X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/b225678574c43cd109503f0b2d94f70499812c67..3179383f8549b98eaa977c03105cdec7af5007dc:/armsrc/lfops.c

diff --git a/armsrc/lfops.c b/armsrc/lfops.c
index ba9015ee..b9dbb8e2 100644
--- a/armsrc/lfops.c
+++ b/armsrc/lfops.c
@@ -14,11 +14,12 @@
 #include "hitag2.h"
 #include "crc16.h"
 #include "string.h"
+#include "lfdemod.h"
 
 
 /**
-* Does the sample acquisition. If threshold is specified, the actual sampling 
-* is not commenced until the threshold has been reached. 
+* Does the sample acquisition. If threshold is specified, the actual sampling
+* is not commenced until the threshold has been reached.
 * @param trigger_threshold - the threshold
 * @param silent - is true, now outputs are made. If false, dbprints the status
 */
@@ -48,12 +49,12 @@ void DoAcquisition125k_internal(int trigger_threshold,bool silent)
 	if(!silent)
 	{
 		Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
-				dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
-		
+		    dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
+
 	}
 }
 /**
-* Perform sample aquisition. 
+* Perform sample aquisition.
 */
 void DoAcquisition125k(int trigger_threshold)
 {
@@ -61,11 +62,11 @@ void DoAcquisition125k(int trigger_threshold)
 }
 
 /**
-* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream 
-* if not already loaded, sets divisor and starts up the antenna. 
+* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
+* if not already loaded, sets divisor and starts up the antenna.
 * @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
 * 				   0 or 95 ==> 125 KHz
-* 				   
+*
 **/
 void LFSetupFPGAForADC(int divisor, bool lf_field)
 {
@@ -87,7 +88,7 @@ void LFSetupFPGAForADC(int divisor, bool lf_field)
 	FpgaSetupSsc();
 }
 /**
-* Initializes the FPGA, and acquires the samples. 
+* Initializes the FPGA, and acquires the samples.
 **/
 void AcquireRawAdcSamples125k(int divisor)
 {
@@ -96,7 +97,7 @@ void AcquireRawAdcSamples125k(int divisor)
 	DoAcquisition125k_internal(-1,false);
 }
 /**
-* Initializes the FPGA for snoop-mode, and acquires the samples. 
+* Initializes the FPGA for snoop-mode, and acquires the samples.
 **/
 
 void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
@@ -121,7 +122,7 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1,
 		divisor_used = 88; // 134.8 KHz
 
 
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); 
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
 	// Give it a bit of time for the resonant antenna to settle.
 	SpinDelay(50);
@@ -137,7 +138,7 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1,
 		FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 		LED_D_OFF();
 		SpinDelayUs(delay_off);
-		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); 
+		FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
 
 		FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
 		LED_D_ON();
@@ -149,7 +150,7 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1,
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LED_D_OFF();
 	SpinDelayUs(delay_off);
-	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used); 
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
 
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
 
@@ -172,15 +173,12 @@ void ReadTItag(void)
 	// when we read a TI tag we sample the zerocross line at 2Mhz
 	// TI tags modulate a 1 as 16 cycles of 123.2Khz
 	// TI tags modulate a 0 as 16 cycles of 134.2Khz
-	#define FSAMPLE 2000000
-	#define FREQLO 123200
-	#define FREQHI 134200
+ #define FSAMPLE 2000000
+ #define FREQLO 123200
+ #define FREQHI 134200
 
 	signed char *dest = (signed char *)BigBuf;
 	int n = sizeof(BigBuf);
-//	int *dest = GraphBuffer;
-//	int n = GraphTraceLen;
-
 	// 128 bit shift register [shift3:shift2:shift1:shift0]
 	uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
 
@@ -216,10 +214,10 @@ void ReadTItag(void)
 
