } - WDT_HIT(); - } - - if (ledcontrol) - LED_D_ON(); - - if(tab[i]) - OPEN_COIL(); - else - SHORT_COIL(); - - if (ledcontrol) - LED_D_OFF(); - //wait for next sample time - while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { - if(BUTTON_PRESS()) { - DbpString("Stopped"); - return; - } - WDT_HIT(); - } - - i++; - if(i == period) { - i = 0; - if (gap) { - SHORT_COIL(); - SpinDelayUs(gap); - } - } - } + int i; + uint8_t *tab = BigBuf_get_addr(); + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); + + AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; + + AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; + AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; + + #define SHORT_COIL() LOW(GPIO_SSC_DOUT) + #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) + + i = 0; + for(;;) { + //wait until SSC_CLK goes HIGH + while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { + if(BUTTON_PRESS() || (usb_poll_validate_length() )) { + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + DbpString("Stopped"); + return; + } + WDT_HIT(); + } + if (ledcontrol) + LED_D_ON(); + + if(tab[i]) + OPEN_COIL(); + else + SHORT_COIL(); + + if (ledcontrol) + LED_D_OFF(); + //wait until SSC_CLK goes LOW + while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { + if(BUTTON_PRESS() || (usb_poll_validate_length() )) { + DbpString("Stopped"); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + return; + } + WDT_HIT(); + } + + i++; + if(i == period) { + + i = 0; + if (gap) { + SHORT_COIL(); + SpinDelayUs(gap); + } + } + + } } #define DEBUG_FRAME_CONTENTS 1 @@ -445,137 +450,136 @@ void SimulateTagLowFrequencyBidir(int divisor, int t0) // compose fc/8 fc/10 waveform (FSK2) static void fc(int c, int *n) { - uint8_t *dest = BigBuf_get_addr(); - int idx; - - // for when we want an fc8 pattern every 4 logical bits - if(c==0) { - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - } - - // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples - if(c==8) { - for (idx=0; idx<6; idx++) { - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - } - } - - // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples - if(c==10) { - for (idx=0; idx<5; idx++) { - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - } - } + uint8_t *dest = BigBuf_get_addr(); + int idx; + + // for when we want an fc8 pattern every 4 logical bits + if(c==0) { + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + } + + // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples + if(c==8) { + for (idx=0; idx<6; idx++) { + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + } + } + + // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples + if(c==10) { + for (idx=0; idx<5; idx++) { + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=1; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + dest[((*n)++)]=0; + } + } } // compose fc/X fc/Y waveform (FSKx) -static void fcAll(uint8_t c, int *n, uint8_t clock) +static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) { - uint8_t *dest = BigBuf_get_addr(); - uint8_t idx; - uint8_t fcCnt; - // c = count of field clock for this bit - - int mod = clock % c; - // loop through clock - step field clock - for (idx=0; idx < (uint8_t) clock/c; idx++){ - // loop through field clock length - put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) - for (fcCnt=0; fcCnt < c; fcCnt++){ - if (fcCnt < c/2){ - dest[((*n)++)]=1; - } else { - dest[((*n)++)]=0; - } - } - } - Dbprintf("mod: %d",mod); - if (mod>0){ //for FC counts that don't add up to a full clock cycle padd with extra wave - for (idx=0; idx < mod; idx++){ - if (idx < mod/2) { - dest[((*n)++)]=1; - } else { - dest[((*n)++)]=0; - } - } - } + uint8_t *dest = BigBuf_get_addr(); + uint8_t halfFC = fc/2; + uint8_t wavesPerClock = clock/fc; + uint8_t mod = clock % fc; //modifier + uint8_t modAdj = fc/mod; //how often to apply modifier + bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; + // loop through clock - step field clock + for (uint8_t idx=0; idx < wavesPerClock; idx++){ + // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) + memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here + memset(dest+(*n)+(fc-halfFC), 1, halfFC); + *n += fc; + } + if (mod>0) (*modCnt)++; + if ((mod>0) && modAdjOk){ //fsk2 + if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave + memset(dest+(*n), 0, fc-halfFC); + memset(dest+(*n)+(fc-halfFC), 1, halfFC); + *n += fc; + } + } + if (mod>0 && !modAdjOk){ //fsk1 + memset(dest+(*n), 0, mod-(mod/2)); + memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); + *n += mod; + } } // prepare a waveform pattern in the buffer based on the ID given then // simulate a HID tag until the button is pressed void CmdHIDsimTAG(int hi, int lo, int ledcontrol) { - int n=0, i=0; - /* - HID tag bitstream format - The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits - A 1 bit is represented as 6 fc8 and 5 fc10 patterns - A 0 bit is represented as 5 fc10 and 6 fc8 patterns - A fc8 is inserted before every 4 bits - A special start of frame pattern is used consisting a0b0 where a and b are neither 0 - nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) - */ - - if (hi>0xFFF) { - DbpString("Tags can only have 44 bits."); - return; - } - fc(0,&n); - // special start of frame marker containing invalid bit sequences - fc(8, &n); fc(8, &n); // invalid - fc(8, &n); fc(10, &n); // logical 0 - fc(10, &n); fc(10, &n); // invalid - fc(8, &n); fc(10, &n); // logical 0 - - WDT_HIT(); - // manchester encode bits 43 to 32 - for (i=11; i>=0; i--) { - if ((i%4)==3) fc(0,&n); - if ((hi>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition - } else { - fc(8, &n); fc(10, &n); // high-low transition - } - } - - WDT_HIT(); - // manchester encode bits 31 to 0 - for (i=31; i>=0; i--) { - if ((i%4)==3) fc(0,&n); - if ((lo>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition - } else { - fc(8, &n); fc(10, &n); // high-low transition - } - } - - if (ledcontrol) - LED_A_ON(); - SimulateTagLowFrequency(n, 0, ledcontrol); - - if (ledcontrol) - LED_A_OFF(); + int n=0, i=0; + /* + HID tag bitstream format + The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits + A 1 bit is represented as 6 fc8 and 5 fc10 patterns + A 0 bit is represented as 5 fc10 and 6 fc8 patterns + A fc8 is inserted before every 4 bits + A special start of frame pattern is used consisting a0b0 where a and b are neither 0 + nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) + */ + + if (hi>0xFFF) { + DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); + return; + } + fc(0,&n); + // special start of frame marker containing invalid bit sequences + fc(8, &n); fc(8, &n); // invalid + fc(8, &n); fc(10, &n); // logical 0 + fc(10, &n); fc(10, &n); // invalid + fc(8, &n); fc(10, &n); // logical 0 + + WDT_HIT(); + // manchester encode bits 43 to 32 + for (i=11; i>=0; i--) { + if ((i%4)==3) fc(0,&n); + if ((hi>>i)&1) { + fc(10, &n); fc(8, &n); // low-high transition + } else { + fc(8, &n); fc(10, &n); // high-low transition + } + } + + WDT_HIT(); + // manchester encode bits 31 to 0 + for (i=31; i>=0; i--) { + if ((i%4)==3) fc(0,&n); + if ((lo>>i)&1) { + fc(10, &n); fc(8, &n); // low-high transition + } else { + fc(8, &n); fc(10, &n); // high-low transition + } + } + + if (ledcontrol) + LED_A_ON(); + SimulateTagLowFrequency(n, 0, ledcontrol); + + if (ledcontrol) + LED_A_OFF(); } // prepare a waveform pattern in the buffer based on the ID given then @@ -583,1120 +587,880 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol) // arg1 contains fcHigh and fcLow, arg2 contains invert and clock void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) { - int ledcontrol=1; - int n=0, i=0; - uint8_t fcHigh = arg1 >> 8; - uint8_t fcLow = arg1 & 0xFF; - //spacer bit - uint8_t clk = arg2 & 0xFF; - uint8_t invert = (arg2 >> 8) & 1; - //fcAll(0, &n, clk); - - WDT_HIT(); - for (i=0; i<size; i++){ - //if ((i%4==3) fcAll(0,&n)); - if (BitStream[i] == invert){ - fcAll(fcLow, &n, clk); - } else { - fcAll(fcHigh, &n, clk); - } - } - Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); - //Dbprintf("First 64:"); - //uint8_t *dest = BigBuf_get_addr(); - //i=0; - //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); - //i+=16; - //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); - //i+=16; - //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); - //i+=16; - //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); - - if (ledcontrol) - LED_A_ON(); - SimulateTagLowFrequency(n, 0, ledcontrol); - - if (ledcontrol) - LED_A_OFF(); + int ledcontrol=1; + int n=0, i=0; + uint8_t fcHigh = arg1 >> 8; + uint8_t fcLow = arg1 & 0xFF; + uint16_t modCnt = 0; + uint8_t clk = arg2 & 0xFF; + uint8_t invert = (arg2 >> 8) & 1; + + for (i=0; i<size; i++){ + if (BitStream[i] == invert){ + fcAll(fcLow, &n, clk, &modCnt); + } else { + fcAll(fcHigh, &n, clk, &modCnt); + } + } + Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); + /*Dbprintf("DEBUG: First 32:"); + uint8_t *dest = BigBuf_get_addr(); + i=0; + Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); + i+=16; + Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); + */ + if (ledcontrol) + LED_A_ON(); + + SimulateTagLowFrequency(n, 0, ledcontrol); + + if (ledcontrol) + LED_A_OFF(); } // compose ask waveform for one bit(ASK) -static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) +static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) { - uint8_t *dest = BigBuf_get_addr(); - uint8_t idx; - // c = current bit 1 or 0 - int i = 0; - // for when we want a separator - if (c==2) { //separator - for (i=0; i<clock/2; i++){ - dest[((*n)++)]=0; - } - } else { - if (manchester){ - for (idx=0; idx < (uint8_t) clock/2; idx++){ - dest[((*n)++)]=c; - } - for (idx=0; idx < (uint8_t) clock/2; idx++){ - dest[((*n)++)]=c^1; - } - } else { - for (idx=0; idx < (uint8_t) clock; idx++){ - dest[((*n)++)]=c; - } - } - } + uint8_t *dest = BigBuf_get_addr(); + uint8_t halfClk = clock/2; + // c = current bit 1 or 0 + if (manchester==1){ + memset(dest+(*n), c, halfClk); + memset(dest+(*n) + halfClk, c^1, halfClk); + } else { + memset(dest+(*n), c, clock); + } + *n += clock; +} + +static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) +{ + uint8_t *dest = BigBuf_get_addr(); + uint8_t halfClk = clock/2; + if (c){ + memset(dest+(*n), c ^ 1 ^ *phase, halfClk); + memset(dest+(*n) + halfClk, c ^ *phase, halfClk); + } else { + memset(dest+(*n), c ^ *phase, clock); + *phase ^= 1; + } + *n += clock; +} + +static void stAskSimBit(int *n, uint8_t clock) { + uint8_t *dest = BigBuf_get_addr(); + uint8_t halfClk = clock/2; + //ST = .5 high .5 low 1.5 high .5 low 1 high + memset(dest+(*n), 1, halfClk); + memset(dest+(*n) + halfClk, 0, halfClk); + memset(dest+(*n) + clock, 1, clock + halfClk); + memset(dest+(*n) + clock*2 + halfClk, 0, halfClk); + memset(dest+(*n) + clock*3, 1, clock); + *n += clock*4; } // args clock, ask/man or askraw, invert, transmission separator void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) { - int ledcontrol = 1; - int n=0, i=0; - uint8_t clk = (arg1 >> 8) & 0xFF; - uint8_t manchester = arg1 & 1; - uint8_t separator = arg2 & 1; - uint8_t invert = (arg2 >> 8) & 1; - WDT_HIT(); - for (i=0; i<size; i++){ - askSimBit(BitStream[i]^invert, &n, clk, manchester); - } - if (separator==1) Dbprintf("sorry but separator option not yet available"); //askSimBit(2, &n, clk, manchester); - - Dbprintf("Simulating with clk: %d, invert: %d, manchester: %d, separator: %d, n: %d",clk, invert, manchester, separator, n); - //DEBUG - //Dbprintf("First 64:"); - //uint8_t *dest = BigBuf_get_addr(); - //i=0; - //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); - //i+=16; - //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); - //i+=16; - //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); - //i+=16; - //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); - - - if (ledcontrol) - LED_A_ON(); - SimulateTagLowFrequency(n, 0, ledcontrol); - - if (ledcontrol) - LED_A_OFF(); + int ledcontrol = 1; + int n=0, i=0; + uint8_t clk = (arg1 >> 8) & 0xFF; + uint8_t encoding = arg1 & 0xFF; + uint8_t separator = arg2 & 1; + uint8_t invert = (arg2 >> 8) & 1; + + if (encoding==2){ //biphase + uint8_t phase=0; + for (i=0; i<size; i++){ + biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); + } + if (phase==1) { //run a second set inverted to keep phase in check + for (i=0; i<size; i++){ + biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); + } + } + } else { // ask/manchester || ask/raw + for (i=0; i<size; i++){ + askSimBit(BitStream[i]^invert, &n, clk, encoding); + } + if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase) + for (i=0; i<size; i++){ + askSimBit(BitStream[i]^invert^1, &n, clk, encoding); + } + } + } + if (separator==1 && encoding == 1) + stAskSimBit(&n, clk); + else if (separator==1) + Dbprintf("sorry but separator option not yet available"); + + Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n); + //DEBUG + //Dbprintf("First 32:"); + //uint8_t *dest = BigBuf_get_addr(); + //i=0; + //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); + //i+=16; + //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); + + if (ledcontrol) LED_A_ON(); + SimulateTagLowFrequency(n, 0, ledcontrol); + if (ledcontrol) LED_A_OFF(); +} + +//carrier can be 2,4 or 8 +static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) +{ + uint8_t *dest = BigBuf_get_addr(); + uint8_t halfWave = waveLen/2; + //uint8_t idx; + int i = 0; + if (phaseChg){ + // write phase change + memset(dest+(*n), *curPhase^1, halfWave); + memset(dest+(*n) + halfWave, *curPhase, halfWave); + *n += waveLen; + *curPhase ^= 1; + i += waveLen; + } + //write each normal clock wave for the clock duration + for (; i < clk; i+=waveLen){ + memset(dest+(*n), *curPhase, halfWave); + memset(dest+(*n) + halfWave, *curPhase^1, halfWave); + *n += waveLen; + } +} + +// args clock, carrier, invert, +void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) +{ + int ledcontrol=1; + int n=0, i=0; + uint8_t clk = arg1 >> 8; + uint8_t carrier = arg1 & 0xFF; + uint8_t invert = arg2 & 0xFF; + uint8_t curPhase = 0; + for (i=0; i<size; i++){ + if (BitStream[i] == curPhase){ + pskSimBit(carrier, &n, clk, &curPhase, FALSE); + } else { + pskSimBit(carrier, &n, clk, &curPhase, TRUE); + } + } + Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); + //Dbprintf("DEBUG: First 32:"); + //uint8_t *dest = BigBuf_get_addr(); + //i=0; + //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); + //i+=16; + //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); + + if (ledcontrol) LED_A_ON(); + SimulateTagLowFrequency(n, 0, ledcontrol); + if (ledcontrol) LED_A_OFF(); } // loop to get raw HID waveform then FSK demodulate the TAG ID from it void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) { - uint8_t *dest = BigBuf_get_addr(); - const size_t sizeOfBigBuff = BigBuf_max_traceLen(); - size_t size = 0; - uint32_t hi2=0, hi=0, lo=0; - int idx=0; - // Configure to go in 125Khz listen mode - LFSetupFPGAForADC(95, true); + uint8_t *dest = BigBuf_get_addr(); + //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); + size_t size; + uint32_t hi2=0, hi=0, lo=0; + int idx=0; + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); - while(!BUTTON_PRESS()) { + //clear read buffer + BigBuf_Clear_keep_EM(); - WDT_HIT(); - if (ledcontrol) LED_A_ON(); + while(!BUTTON_PRESS() && !usb_poll_validate_length()) { + + WDT_HIT(); + if (ledcontrol) LED_A_ON(); DoAcquisition_default(-1,true); // FSK demodulator - size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use + //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use + size = 50*128*2; //big enough to catch 2 sequences of largest format idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); - - if (idx>0 && lo>0){ - // final loop, go over previously decoded manchester data and decode into usable tag ID - // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 - if (hi2 != 0){ //extra large HID tags - Dbprintf("TAG ID: %x%08x%08x (%d)", - (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - }else { //standard HID tags <38 bits - //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd - uint8_t bitlen = 0; - uint32_t fc = 0; - uint32_t cardnum = 0; + + if (idx>0 && lo>0 && (size==96 || size==192)){ + // go over previously decoded manchester data and decode into usable tag ID + if (hi2 != 0){ //extra large HID tags 88/192 bits + Dbprintf("TAG ID: %x%08x%08x (%d)", + (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); + }else { //standard HID tags 44/96 bits + //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd + uint8_t bitlen = 0; + uint32_t fc = 0; + uint32_t cardnum = 0; if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used - uint32_t lo2=0; - lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit - uint8_t idx3 = 1; + uint32_t lo2=0; + lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit + uint8_t idx3 = 1; while(lo2 > 1){ //find last bit set to 1 (format len bit) lo2=lo2 >> 1; - idx3++; - } + idx3++; + } bitlen = idx3+19; - fc =0; - cardnum=0; + fc =0; + cardnum=0; if(bitlen == 26){ - cardnum = (lo>>1)&0xFFFF; - fc = (lo>>17)&0xFF; - } + cardnum = (lo>>1)&0xFFFF; + fc = (lo>>17)&0xFF; + } if(bitlen == 37){ - cardnum = (lo>>1)&0x7FFFF; - fc = ((hi&0xF)<<12)|(lo>>20); - } + cardnum = (lo>>1)&0x7FFFF; + fc = ((hi&0xF)<<12)|(lo>>20); + } if(bitlen == 34){ - cardnum = (lo>>1)&0xFFFF; - fc= ((hi&1)<<15)|(lo>>17); - } + cardnum = (lo>>1)&0xFFFF; + fc= ((hi&1)<<15)|(lo>>17); + } if(bitlen == 35){ - cardnum = (lo>>1)&0xFFFFF; - fc = ((hi&1)<<11)|(lo>>21); - } - } - else { //if bit 38 is not set then 37 bit format is used - bitlen= 37; - fc =0; - cardnum=0; - if(bitlen==37){ - cardnum = (lo>>1)&0x7FFFF; - fc = ((hi&0xF)<<12)|(lo>>20); - } - } - //Dbprintf("TAG ID: %x%08x (%d)", - // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", - (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, - (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); - } - if (findone){ - if (ledcontrol) LED_A_OFF(); - *high = hi; - *low = lo; - return; - } - // reset - hi2 = hi = lo = 0; - } - WDT_HIT(); - } - DbpString("Stopped"); - if (ledcontrol) LED_A_OFF(); + cardnum = (lo>>1)&0xFFFFF; + fc = ((hi&1)<<11)|(lo>>21); + } + } + else { //if bit 38 is not set then 37 bit format is used + bitlen= 37; + fc =0; + cardnum=0; + if(bitlen==37){ + cardnum = (lo>>1)&0x7FFFF; + fc = ((hi&0xF)<<12)|(lo>>20); + } + } + //Dbprintf("TAG ID: %x%08x (%d)", + // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); + Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", + (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, + (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); + } + if (findone){ + if (ledcontrol) LED_A_OFF(); + *high = hi; + *low = lo; + break; + } + // reset + } + hi2 = hi = lo = idx = 0; + WDT_HIT(); + } + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); +} + +// loop to get raw HID waveform then FSK demodulate the TAG ID from it +void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = BigBuf_get_addr(); + size_t size; + int idx=0; + //clear read buffer + BigBuf_Clear_keep_EM(); + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + while(!BUTTON_PRESS() && !usb_poll_validate_length()) { + + WDT_HIT(); + if (ledcontrol) LED_A_ON(); + + DoAcquisition_default(-1,true); + // FSK demodulator + size = 50*128*2; //big enough to catch 2 sequences of largest format + idx = AWIDdemodFSK(dest, &size); + + if (idx<=0 || size!=96) continue; + // Index map + // 0 10 20 30 40 50 60 + // | | | | | | | + // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 + // ----------------------------------------------------------------------------- + // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 + // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 + // |---26 bit---| |-----117----||-------------142-------------| + // b = format bit len, o = odd parity of last 3 bits + // f = facility code, c = card number + // w = wiegand parity + // (26 bit format shown) + + //get raw ID before removing parities + uint32_t rawLo = bytebits_to_byte(dest+idx+64,32); + uint32_t rawHi = bytebits_to_byte(dest+idx+32,32); + uint32_t rawHi2 = bytebits_to_byte(dest+idx,32); + + size = removeParity(dest, idx+8, 4, 1, 88); + if (size != 66) continue; + // ok valid card found! + + // Index map + // 0 10 20 30 40 50 60 + // | | | | | | | + // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 + // ----------------------------------------------------------------------------- + // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 + // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx + // |26 bit| |-117--| |-----142------| + // b = format bit len, o = odd parity of last 3 bits + // f = facility code, c = card number + // w = wiegand parity + // (26 bit format shown) + + uint32_t fc = 0; + uint32_t cardnum = 0; + uint32_t code1 = 0; + uint32_t code2 = 0; + uint8_t fmtLen = bytebits_to_byte(dest,8); + if (fmtLen==26){ + fc = bytebits_to_byte(dest+9, 8); + cardnum = bytebits_to_byte(dest+17, 16); + code1 = bytebits_to_byte(dest+8,fmtLen); + Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); + } else { + cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); + if (fmtLen>32){ + code1 = bytebits_to_byte(dest+8,fmtLen-32); + code2 = bytebits_to_byte(dest+8+(fmtLen-32),32); + Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); + } else{ + code1 = bytebits_to_byte(dest+8,fmtLen); + Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); + } + } + if (findone){ + if (ledcontrol) LED_A_OFF(); + break; + } + // reset + idx = 0; + WDT_HIT(); + } + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); } void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) { - uint8_t *dest = BigBuf_get_addr(); + uint8_t *dest = BigBuf_get_addr(); size_t size=0, idx=0; - int clk=0, invert=0, errCnt=0, maxErr=20; - uint64_t lo=0; - // Configure to go in 125Khz listen mode - LFSetupFPGAForADC(95, true); + int clk=0, invert=0, errCnt=0, maxErr=20; + uint32_t hi=0; + uint64_t lo=0; + //clear read buffer + BigBuf_Clear_keep_EM(); + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); - while(!BUTTON_PRESS()) { + while(!BUTTON_PRESS() && !usb_poll_validate_length()) { - WDT_HIT(); - if (ledcontrol) LED_A_ON(); + WDT_HIT(); + if (ledcontrol) LED_A_ON(); DoAcquisition_default(-1,true); size = BigBuf_max_traceLen(); - //Dbprintf("DEBUG: Buffer got"); //askdemod and manchester decode - errCnt = askmandemod(dest, &size, &clk, &invert, maxErr); - //Dbprintf("DEBUG: ASK Got"); - WDT_HIT(); - - if (errCnt>=0){ - lo = Em410xDecode(dest, &size, &idx); - //Dbprintf("DEBUG: EM GOT"); - if (lo>0){ + if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format + errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); + WDT_HIT(); + + if (errCnt<0) continue; + + errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); + if (errCnt){ + if (size>64){ + Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", + hi, + (uint32_t)(lo>>32), + (uint32_t)lo, + (uint32_t)(lo&0xFFFF), + (uint32_t)((lo>>16LL) & 0xFF), + (uint32_t)(lo & 0xFFFFFF)); + } else { Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", - (uint32_t)(lo>>32), - (uint32_t)lo, - (uint32_t)(lo&0xFFFF), - (uint32_t)((lo>>16LL) & 0xFF), - (uint32_t)(lo & 0xFFFFFF)); - } - if (findone){ - if (ledcontrol) LED_A_OFF(); - *high=lo>>32; - *low=lo & 0xFFFFFFFF; - return; - } - } else{ - //Dbprintf("DEBUG: No Tag"); - } - WDT_HIT(); - lo = 0; - clk=0; - invert=0; - errCnt=0; - size=0; - } - DbpString("Stopped"); - if (ledcontrol) LED_A_OFF(); + (uint32_t)(lo>>32), + (uint32_t)lo, + (uint32_t)(lo&0xFFFF), + (uint32_t)((lo>>16LL) & 0xFF), + (uint32_t)(lo & 0xFFFFFF)); + } + + if (findone){ + if (ledcontrol) LED_A_OFF(); + *high=lo>>32; + *low=lo & 0xFFFFFFFF; + break; + } + } + WDT_HIT(); + hi = lo = size = idx = 0; + clk = invert = errCnt = 0; + } + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); } void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) { - uint8_t *dest = BigBuf_get_addr(); - int idx=0; - uint32_t code=0, code2=0; - uint8_t version=0; - uint8_t facilitycode=0; - uint16_t number=0; - // Configure to go in 125Khz listen mode - LFSetupFPGAForADC(95, true); - - while(!BUTTON_PRESS()) { - WDT_HIT(); - if (ledcontrol) LED_A_ON(); + uint8_t *dest = BigBuf_get_addr(); + int idx=0; + uint32_t code=0, code2=0; + uint8_t version=0; + uint8_t facilitycode=0; + uint16_t number=0; + //clear read buffer + BigBuf_Clear_keep_EM(); + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(95, true); + + while(!BUTTON_PRESS() && !usb_poll_validate_length()) { + WDT_HIT(); + if (ledcontrol) LED_A_ON(); DoAcquisition_default(-1,true); //fskdemod and get start index - WDT_HIT(); - idx = IOdemodFSK(dest, BigBuf_max_traceLen()); - if (idx>0){ - //valid tag found - - //Index map - //0 10 20 30 40 50 60 - //| | | | | | | - //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 - //----------------------------------------------------------------------------- - //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 - // - //XSF(version)facility:codeone+codetwo - //Handle the data - if(findone){ //only print binary if we are doing one - Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); - Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); - Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); - Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); - Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); - Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); - Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); - } - code = bytebits_to_byte(dest+idx,32); - code2 = bytebits_to_byte(dest+idx+32,32); - version = bytebits_to_byte(dest+idx+27,8); //14,4 - facilitycode = bytebits_to_byte(dest+idx+18,8) ; - number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 - - Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); - // if we're only looking for one tag - if (findone){ - if (ledcontrol) LED_A_OFF(); - //LED_A_OFF(); - *high=code; - *low=code2; - return; - } - code=code2=0; - version=facilitycode=0; - number=0; - idx=0; - } - WDT_HIT(); - } - DbpString("Stopped"); - if (ledcontrol) LED_A_OFF(); + WDT_HIT(); + idx = IOdemodFSK(dest, BigBuf_max_traceLen()); + if (idx<0) continue; + //valid tag found + + //Index map + //0 10 20 30 40 50 60 + //| | | | | | | + //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 + //----------------------------------------------------------------------------- + //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 + // + //XSF(version)facility:codeone+codetwo + //Handle the data + if(findone){ //only print binary if we are doing one + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); + Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); + } + code = bytebits_to_byte(dest+idx,32); + code2 = bytebits_to_byte(dest+idx+32,32); + version = bytebits_to_byte(dest+idx+27,8); //14,4 + facilitycode = bytebits_to_byte(dest+idx+18,8); + number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 + + Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); + // if we're only looking for one tag + if (findone){ + if (ledcontrol) LED_A_OFF(); + //LED_A_OFF(); + *high=code; + *low=code2; + break; + } + code=code2=0; + version=facilitycode=0; + number=0; + idx=0; + + WDT_HIT(); + } + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); } /*------------------------------ - * T5555/T5557/T5567 routines + * T5555/T5557/T5567/T5577 routines *------------------------------ - */ - -/* T55x7 configuration register definitions */ -#define T55x7_POR_DELAY 0x00000001 -#define T55x7_ST_TERMINATOR 0x00000008 -#define T55x7_PWD 0x00000010 -#define T55x7_MAXBLOCK_SHIFT 5 -#define T55x7_AOR 0x00000200 -#define T55x7_PSKCF_RF_2 0 -#define T55x7_PSKCF_RF_4 0x00000400 -#define T55x7_PSKCF_RF_8 0x00000800 -#define T55x7_MODULATION_DIRECT 0 -#define T55x7_MODULATION_PSK1 0x00001000 -#define T55x7_MODULATION_PSK2 0x00002000 -#define T55x7_MODULATION_PSK3 0x00003000 -#define T55x7_MODULATION_FSK1 0x00004000 -#define T55x7_MODULATION_FSK2 0x00005000 -#define T55x7_MODULATION_FSK1a 0x00006000 -#define T55x7_MODULATION_FSK2a 0x00007000 -#define T55x7_MODULATION_MANCHESTER 0x00008000 -#define T55x7_MODULATION_BIPHASE 0x00010000 -#define T55x7_BITRATE_RF_8 0 -#define T55x7_BITRATE_RF_16 0x00040000 -#define T55x7_BITRATE_RF_32 0x00080000 -#define T55x7_BITRATE_RF_40 0x000C0000 -#define T55x7_BITRATE_RF_50 0x00100000 -#define T55x7_BITRATE_RF_64 0x00140000 -#define T55x7_BITRATE_RF_100 0x00180000 -#define T55x7_BITRATE_RF_128 0x001C0000 - -/* T5555 (Q5) configuration register definitions */ -#define T5555_ST_TERMINATOR 0x00000001 -#define T5555_MAXBLOCK_SHIFT 0x00000001 -#define T5555_MODULATION_MANCHESTER 0 -#define T5555_MODULATION_PSK1 0x00000010 -#define T5555_MODULATION_PSK2 0x00000020 -#define T5555_MODULATION_PSK3 0x00000030 -#define T5555_MODULATION_FSK1 0x00000040 -#define T5555_MODULATION_FSK2 0x00000050 -#define T5555_MODULATION_BIPHASE 0x00000060 -#define T5555_MODULATION_DIRECT 0x00000070 -#define T5555_INVERT_OUTPUT 0x00000080 -#define T5555_PSK_RF_2 0 -#define T5555_PSK_RF_4 0x00000100 -#define T5555_PSK_RF_8 0x00000200 -#define T5555_USE_PWD 0x00000400 -#define T5555_USE_AOR 0x00000800 -#define T5555_BITRATE_SHIFT 12 -#define T5555_FAST_WRITE 0x00004000 -#define T5555_PAGE_SELECT 0x00008000 - -/* - * Relevant times in microsecond + * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h + * + * Relevant communication times in microsecond * To compensate antenna falling times shorten the write times * and enlarge the gap ones. + * Q5 tags seems to have issues when these values changes. */ -#define START_GAP 250 -#define WRITE_GAP 160 -#define WRITE_0 144 // 192 -#define WRITE_1 400 // 432 for T55x7; 448 for E5550 +#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) +#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) +#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) +#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550 +#define READ_GAP 15*8 + +void TurnReadLFOn(int delay) { + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + // Give it a bit of time for the resonant antenna to settle. + SpinDelayUs(delay); //155*8 //50*8 +} // Write one bit to card -void T55xxWriteBit(int bit) -{ - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - if (bit == 0) - SpinDelayUs(WRITE_0); - else - SpinDelayUs(WRITE_1); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelayUs(WRITE_GAP); +void T55xxWriteBit(int bit) { + if (!bit) + TurnReadLFOn(WRITE_0); + else + TurnReadLFOn(WRITE_1); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(WRITE_GAP); } -// Write one card block in page 0, no lock -void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) -{ - //unsigned int i; //enio adjustment 12/10/14 - uint32_t i; - - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); - - // Now start writting - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelayUs(START_GAP); - - // Opcode - T55xxWriteBit(1); - T55xxWriteBit(0); //Page 0 - if (PwdMode == 1){ - // Pwd - for (i = 0x80000000; i != 0; i >>= 1) - T55xxWriteBit(Pwd & i); - } - // Lock bit - T55xxWriteBit(0); - - // Data - for (i = 0x80000000; i != 0; i >>= 1) - T55xxWriteBit(Data & i); - - // Block - for (i = 0x04; i != 0; i >>= 1) - T55xxWriteBit(Block & i); - - // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, - // so wait a little more) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - SpinDelay(20); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); -} +// Send T5577 reset command then read stream (see if we can identify the start of the stream) +void T55xxResetRead(void) { + LED_A_ON(); + //clear buffer now so it does not interfere with timing later + BigBuf_Clear_keep_EM(); -// Read one card block in page 0 -void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) -{ - uint8_t *dest = BigBuf_get_addr(); - //int m=0, i=0; //enio adjustment 12/10/14 - uint32_t m=0, i=0; - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - m = BigBuf_max_traceLen(); - // Clear destination buffer before sending the command - memset(dest, 128, m); - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - LED_D_ON(); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); - - // Now start writting - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelayUs(START_GAP); - - // Opcode - T55xxWriteBit(1); - T55xxWriteBit(0); //Page 0 - if (PwdMode == 1){ - // Pwd - for (i = 0x80000000; i != 0; i >>= 1) - T55xxWriteBit(Pwd & i); - } - // Lock bit - T55xxWriteBit(0); - // Block - for (i = 0x04; i != 0; i >>= 1) - T55xxWriteBit(Block & i); - - // Turn field on to read the response - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - - // Now do the acquisition - i = 0; - for(;;) { - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { - AT91C_BASE_SSC->SSC_THR = 0x43; - } - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - // we don't care about actual value, only if it's more or less than a - // threshold essentially we capture zero crossings for later analysis - // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; - i++; - if (i >= m) break; - } - } - - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - LED_D_OFF(); - DbpString("DONE!"); -} + // Set up FPGA, 125kHz + LFSetupFPGAForADC(95, true); -// Read card traceability data (page 1) -void T55xxReadTrace(void){ - uint8_t *dest = BigBuf_get_addr(); - int m=0, i=0; - - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - m = BigBuf_max_traceLen(); - // Clear destination buffer before sending the command - memset(dest, 