 				// TI bits are coming to us lsb first so shift them
 				// right through our 128 bit right shift register
-			  shift0 = (shift0>>1) | (shift1 << 31);
-			  shift1 = (shift1>>1) | (shift2 << 31);
-			  shift2 = (shift2>>1) | (shift3 << 31);
-			  shift3 >>= 1;
+				shift0 = (shift0>>1) | (shift1 << 31);
+				shift1 = (shift1>>1) | (shift2 << 31);
+				shift2 = (shift2>>1) | (shift3 << 31);
+				shift3 >>= 1;
 
 				// check if the cycles fall close to the number
 				// expected for either the low or high frequency
@@ -254,18 +252,18 @@ void ReadTItag(void)
 	if (cycles!=0xF0B) {
 		DbpString("Info: No valid tag detected.");
 	} else {
-	  // put 64 bit data into shift1 and shift0
-	  shift0 = (shift0>>24) | (shift1 << 8);
-	  shift1 = (shift1>>24) | (shift2 << 8);
+		// put 64 bit data into shift1 and shift0
+		shift0 = (shift0>>24) | (shift1 << 8);
+		shift1 = (shift1>>24) | (shift2 << 8);
 
 		// align 16 bit crc into lower half of shift2
-	  shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
+		shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
 
 		// if r/w tag, check ident match
-		if ( shift3&(1<<15) ) {
+		if (shift3 & (1<<15) ) {
 			DbpString("Info: TI tag is rewriteable");
 			// only 15 bits compare, last bit of ident is not valid
-			if ( ((shift3>>16)^shift0)&0x7fff ) {
+			if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
 				DbpString("Error: Ident mismatch!");
 			} else {
 				DbpString("Info: TI tag ident is valid");
@@ -280,7 +278,7 @@ void ReadTItag(void)
 		// calculate CRC
 		uint32_t crc=0;
 
-	 	crc = update_crc16(crc, (shift0)&0xff);
+		crc = update_crc16(crc, (shift0)&0xff);
 		crc = update_crc16(crc, (shift0>>8)&0xff);
 		crc = update_crc16(crc, (shift0>>16)&0xff);
 		crc = update_crc16(crc, (shift0>>24)&0xff);
@@ -290,7 +288,7 @@ void ReadTItag(void)
 		crc = update_crc16(crc, (shift1>>24)&0xff);
 
 		Dbprintf("Info: Tag data: %x%08x, crc=%x",
-			(unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
+		    (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
 		if (crc != (shift2&0xffff)) {
 			Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
 		} else {
@@ -329,7 +327,7 @@ void AcquireTiType(void)
 	int i, j, n;
 	// tag transmission is <20ms, sampling at 2M gives us 40K samples max
 	// each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
-	#define TIBUFLEN 1250
+ #define TIBUFLEN 1250
 
 	// clear buffer
 	memset(BigBuf,0,sizeof(BigBuf));
@@ -399,9 +397,9 @@ void AcquireTiType(void)
 // if not provided a valid crc will be computed from the data and written.
 void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 {
-	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);	
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
 	if(crc == 0) {
-	 	crc = update_crc16(crc, (idlo)&0xff);
+		crc = update_crc16(crc, (idlo)&0xff);
 		crc = update_crc16(crc, (idlo>>8)&0xff);
 		crc = update_crc16(crc, (idlo>>16)&0xff);
 		crc = update_crc16(crc, (idlo>>24)&0xff);
@@ -411,7 +409,7 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
 		crc = update_crc16(crc, (idhi>>24)&0xff);
 	}
 	Dbprintf("Writing to tag: %x%08x, crc=%x",
-		(unsigned int) idhi, (unsigned int) idlo, crc);
+	    (unsigned int) idhi, (unsigned int) idlo, crc);
 
 	// TI tags charge at 134.2Khz
 	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
@@ -470,18 +468,18 @@ void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
 {
 	int i;
 	uint8_t *tab = (uint8_t *)BigBuf;
-    
+
 	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
-    
+
 	AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
-    
+
 	AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
 	AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
-    
+
 #define SHORT_COIL()	LOW(GPIO_SSC_DOUT)
 #define OPEN_COIL()		HIGH(GPIO_SSC_DOUT)
-    
+
 	i = 0;
 	for(;;) {
 		while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
@@ -491,18 +489,18 @@ void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
 			}
 			WDT_HIT();
 		}
-        
+
 		if (ledcontrol)
 			LED_D_ON();
-        
+
 		if(tab[i])
 			OPEN_COIL();
 		else
 			SHORT_COIL();
-        
+
 		if (ledcontrol)
 			LED_D_OFF();
-        
+
 		while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
 			if(BUTTON_PRESS()) {
 				DbpString("Stopped");
@@ -510,7 +508,7 @@ void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
 			}
 			WDT_HIT();
 		}
-        
+
 		i++;
 		if(i == period) {
 			i = 0;
@@ -630,238 +628,203 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
 		LED_A_OFF();
 }
 
-size_t fsk_demod(uint8_t * dest, size_t size)
-{
-	uint32_t last_transition = 0;
-	uint32_t idx = 1;
-
-	// we don't care about actual value, only if it's more or less than a
-	// threshold essentially we capture zero crossings for later analysis
-	uint8_t threshold_value = 127;
-
-	// sync to first lo-hi transition, and threshold
-
-	//Need to threshold first sample
-	if(dest[0] < threshold_value) dest[0] = 0;
-	else dest[0] = 1;
-
-	size_t numBits = 0;
-	// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
-	// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
-	// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
-	for(idx = 1; idx < size; idx++) {
-		// threshold current value
-		if (dest[idx] < threshold_value) dest[idx] = 0;
-		else dest[idx] = 1;
-
-		// Check for 0->1 transition
-		if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
-
-			if (idx-last_transition <  9) {
-					dest[numBits]=1;
-			} else {
-					dest[numBits]=0;
-			}
-			last_transition = idx;
-			numBits++;
-		}
-	}
-	return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
-}
-
-
-size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits )
-{
-	uint8_t lastval=dest[0];
-	uint32_t idx=0;
-	size_t numBits=0;
-	uint32_t n=1;
-
-	for( idx=1; idx < size; idx++) {
-
-		if (dest[idx]==lastval) {
-			n++;
-			continue;
-		}
-		//if lastval was 1, we have a 1->0 crossing
-		if ( dest[idx-1] ) {
-			n=(n+1) / h2l_crossing_value;
-		} else {// 0->1 crossing
-			n=(n+1) / l2h_crossing_value;
-		}
-		if (n == 0) n = 1;
-
-		if(n < maxConsequtiveBits)
-		{
-			memset(dest+numBits, dest[idx-1] , n);
-			numBits += n;
-		}
-		n=0;
-		lastval=dest[idx];
-	}//end for
-
-	return numBits;
-
-}
-// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
+// loop to get raw HID waveform then FSK demodulate the TAG ID from it
 void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
 {
 	uint8_t *dest = (uint8_t *)BigBuf;
 
-	size_t size=0,idx=0; //, found=0;
+	size_t size=0; //, found=0;
 	uint32_t hi2=0, hi=0, lo=0;
 
+	// Configure to go in 125Khz listen mode
+	LFSetupFPGAForADC(95, true);
 
 	while(!BUTTON_PRESS()) {
 
-		/** TODO! This should probably be moved outside the loop /Martin */
-		// Configure to go in 125Khz listen mode
-		LFSetupFPGAForADC(0, true);
-
-
 		WDT_HIT();
 		if (ledcontrol) LED_A_ON();
 