128, m); - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - LED_D_ON(); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); - - // Now start writting - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelayUs(START_GAP); - - // Opcode - T55xxWriteBit(1); - T55xxWriteBit(1); //Page 1 - - // Turn field on to read the response - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - - // Now do the acquisition - i = 0; - for(;;) { - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { - AT91C_BASE_SSC->SSC_THR = 0x43; - } - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - i++; - if (i >= m) break; - } - } - - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - LED_D_OFF(); - DbpString("DONE!"); -} + // Trigger T55x7 in mode. + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(START_GAP); -/*-------------- Cloning routines -----------*/ -// Copy HID id to card and setup block 0 config -void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) -{ - int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format - int last_block = 0; - - if (longFMT){ - // Ensure no more than 84 bits supplied - if (hi2>0xFFFFF) { - DbpString("Tags can only have 84 bits."); - return; - } - // Build the 6 data blocks for supplied 84bit ID - last_block = 6; - data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) - for (int i=0;i<4;i++) { - if (hi2 & (1<<(19-i))) - data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 - else - data1 |= (1<<((3-i)*2)); // 0 -> 01 - } - - data2 = 0; - for (int i=0;i<16;i++) { - if (hi2 & (1<<(15-i))) - data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data2 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data3 = 0; - for (int i=0;i<16;i++) { - if (hi & (1<<(31-i))) - data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data3 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data4 = 0; - for (int i=0;i<16;i++) { - if (hi & (1<<(15-i))) - data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data4 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data5 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(31-i))) - data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data5 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data6 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(15-i))) - data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data6 |= (1<<((15-i)*2)); // 0 -> 01 - } - } - else { - // Ensure no more than 44 bits supplied - if (hi>0xFFF) { - DbpString("Tags can only have 44 bits."); - return; - } - - // Build the 3 data blocks for supplied 44bit ID - last_block = 3; - - data1 = 0x1D000000; // load preamble - - for (int i=0;i<12;i++) { - if (hi & (1<<(11-i))) - data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 - else - data1 |= (1<<((11-i)*2)); // 0 -> 01 - } - - data2 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(31-i))) - data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data2 |= (1<<((15-i)*2)); // 0 -> 01 - } - - data3 = 0; - for (int i=0;i<16;i++) { - if (lo & (1<<(15-i))) - data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 - else - data3 |= (1<<((15-i)*2)); // 0 -> 01 - } - } - - LED_D_ON(); - // Program the data blocks for supplied ID - // and the block 0 for HID format - T55xxWriteBlock(data1,1,0,0); - T55xxWriteBlock(data2,2,0,0); - T55xxWriteBlock(data3,3,0,0); - - if (longFMT) { // if long format there are 6 blocks - T55xxWriteBlock(data4,4,0,0); - T55xxWriteBlock(data5,5,0,0); - T55xxWriteBlock(data6,6,0,0); - } - - // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) - T55xxWriteBlock(T55x7_BITRATE_RF_50 | - T55x7_MODULATION_FSK2a | - last_block << T55x7_MAXBLOCK_SHIFT, - 0,0,0); - - LED_D_OFF(); - - DbpString("DONE!"); -} + // reset tag - op code 00 + T55xxWriteBit(0); + T55xxWriteBit(0); -void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) -{ - int data1=0, data2=0; //up to six blocks for long format + // Turn field on to read the response + TurnReadLFOn(READ_GAP); + + // Acquisition + doT55x7Acquisition(BigBuf_max_traceLen()); - data1 = hi; // load preamble - data2 = lo; + // Turn the field off + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + cmd_send(CMD_ACK,0,0,0,0,0); + LED_A_OFF(); +} - LED_D_ON(); - // Program the data blocks for supplied ID - // and the block 0 for HID format - T55xxWriteBlock(data1,1,0,0); - T55xxWriteBlock(data2,2,0,0); +// Write one card block in page 0, no lock +void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) { + LED_A_ON(); + bool PwdMode = arg & 0x1; + uint8_t Page = (arg & 0x2)>>1; + uint32_t i = 0; - //Config Block - T55xxWriteBlock(0x00147040,0,0,0); - LED_D_OFF(); + // Set up FPGA, 125kHz + LFSetupFPGAForADC(95, true); - DbpString("DONE!"); + // Trigger T55x7 in mode. + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(START_GAP); + + // Opcode 10 + T55xxWriteBit(1); + T55xxWriteBit(Page); //Page 0 + if (PwdMode){ + // Send Pwd + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Pwd & i); + } + // Send Lock bit + T55xxWriteBit(0); + + // Send Data + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Data & i); + + // Send Block number + for (i = 0x04; i != 0; i >>= 1) + T55xxWriteBit(Block & i); + + // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, + // so wait a little more) + TurnReadLFOn(20 * 1000); + //could attempt to do a read to confirm write took + // as the tag should repeat back the new block + // until it is reset, but to confirm it we would + // need to know the current block 0 config mode + + // turn field off + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_A_OFF(); } -// Define 9bit header for EM410x tags -#define EM410X_HEADER 0x1FF -#define EM410X_ID_LENGTH 40 - -void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) -{ - int i, id_bit; - uint64_t id = EM410X_HEADER; - uint64_t rev_id = 0; // reversed ID - int c_parity[4]; // column parity - int r_parity = 0; // row parity - uint32_t clock = 0; - - // Reverse ID bits given as parameter (for simpler operations) - for (i = 0; i < EM410X_ID_LENGTH; ++i) { - if (i < 32) { - rev_id = (rev_id << 1) | (id_lo & 1); - id_lo >>= 1; - } else { - rev_id = (rev_id << 1) | (id_hi & 1); - id_hi >>= 1; - } - } - - for (i = 0; i < EM410X_ID_LENGTH; ++i) { - id_bit = rev_id & 1; - - if (i % 4 == 0) { - // Don't write row parity bit at start of parsing - if (i) - id = (id << 1) | r_parity; - // Start counting parity for new row - r_parity = id_bit; - } else { - // Count row parity - r_parity ^= id_bit; - } - - // First elements in column? - if (i < 4) - // Fill out first elements - c_parity[i] = id_bit; - else - // Count column parity - c_parity[i % 4] ^= id_bit; - - // Insert ID bit - id = (id << 1) | id_bit; - rev_id >>= 1; - } - - // Insert parity bit of last row - id = (id << 1) | r_parity; - - // Fill out column parity at the end of tag - for (i = 0; i < 4; ++i) - id = (id << 1) | c_parity[i]; - - // Add stop bit - id <<= 1; - - Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); - LED_D_ON(); - - // Write EM410x ID - T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); - T55xxWriteBlock((uint32_t)id, 2, 0, 0); - - // Config for EM410x (RF/64, Manchester, Maxblock=2) - if (card) { - // Clock rate is stored in bits 8-15 of the card value - clock = (card & 0xFF00) >> 8; - Dbprintf("Clock rate: %d", clock); - switch (clock) - { - case 32: - clock = T55x7_BITRATE_RF_32; - break; - case 16: - clock = T55x7_BITRATE_RF_16; - break; - case 0: - // A value of 0 is assumed to be 64 for backwards-compatibility - // Fall through... - case 64: - clock = T55x7_BITRATE_RF_64; - break; - default: - Dbprintf("Invalid clock rate: %d", clock); - return; - } - - // Writing configuration for T55x7 tag - T55xxWriteBlock(clock | - T55x7_MODULATION_MANCHESTER | - 2 << T55x7_MAXBLOCK_SHIFT, - 0, 0, 0); - } - else - // Writing configuration for T5555(Q5) tag - T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | - T5555_MODULATION_MANCHESTER | - 2 << T5555_MAXBLOCK_SHIFT, - 0, 0, 0); - - LED_D_OFF(); - Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", - (uint32_t)(id >> 32), (uint32_t)id); +// Write one card block in page 0, no lock +void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) { + T55xxWriteBlockExt(Data, Block, Pwd, arg); + cmd_send(CMD_ACK,0,0,0,0,0); } -// Clone Indala 64-bit tag by UID to T55x7 -void CopyIndala64toT55x7(int hi, int lo) -{ +// Read one card block in page [page] +void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) { + LED_A_ON(); + bool PwdMode = arg0 & 0x1; + uint8_t Page = (arg0 & 0x2) >> 1; + uint32_t i = 0; + bool RegReadMode = (Block == 0xFF); - //Program the 2 data blocks for supplied 64bit UID - // and the block 0 for Indala64 format - T55xxWriteBlock(hi,1,0,0); - T55xxWriteBlock(lo,2,0,0); - //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) - T55xxWriteBlock(T55x7_BITRATE_RF_32 | - T55x7_MODULATION_PSK1 | - 2 << T55x7_MAXBLOCK_SHIFT, - 0, 0, 0); - //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) - // T5567WriteBlock(0x603E1042,0); + //clear buffer now so it does not interfere with timing later + BigBuf_Clear_ext(false); - DbpString("DONE!"); + //make sure block is at max 7 + Block &= 0x7; + + // Set up FPGA, 125kHz to power up the tag + LFSetupFPGAForADC(95, true); + // Trigger T55x7 Direct Access Mode with start gap + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(START_GAP); + + // Opcode 1[page] + T55xxWriteBit(1); + T55xxWriteBit(Page); //Page 0 + + if (PwdMode){ + // Send Pwd + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Pwd & i); + } + // Send a zero bit separation + T55xxWriteBit(0); + + // Send Block number (if direct access mode) + if (!RegReadMode) + for (i = 0x04; i != 0; i >>= 1) + T55xxWriteBit(Block & i); + + // Turn field on to read the response + TurnReadLFOn(READ_GAP); + + // Acquisition + doT55x7Acquisition(12000); + + // Turn the field off + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + cmd_send(CMD_ACK,0,0,0,0,0); + LED_A_OFF(); } -void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) -{ +void T55xxWakeUp(uint32_t Pwd){ + LED_B_ON(); + uint32_t i = 0; + + // Set up FPGA, 125kHz + LFSetupFPGAForADC(95, true); + + // Trigger T55x7 Direct Access Mode + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelayUs(START_GAP); + + // Opcode 10 + T55xxWriteBit(1); + T55xxWriteBit(0); //Page 0 + + // Send Pwd + for (i = 0x80000000; i != 0; i >>= 1) + T55xxWriteBit(Pwd & i); + + // Turn and leave field on to let the begin repeating transmission + TurnReadLFOn(20*1000); +} - //Program the 7 data blocks for supplied 224bit UID - // and the block 0 for Indala224 format - T55xxWriteBlock(uid1,1,0,0); - T55xxWriteBlock(uid2,2,0,0); - T55xxWriteBlock(uid3,3,0,0); - T55xxWriteBlock(uid4,4,0,0); - T55xxWriteBlock(uid5,5,0,0); - T55xxWriteBlock(uid6,6,0,0); - T55xxWriteBlock(uid7,7,0,0); - //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) - T55xxWriteBlock(T55x7_BITRATE_RF_32 | - T55x7_MODULATION_PSK1 | - 7 << T55x7_MAXBLOCK_SHIFT, - 0,0,0); - //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) - // T5567WriteBlock(0x603E10E2,0); - - DbpString("DONE!"); +/*-------------- Cloning routines -----------*/ +void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) { + // write last block first and config block last (if included) + for (uint8_t i = numblocks+startblock; i > startblock; i--) { + T55xxWriteBlockExt(blockdata[i-1],i-1,0,0); + } } +// Copy HID id to card and setup block 0 config +void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) { + uint32_t data[] = {0,0,0,0,0,0,0}; + uint8_t last_block = 0; + + if (longFMT) { + // Ensure no more than 84 bits supplied + if (hi2>0xFFFFF) { + DbpString("Tags can only have 84 bits."); + return; + } + // Build the 6 data blocks for supplied 84bit ID + last_block = 6; + // load preamble (1D) & long format identifier (9E manchester encoded) + data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF); + // load raw id from hi2, hi, lo to data blocks (manchester encoded) + data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF); + data[3] = manchesterEncode2Bytes(hi >> 16); + data[4] = manchesterEncode2Bytes(hi & 0xFFFF); + data[5] = manchesterEncode2Bytes(lo >> 16); + data[6] = manchesterEncode2Bytes(lo & 0xFFFF); + } else { + // Ensure no more than 44 bits supplied + if (hi>0xFFF) { + DbpString("Tags can only have 44 bits."); + return; + } + // Build the 3 data blocks for supplied 44bit ID + last_block = 3; + // load preamble + data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF); + data[2] = manchesterEncode2Bytes(lo >> 16); + data[3] = manchesterEncode2Bytes(lo & 0xFFFF); + } + // load chip config block + data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT; + + //TODO add selection of chip for Q5 or T55x7 + // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT; + + LED_D_ON(); + // Program the data blocks for supplied ID + // and the block 0 for HID format + WriteT55xx(data, 0, last_block+1); + + LED_D_OFF(); + + DbpString("DONE!"); +} -#define abs(x) ( ((x)<0) ? -(x) : (x) ) -#define max(x,y) ( x<y ? y:x) +void CopyIOtoT55x7(uint32_t hi, uint32_t lo) { + uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; + //TODO add selection of chip for Q5 or T55x7 + // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT; -int DemodPCF7931(uint8_t **outBlocks) { - uint8_t BitStream[256]; - uint8_t Blocks[8][16]; - uint8_t *GraphBuffer = BigBuf_get_addr(); - int GraphTraceLen = BigBuf_max_traceLen(); - int i, j, lastval, bitidx, half_switch; - int clock = 64; - int tolerance = clock / 8; - int pmc, block_done; - int lc, warnings = 0; - int num_blocks = 0; - int lmin=128, lmax=128; - uint8_t dir; + LED_D_ON(); + // Program the data blocks for supplied ID + // and the block 0 config + WriteT55xx(data, 0, 3); - LFSetupFPGAForADC(95, true); - DoAcquisition_default(0, 0); - - - lmin = 64; - lmax = 192; - - i = 2; - - /* Find first local max/min */ - if(GraphBuffer[1] > GraphBuffer[0]) { - while(i < GraphTraceLen) { - if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) - break; - i++; - } - dir = 0; - } - else { - while(i < GraphTraceLen) { - if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) - break; - i++; - } - dir = 1; - } - - lastval = i++; - half_switch = 0; - pmc = 0; - block_done = 0; - - for (bitidx = 0; i < GraphTraceLen; i++) - { - if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) - { - lc = i - lastval; - lastval = i; - - // Switch depending on lc length: - // Tolerance is 1/8 of clock rate (arbitrary) - if (abs(lc-clock/4) < tolerance) { - // 16T0 - if((i - pmc) == lc) { /* 16T0 was previous one */ - /* It's a PMC ! */ - i += (128+127+16+32+33+16)-1; - lastval = i; - pmc = 0; - block_done = 1; - } - else { - pmc = i; - } - } else if (abs(lc-clock/2) < tolerance) { - // 32TO - if((i - pmc) == lc) { /* 16T0 was previous one */ - /* It's a PMC ! */ - i += (128+127+16+32+33)-1; - lastval = i; - pmc = 0; - block_done = 1; - } - else if(half_switch == 1) { - BitStream[bitidx++] = 0; - half_switch = 0; - } - else - half_switch++; - } else if (abs(lc-clock) < tolerance) { - // 64TO - BitStream[bitidx++] = 1; - } else { - // Error - warnings++; - if (warnings > 10) - { - Dbprintf("Error: too many detection errors, aborting."); - return 0; - } - } - - if(block_done == 1) { - if(bitidx == 128) { - for(j=0; j<16; j++) { - Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ - 64*BitStream[j*8+6]+ - 32*BitStream[j*8+5]+ - 16*BitStream[j*8+4]+ - 8*BitStream[j*8+3]+ - 4*BitStream[j*8+2]+ - 2*BitStream[j*8+1]+ - BitStream[j*8]; - } - num_blocks++; - } - bitidx = 0; - block_done = 0; - half_switch = 0; - } - if(i < GraphTraceLen) - { - if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; - else dir = 1; - } - } - if(bitidx==255) - bitidx=0; - warnings = 0; - if(num_blocks == 4) break; - } - memcpy(outBlocks, Blocks, 16*num_blocks); - return num_blocks; -} + LED_D_OFF(); -int IsBlock0PCF7931(uint8_t *Block) { - // Assume RFU means 0 :) - if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled - return 1; - if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? - return 1; - return 0; + DbpString("DONE!"); } -int IsBlock1PCF7931(uint8_t *Block) { - // Assume RFU means 0 :) - if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) - if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) - return 1; - - return 0; +// Clone Indala 64-bit tag by UID to T55x7 +void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) { + //Program the 2 data blocks for supplied 64bit UID + // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2) + uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; + //TODO add selection of chip for Q5 or T55x7 + // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT; + + WriteT55xx(data, 0, 