 		DoAcquisition125k_internal(-1,true);
-		size  = sizeof(BigBuf);
-
 		// FSK demodulator
-		size = fsk_demod(dest, size);
-		WDT_HIT();
-
-		// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-		// 1->0 : fc/8 in sets of 6
-		// 0->1 : fc/10 in sets of 5
-		size = aggregate_bits(dest,size, 6,5,5);
+		size = HIDdemodFSK(dest, sizeof(BigBuf), &hi2, &hi, &lo);
 
 		WDT_HIT();
 
-		// final loop, go over previously decoded manchester data and decode into usable tag ID
-		// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
-		uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
-		int numshifts = 0;
-		idx = 0;
-		while( idx + sizeof(frame_marker_mask) < size) {
-			// search for a start of frame marker
-			if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-			{ // frame marker found
-				idx+=sizeof(frame_marker_mask);
-
-				while(dest[idx] != dest[idx+1] && idx < size-2)
-				{	// Keep going until next frame marker (or error)
-					// Shift in a bit. Start by shifting high registers
-					hi2 = (hi2<<1)|(hi>>31);
-					hi = (hi<<1)|(lo>>31);
-					//Then, shift in a 0 or one into low
-					if (dest[idx] && !dest[idx+1])	// 1 0
-						lo=(lo<<1)|0;
-					else // 0 1
-						lo=(lo<<1)|
-								1;
-					numshifts ++;
-					idx += 2;
-				}
-				//Dbprintf("Num shifts: %d ", numshifts);
-				// Hopefully, we read a tag and	 hit upon the next frame marker
-				if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
-				{
-					if (hi2 != 0){
-						Dbprintf("TAG ID: %x%08x%08x (%d)",
-							 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+		if (size>0 && lo>0){
+			// final loop, go over previously decoded manchester data and decode into usable tag ID
+			// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
+			if (hi2 != 0){ //extra large HID tags
+				Dbprintf("TAG ID: %x%08x%08x (%d)",
+				    (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+			}else {  //standard HID tags <38 bits
+				//Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
+				uint8_t bitlen = 0;
+				uint32_t fc = 0;
+				uint32_t cardnum = 0;
+				if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
+					uint32_t lo2=0;
+					lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
+					uint8_t idx3 = 1;
+					while(lo2 > 1){ //find last bit set to 1 (format len bit)
+						lo2=lo2 >> 1;
+						idx3++;
+					}
+					bitlen = idx3+19;
+					fc =0;
+					cardnum=0;
+					if(bitlen == 26){
+						cardnum = (lo>>1)&0xFFFF;
+						fc = (lo>>17)&0xFF;
+					}
+					if(bitlen == 37){
+						cardnum = (lo>>1)&0x7FFFF;
+						fc = ((hi&0xF)<<12)|(lo>>20);
+					}
+					if(bitlen == 34){
+						cardnum = (lo>>1)&0xFFFF;
+						fc= ((hi&1)<<15)|(lo>>17);
 					}
-					else {
-						Dbprintf("TAG ID: %x%08x (%d)",
-						 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+					if(bitlen == 35){
+						cardnum = (lo>>1)&0xFFFFF;
+						fc = ((hi&1)<<11)|(lo>>21);
 					}
 				}
-
-				// reset
-				hi2 = hi = lo = 0;
-				numshifts = 0;
-			}else
-			{
-				idx++;
+				else { //if bit 38 is not set then 37 bit format is used
+					bitlen= 37;
+					fc =0;
+					cardnum=0;
+					if(bitlen==37){
+						cardnum = (lo>>1)&0x7FFFF;
+						fc = ((hi&0xF)<<12)|(lo>>20);
+					}
+				}
+				//Dbprintf("TAG ID: %x%08x (%d)",
+				// (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
+				Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
+				    (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
+				    (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
 			}
+			if (findone){
+				if (ledcontrol)	LED_A_OFF();
+				return;
+			}
+			// reset
+			hi2 = hi = lo = 0;
 		}
 		WDT_HIT();
-
 	}
 	DbpString("Stopped");
 	if (ledcontrol) LED_A_OFF();
 }
 
-uint32_t bytebits_to_byte(uint8_t* src, int numbits)
-{
-	uint32_t num = 0;
-	for(int i = 0 ; i < numbits ; i++)
-	{
-		num = (num << 1) | (*src);
-		src++;
-	}
-	return num;
-}
-
-
-void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
 {
 	uint8_t *dest = (uint8_t *)BigBuf;
 
-	size_t size=0, idx=0;
-	uint32_t code=0, code2=0;
-
+	size_t size=0;
+	int clk=0, invert=0, errCnt=0;
+	uint64_t lo=0;
+	// Configure to go in 125Khz listen mode
+	LFSetupFPGAForADC(95, true);
 
 	while(!BUTTON_PRESS()) {
 
-		// Configure to go in 125Khz listen mode
-		LFSetupFPGAForADC(0, true);
-
 		WDT_HIT();
 		if (ledcontrol) LED_A_ON();
 
 		DoAcquisition125k_internal(-1,true);
-		size  = sizeof(BigBuf);
+		size = sizeof(BigBuf);
+		//Dbprintf("DEBUG: Buffer got");
+		//askdemod and manchester decode
+		errCnt = askmandemod(dest, &size, &clk, &invert);
+		//Dbprintf("DEBUG: ASK Got");
+		WDT_HIT();
 
-		// FSK demodulator
-		size = fsk_demod(dest, size);
+		if (errCnt>=0){
+			lo = Em410xDecode(dest,size);
+			//Dbprintf("DEBUG: EM GOT");
+			if (lo>0){
+				Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
+				    (uint32_t)(lo>>32),
+				    (uint32_t)lo,
+				    (uint32_t)(lo&0xFFFF),
+				    (uint32_t)((lo>>16LL) & 0xFF),
+				    (uint32_t)(lo & 0xFFFFFF));
+			}
+			if (findone){
+				if (ledcontrol)	LED_A_OFF();
+				return;
+			}
+		} else{
+			//Dbprintf("DEBUG: No Tag");
+		}
 		WDT_HIT();
+		lo = 0;
+		clk=0;
+		invert=0;
+		errCnt=0;
+		size=0;
+	}
+	DbpString("Stopped");
+	if (ledcontrol) LED_A_OFF();
+}
 
-		// we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
-		// 1->0 : fc/8 in sets of 7
-		// 0->1 : fc/10 in sets of 6
-		size = aggregate_bits(dest, size, 7,6,13);
+void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
+{
+	uint8_t *dest = (uint8_t *)BigBuf;
+	int idx=0;
+	uint32_t code=0, code2=0;
+	uint8_t version=0;
+	uint8_t facilitycode=0;
+	uint16_t number=0;
+	// Configure to go in 125Khz listen mode
+	LFSetupFPGAForADC(95, true);
 