3); + //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) + // T5567WriteBlock(0x603E1042,0); + DbpString("DONE!"); } - -#define ALLOC 16 - -void ReadPCF7931() { - uint8_t Blocks[8][17]; - uint8_t tmpBlocks[4][16]; - int i, j, ind, ind2, n; - int num_blocks = 0; - int max_blocks = 8; - int ident = 0; - int error = 0; - int tries = 0; - - memset(Blocks, 0, 8*17*sizeof(uint8_t)); - - do { - memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); - n = DemodPCF7931((uint8_t**)tmpBlocks); - if(!n) - error++; - if(error==10 && num_blocks == 0) { - Dbprintf("Error, no tag or bad tag"); - return; - } - else if (tries==20 || error==10) { - Dbprintf("Error reading the tag"); - Dbprintf("Here is the partial content"); - goto end; - } - - for(i=0; i<n; i++) - Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", - tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7], - tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]); - if(!ident) { - for(i=0; i<n; i++) { - if(IsBlock0PCF7931(tmpBlocks[i])) { - // Found block 0 ? - if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) { - // Found block 1! - // \o/ - ident = 1; - memcpy(Blocks[0], tmpBlocks[i], 16); - Blocks[0][ALLOC] = 1; - memcpy(Blocks[1], tmpBlocks[i+1], 16); - Blocks[1][ALLOC] = 1; - max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1; - // Debug print - Dbprintf("(dbg) Max blocks: %d", max_blocks); - num_blocks = 2; - // Handle following blocks - for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) { - if(j==n) j=0; - if(j==i) break; - memcpy(Blocks[ind2], tmpBlocks[j], 16); - Blocks[ind2][ALLOC] = 1; - } - break; - } - } - } - } - else { - for(i=0; i<n; i++) { // Look for identical block in known blocks - if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 - for(j=0; j<max_blocks; j++) { - if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) { - // Found an identical block - for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) { - if(ind2 < 0) - ind2 = max_blocks; - if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found - // Dbprintf("Tmp %d -> Block %d", ind, ind2); - memcpy(Blocks[ind2], tmpBlocks[ind], 16); - Blocks[ind2][ALLOC] = 1; - num_blocks++; - if(num_blocks == max_blocks) goto end; - } - } - for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { - if(ind2 > max_blocks) - ind2 = 0; - if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found - // Dbprintf("Tmp %d -> Block %d", ind, ind2); - memcpy(Blocks[ind2], tmpBlocks[ind], 16); - Blocks[ind2][ALLOC] = 1; - num_blocks++; - if(num_blocks == max_blocks) goto end; - } - } - } - } - } - } - } - tries++; - if (BUTTON_PRESS()) return; - } while (num_blocks != max_blocks); - end: - Dbprintf("-----------------------------------------"); - Dbprintf("Memory content:"); - Dbprintf("-----------------------------------------"); - for(i=0; i<max_blocks; i++) { - if(Blocks[i][ALLOC]==1) - Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", - Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7], - Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]); - else - Dbprintf("<missing block %d>", i); - } - Dbprintf("-----------------------------------------"); - - return ; +// Clone Indala 224-bit tag by UID to T55x7 +void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) { + //Program the 7 data blocks for supplied 224bit UID + uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7}; + // and the block 0 for Indala224 format + //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) + data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT); + //TODO add selection of chip for Q5 or T55x7 + // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT; + WriteT55xx(data, 0, 8); + //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) + // T5567WriteBlock(0x603E10E2,0); + DbpString("DONE!"); } +// clone viking tag to T55xx +void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) { + uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2}; + if (Q5) data[0] = ( ((32-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT; + // Program the data blocks for supplied ID and the block 0 config + WriteT55xx(data, 0, 3); + LED_D_OFF(); + cmd_send(CMD_ACK,0,0,0,0,0); +} + +// Define 9bit header for EM410x tags +#define EM410X_HEADER 0x1FF +#define EM410X_ID_LENGTH 40 +void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) { + int i, id_bit; + uint64_t id = EM410X_HEADER; + uint64_t rev_id = 0; // reversed ID + int c_parity[4]; // column parity + int r_parity = 0; // row parity + uint32_t clock = 0; + + // Reverse ID bits given as parameter (for simpler operations) + for (i = 0; i < EM410X_ID_LENGTH; ++i) { + if (i < 32) { + rev_id = (rev_id << 1) | (id_lo & 1); + id_lo >>= 1; + } else { + rev_id = (rev_id << 1) | (id_hi & 1); + id_hi >>= 1; + } + } + + for (i = 0; i < EM410X_ID_LENGTH; ++i) { + id_bit = rev_id & 1; + + if (i % 4 == 0) { + // Don't write row parity bit at start of parsing + if (i) + id = (id << 1) | r_parity; + // Start counting parity for new row + r_parity = id_bit; + } else { + // Count row parity + r_parity ^= id_bit; + } + + // First elements in column? + if (i < 4) + // Fill out first elements + c_parity[i] = id_bit; + else + // Count column parity + c_parity[i % 4] ^= id_bit; + + // Insert ID bit + id = (id << 1) | id_bit; + rev_id >>= 1; + } + + // Insert parity bit of last row + id = (id << 1) | r_parity; + + // Fill out column parity at the end of tag + for (i = 0; i < 4; ++i) + id = (id << 1) | c_parity[i]; + + // Add stop bit + id <<= 1; + + Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); + LED_D_ON(); + + // Write EM410x ID + uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)}; + + clock = (card & 0xFF00) >> 8; + clock = (clock == 0) ? 64 : clock; + Dbprintf("Clock rate: %d", clock); + if (card & 0xFF) { //t55x7 + clock = GetT55xxClockBit(clock); + if (clock == 0) { + Dbprintf("Invalid clock rate: %d", clock); + return; + } + data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT); + } else { //t5555 (Q5) + clock = (clock-2)>>1; //n = (RF-2)/2 + data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT); + } + + WriteT55xx(data, 0, 3); + + LED_D_OFF(); + Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", + (uint32_t)(id >> 32), (uint32_t)id); +} //----------------------------------- // EM4469 / EM4305 routines @@ -1706,7 +1470,6 @@ void ReadPCF7931() { #define FWD_CMD_READ 0x9 #define FWD_CMD_DISABLE 0x5 - uint8_t forwardLink_data[64]; //array of forwarded bits uint8_t * forward_ptr; //ptr for forward message preparation uint8_t fwd_bit_sz; //forwardlink bit counter @@ -1717,84 +1480,85 @@ uint8_t * fwd_write_ptr; //forwardlink bit pointer // see EM4469 spec //==================================================================== //-------------------------------------------------------------------- +// VALUES TAKEN FROM EM4x function: SendForward +// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) +// WRITE_GAP = 128; (16*8) +// WRITE_1 = 256 32*8; (32*8) + +// These timings work for 4469/4269/4305 (with the 55*8 above) +// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); + uint8_t Prepare_Cmd( uint8_t cmd ) { - //-------------------------------------------------------------------- - *forward_ptr++ = 0; //start bit - *forward_ptr++ = 0; //second pause for 4050 code + *forward_ptr++ = 0; //start bit + *forward_ptr++ = 0; //second pause for 4050 code - *forward_ptr++ = cmd; - cmd >>= 1; - *forward_ptr++ = cmd; - cmd >>= 1; - *forward_ptr++ = cmd; - cmd >>= 1; - *forward_ptr++ = cmd; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; - return 6; //return number of emited bits + return 6; //return number of emited bits } //==================================================================== // prepares address bits // see EM4469 spec //==================================================================== - -//-------------------------------------------------------------------- uint8_t Prepare_Addr( uint8_t addr ) { - //-------------------------------------------------------------------- - register uint8_t line_parity; + register uint8_t line_parity; - uint8_t i; - line_parity = 0; - for(i=0;i<6;i++) { - *forward_ptr++ = addr; - line_parity ^= addr; - addr >>= 1; - } + uint8_t i; + line_parity = 0; + for(i=0;i<6;i++) { + *forward_ptr++ = addr; + line_parity ^= addr; + addr >>= 1; + } - *forward_ptr++ = (line_parity & 1); + *forward_ptr++ = (line_parity & 1); - return 7; //return number of emited