+	while(!BUTTON_PRESS()) {
 		WDT_HIT();
-		
-		//Handle the data
- 	    uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
-		for( idx=0; idx < size - 64; idx++) {
-
- 	    	if ( memcmp(dest + idx, mask, sizeof(mask)) ) continue;
-
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]);
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]);			  
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]);
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]);
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]);
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]);
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]);
-		    Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
-			
-		    code = bytebits_to_byte(dest+idx,32);
-		    code2 = bytebits_to_byte(dest+idx+32,32); 
-
-		    short version = bytebits_to_byte(dest+idx+14,4); 
-		    char unknown = bytebits_to_byte(dest+idx+19,8) ;
-		    uint16_t number = bytebits_to_byte(dest+idx+36,9); 
-		    
-		    Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2);
-		    if (ledcontrol)	LED_D_OFF();
-		
-			// if we're only looking for one tag 
+		if (ledcontrol) LED_A_ON();
+		DoAcquisition125k_internal(-1,true);
+		//fskdemod and get start index
+		WDT_HIT();
+		idx = IOdemodFSK(dest,sizeof(BigBuf));
+		if (idx>0){
+			//valid tag found
+
+			//Index map
+			//0           10          20          30          40          50          60
+			//|           |           |           |           |           |           |
+			//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
+			//-----------------------------------------------------------------------------
+			//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
+			//
+			//XSF(version)facility:codeone+codetwo
+			//Handle the data
+			if(findone){ //only print binary if we are doing one
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx],   dest[idx+1],   dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
+				Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
+			}
+			code = bytebits_to_byte(dest+idx,32);
+			code2 = bytebits_to_byte(dest+idx+32,32);
+			version = bytebits_to_byte(dest+idx+27,8); //14,4
+			facilitycode = bytebits_to_byte(dest+idx+18,8) ;
+			number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
+
+			Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
+			// if we're only looking for one tag
 			if (findone){
-				LED_A_OFF();
+				if (ledcontrol)	LED_A_OFF();
+				//LED_A_OFF();
 				return;
-			}		
+			}
+			code=code2=0;
+			version=facilitycode=0;
+			number=0;
+			idx=0;
 		}
 		WDT_HIT();
 	}
@@ -950,7 +913,8 @@ void T55xxWriteBit(int bit)
 // Write one card block in page 0, no lock
 void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 {
-	unsigned int i;
+	//unsigned int i;  //enio adjustment 12/10/14
+	uint32_t i;
 
 	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
 	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
@@ -967,11 +931,11 @@ void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMod
 	// Opcode
 	T55xxWriteBit(1);
 	T55xxWriteBit(0); //Page 0
-  if (PwdMode == 1){
-    // Pwd
-    for (i = 0x80000000; i != 0; i >>= 1)
-      T55xxWriteBit(Pwd & i);
-  }
+	if (PwdMode == 1){
+		// Pwd
+		for (i = 0x80000000; i != 0; i >>= 1)
+			T55xxWriteBit(Pwd & i);
+	}
 	// Lock bit
 	T55xxWriteBit(0);
 
@@ -995,29 +959,29 @@ void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMod
 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 {
 	uint8_t *dest = (uint8_t *)BigBuf;
-	int m=0, i=0;
-  
+	//int m=0, i=0; //enio adjustment 12/10/14
+	uint32_t m=0, i=0;
 	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
 	m = sizeof(BigBuf);
-  // Clear destination buffer before sending the command
+	// Clear destination buffer before sending the command
 	memset(dest, 128, m);
 	// Connect the A/D to the peak-detected low-frequency path.
 	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
 	// Now set up the SSC to get the ADC samples that are now streaming at us.
 	FpgaSetupSsc();
-  
+
 	LED_D_ON();
 	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-  
+
 	// Give it a bit of time for the resonant antenna to settle.
 	// And for the tag to fully power up
 	SpinDelay(150);
-  
+
 	// Now start writting
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	SpinDelayUs(START_GAP);
-  
+
 	// Opcode
 	T55xxWriteBit(1);
 	T55xxWriteBit(0); //Page 0
@@ -1031,11 +995,11 @@ void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 	// Block
 	for (i = 0x04; i != 0; i >>= 1)
 		T55xxWriteBit(Block & i);
-  
-  // Turn field on to read the response
+
+	// Turn field on to read the response
 	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-  
+
 	// Now do the acquisition
 	i = 0;
 	for(;;) {
@@ -1046,13 +1010,13 @@ void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 			dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
 			// we don't care about actual value, only if it's more or less than a
 			// threshold essentially we capture zero crossings for later analysis
-      //			if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
+			//			if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
 			i++;
 			if (i >= m) break;
 		}
 	}
-  
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
 	LED_D_OFF();
 	DbpString("DONE!");
 }
@@ -1061,36 +1025,36 @@ void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
 void T55xxReadTrace(void){
 	uint8_t *dest = (uint8_t *)BigBuf;
 	int m=0, i=0;
-  
+
 	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
 	m = sizeof(BigBuf);
-  // Clear destination buffer before sending the command
+	// Clear destination buffer before sending the command
 	memset(dest, 128, m);
 	// Connect the A/D to the peak-detected low-frequency path.
 	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
 	// Now set up the SSC to get the ADC samples that are now streaming at us.
 	FpgaSetupSsc();
-  
+
 	LED_D_ON();
 	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-  
+
 	// Give it a bit of time for the resonant antenna to settle.
 	// And for the tag to fully power up
 	SpinDelay(150);
-  
+
 	// Now start writting
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	SpinDelayUs(START_GAP);
-  
+
 	// Opcode
 	T55xxWriteBit(1);
 	T55xxWriteBit(1); //Page 1
-  
-  // Turn field on to read the response
+
+	// Turn field on to read the response
 	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-  
+
 	// Now do the acquisition
 	i = 0;
 	for(;;) {
@@ -1103,8 +1067,8 @@ void T55xxReadTrace(void){
 			if (i >= m) break;
 		}
 	}
-  
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
 	LED_D_OFF();
 	DbpString("DONE!");
 }
@@ -1115,141 +1079,141 @@ void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
 {
 	int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
 	int last_block = 0;
-  
-  if (longFMT){
-	  // Ensure no more than 84 bits supplied
-	  if (hi2>0xFFFFF) {
-		  DbpString("Tags can only have 84 bits.");
-		  return;
-	  }
-    // Build the 6 data blocks for supplied 84bit ID
-    last_block = 6;
-    data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
-	  for (int i=0;i<4;i++) {
-		  if (hi2 & (1<<(19-i)))
-			  data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
-		  else
-			  data1 |= (1<<((3-i)*2)); // 0 -> 01
-	  }
-    
-  	data2 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (hi2 & (1<<(15-i)))
-  			data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data2 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-    
-  	data3 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (hi & (1<<(31-i)))
-  			data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data3 |= (1<<((15-i)*2)); // 0 -> 01
-  	}
-    
-  	data4 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (hi & (1<<(15-i)))
-  			data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data4 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-    
-  	data5 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (lo & (1<<(31-i)))
-  			data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data5 |= (1<<((15-i)*2)); // 0 -> 01
-  	}
-    
-  	data6 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (lo & (1<<(15-i)))