bits + return 7; //return number of emited bits } //==================================================================== // prepares data bits intreleaved with parity bits // see EM4469 spec //==================================================================== - -//-------------------------------------------------------------------- uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { - //-------------------------------------------------------------------- - - register uint8_t line_parity; - register uint8_t column_parity; - register uint8_t i, j; - register uint16_t data; - - data = data_low; - column_parity = 0; - - for(i=0; i<4; i++) { - line_parity = 0; - for(j=0; j<8; j++) { - line_parity ^= data; - column_parity ^= (data & 1) << j; - *forward_ptr++ = data; - data >>= 1; - } - *forward_ptr++ = line_parity; - if(i == 1) - data = data_hi; - } - - for(j=0; j<8; j++) { - *forward_ptr++ = column_parity; - column_parity >>= 1; - } - *forward_ptr = 0; - - return 45; //return number of emited bits + + register uint8_t line_parity; + register uint8_t column_parity; + register uint8_t i, j; + register uint16_t data; + + data = data_low; + column_parity = 0; + + for(i=0; i<4; i++) { + line_parity = 0; + for(j=0; j<8; j++) { + line_parity ^= data; + column_parity ^= (data & 1) << j; + *forward_ptr++ = data; + data >>= 1; + } + *forward_ptr++ = line_parity; + if(i == 1) + data = data_hi; + } + + for(j=0; j<8; j++) { + *forward_ptr++ = column_parity; + column_parity >>= 1; + } + *forward_ptr = 0; + + return 45; //return number of emited bits } //==================================================================== @@ -1804,114 +1568,162 @@ uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { //==================================================================== void SendForward(uint8_t fwd_bit_count) { - fwd_write_ptr = forwardLink_data; - fwd_bit_sz = fwd_bit_count; - - LED_D_ON(); - - //Field on - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); - - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); - - // force 1st mod pulse (start gap must be longer for 4305) - fwd_bit_sz--; //prepare next bit modulation - fwd_write_ptr++; - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on - SpinDelayUs(16*8); //16 cycles on (8us each) - - // now start writting - while(fwd_bit_sz-- > 0) { //prepare next bit modulation - if(((*fwd_write_ptr++) & 1) == 1) - SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) - else { - //These timings work for 4469/4269/4305 (with the 55*8 above) - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - SpinDelayUs(23*8); //16-4 cycles off (8us each) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on - SpinDelayUs(9*8); //16 cycles on (8us each) - } - } + fwd_write_ptr = forwardLink_data; + fwd_bit_sz = fwd_bit_count; + + // Set up FPGA, 125kHz or 95 divisor + LFSetupFPGAForADC(95, true); + + // force 1st mod pulse (start gap must be longer for 4305) + fwd_bit_sz--; //prepare next bit modulation + fwd_write_ptr++; + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + WaitUS(55*8); //55 cycles off (8us each)for 4305 //another reader has 37 here... + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on + WaitUS(18*8); //18 cycles on (8us each) + + // now start writting + while(fwd_bit_sz-- > 0) { //prepare next bit modulation + if(((*fwd_write_ptr++) & 1) == 1) + WaitUS(32*8); //32 cycles at 125Khz (8us each) + else { + //These timings work for 4469/4269/4305 (with the 55*8 above) + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + WaitUS(23*8); //23 cycles off (8us each) + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on + WaitUS(18*8); //18 cycles on (8us each) + } + } } void EM4xLogin(uint32_t Password) { - uint8_t fwd_bit_count; - - forward_ptr = forwardLink_data; - fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); - fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); + uint8_t fwd_bit_count; - SendForward(fwd_bit_count); + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); + fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); - //Wait for command to complete - SpinDelay(20); + SendForward(fwd_bit_count); + //Wait for command to complete + SpinDelay(20); } void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { - uint8_t fwd_bit_count; - uint8_t *dest = BigBuf_get_addr(); - int m=0, i=0; - - //If password mode do login - if (PwdMode == 1) EM4xLogin(Pwd); - - forward_ptr = forwardLink_data; - fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); - fwd_bit_count += Prepare_Addr( Address ); - - m = BigBuf_max_traceLen(); - // Clear destination buffer before sending the command - memset(dest, 128, m); - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - SendForward(fwd_bit_count); - - // Now do the acquisition - i = 0; - for(;;) { - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { - AT91C_BASE_SSC->SSC_THR = 0x43; - } - if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { - dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - i++; - if (i >= m) break; - } - } - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - LED_D_OFF(); + uint8_t fwd_bit_count; + + // Clear destination buffer before sending the command + BigBuf_Clear_ext(false); + + LED_A_ON(); + StartTicks(); + //If password mode do login + if (PwdMode == 1) EM4xLogin(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); + fwd_bit_count += Prepare_Addr( Address ); + + SendForward(fwd_bit_count); + WaitUS(400); + // Now do the acquisition + DoPartialAcquisition(20, true, 6000); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_A_OFF(); + cmd_send(CMD_ACK,0,0,0,0,0); +} + +void EM4xWriteWord(uint32_t flag, uint32_t Data, uint32_t Pwd) { + + bool PwdMode = (flag & 0xF); + uint8_t Address = (flag >> 8) & 0xFF; + uint8_t fwd_bit_count; + + //clear buffer now so it does not interfere with timing later + BigBuf_Clear_ext(false); + + LED_A_ON(); + StartTicks(); + //If password mode do login + if (PwdMode) EM4xLogin(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); + fwd_bit_count += Prepare_Addr( Address ); + fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); + + SendForward(fwd_bit_count); + + //Wait for write to complete + //SpinDelay(10); + + WaitUS(6500); + //Capture response if one exists + DoPartialAcquisition(20, true, 6000); + + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + LED_A_OFF(); + cmd_send(CMD_ACK,0,0,0,0,0); } +/* +Reading a COTAG. + +COTAG needs the reader to send a startsequence and the card has an extreme slow datarate. +because of this, we can "sample" the data signal but we interpreate it to Manchester direct. + +READER START SEQUENCE: +burst 800 us, gap 2.2 msecs +burst 3.6 msecs gap 2.2 msecs +burst 800 us gap 2.2 msecs +pulse 3.6 msecs + +This triggers a COTAG tag to response +*/ +void Cotag(uint32_t arg0) { + +#define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); } +#define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); } + + uint8_t rawsignal = arg0 & 0xF; + + LED_A_ON(); + + // Switching to LF image on FPGA. This might empty BigBuff + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + + //clear buffer now so it does not interfere with timing later + BigBuf_Clear_ext(false); + + // Set up FPGA, 132kHz to power up the tag + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); -void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { + // Connect the A/D to the peak-detected low-frequency path. + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - uint8_t fwd_bit_count; + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); - //If password mode do login - if (PwdMode == 1) EM4xLogin(Pwd); + // start clock - 1.5ticks is 1us + StartTicks(); - forward_ptr = forwardLink_data; - fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); - fwd_bit_count += Prepare_Addr( Address ); - fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); + //send COTAG start pulse + ON(740) OFF + ON(3330) OFF + ON(740) OFF + ON(1000) - SendForward(fwd_bit_count); + switch(rawsignal) { + case 0: doCotagAcquisition(50000); break; + case 1: doCotagAcquisitionManchester(); break; + case 2: DoAcquisition_config(TRUE); break; + } - //Wait for write to complete - SpinDelay(20); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - LED_D_OFF(); + // Turn the field off + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + cmd_send(CMD_ACK,0,0,0,0,0); + LED_A_OFF(); }