-  			data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data6 |= (1<<((15-i)*2)); // 0 -> 01
-    }
-  }
-  else {
-	  // Ensure no more than 44 bits supplied
-	  if (hi>0xFFF) {
-		  DbpString("Tags can only have 44 bits.");
-		  return;
-	  }
-    
-  	// Build the 3 data blocks for supplied 44bit ID
-  	last_block = 3;
-  	
-  	data1 = 0x1D000000; // load preamble
-    
-    for (int i=0;i<12;i++) {
-      if (hi & (1<<(11-i)))
-        data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
-      else
-        data1 |= (1<<((11-i)*2)); // 0 -> 01
-    }
-    
-  	data2 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (lo & (1<<(31-i)))
-  			data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data2 |= (1<<((15-i)*2)); // 0 -> 01
-  	}
-    
-  	data3 = 0;
-  	for (int i=0;i<16;i++) {
-  		if (lo & (1<<(15-i)))
-  			data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
-  		else
-  			data3 |= (1<<((15-i)*2)); // 0 -> 01
-  	}
-  }
-  
+
+	if (longFMT){
+		// Ensure no more than 84 bits supplied
+		if (hi2>0xFFFFF) {
+			DbpString("Tags can only have 84 bits.");
+			return;
+		}
+		// Build the 6 data blocks for supplied 84bit ID
+		last_block = 6;
+		data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
+		for (int i=0;i<4;i++) {
+			if (hi2 & (1<<(19-i)))
+				data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
+			else
+				data1 |= (1<<((3-i)*2)); // 0 -> 01
+		}
+
+		data2 = 0;
+		for (int i=0;i<16;i++) {
+			if (hi2 & (1<<(15-i)))
+				data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data2 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+
+		data3 = 0;
+		for (int i=0;i<16;i++) {
+			if (hi & (1<<(31-i)))
+				data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data3 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+
+		data4 = 0;
+		for (int i=0;i<16;i++) {
+			if (hi & (1<<(15-i)))
+				data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data4 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+
+		data5 = 0;
+		for (int i=0;i<16;i++) {
+			if (lo & (1<<(31-i)))
+				data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data5 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+
+		data6 = 0;
+		for (int i=0;i<16;i++) {
+			if (lo & (1<<(15-i)))
+				data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data6 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+	}
+	else {
+		// Ensure no more than 44 bits supplied
+		if (hi>0xFFF) {
+			DbpString("Tags can only have 44 bits.");
+			return;
+		}
+
+		// Build the 3 data blocks for supplied 44bit ID
+		last_block = 3;
+
+		data1 = 0x1D000000; // load preamble
+
+		for (int i=0;i<12;i++) {
+			if (hi & (1<<(11-i)))
+				data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
+			else
+				data1 |= (1<<((11-i)*2)); // 0 -> 01
+		}
+
+		data2 = 0;
+		for (int i=0;i<16;i++) {
+			if (lo & (1<<(31-i)))
+				data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data2 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+
+		data3 = 0;
+		for (int i=0;i<16;i++) {
+			if (lo & (1<<(15-i)))
+				data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
+			else
+				data3 |= (1<<((15-i)*2)); // 0 -> 01
+		}
+	}
+
 	LED_D_ON();
 	// Program the data blocks for supplied ID
 	// and the block 0 for HID format
 	T55xxWriteBlock(data1,1,0,0);
 	T55xxWriteBlock(data2,2,0,0);
 	T55xxWriteBlock(data3,3,0,0);
-	
+
 	if (longFMT) { // if long format there are 6 blocks
-	  T55xxWriteBlock(data4,4,0,0);
-	  T55xxWriteBlock(data5,5,0,0);
-	  T55xxWriteBlock(data6,6,0,0);
-  }
-  
+		T55xxWriteBlock(data4,4,0,0);
+		T55xxWriteBlock(data5,5,0,0);
+		T55xxWriteBlock(data6,6,0,0);
+	}
+
 	// Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
 	T55xxWriteBlock(T55x7_BITRATE_RF_50    |
-                  T55x7_MODULATION_FSK2a |
-                  last_block << T55x7_MAXBLOCK_SHIFT,
-                  0,0,0);
-  
+					T55x7_MODULATION_FSK2a |
+					last_block << T55x7_MAXBLOCK_SHIFT,
+					0,0,0);
+
 	LED_D_OFF();
-	
+
 	DbpString("DONE!");
 }
 
 void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
 {
-   int data1=0, data2=0; //up to six blocks for long format
-  	
-    data1 = hi;  // load preamble
-    data2 = lo;
-    
-    LED_D_ON();
-    // Program the data blocks for supplied ID
-    // and the block 0 for HID format
-    T55xxWriteBlock(data1,1,0,0);
-    T55xxWriteBlock(data2,2,0,0);
-	
-    //Config Block
-    T55xxWriteBlock(0x00147040,0,0,0);
-    LED_D_OFF();
-	
-    DbpString("DONE!");
+	int data1=0, data2=0; //up to six blocks for long format
+
+	data1 = hi;  // load preamble
+	data2 = lo;
+
+	LED_D_ON();
+	// Program the data blocks for supplied ID
+	// and the block 0 for HID format
+	T55xxWriteBlock(data1,1,0,0);
+	T55xxWriteBlock(data2,2,0,0);
+
+	//Config Block
+	T55xxWriteBlock(0x00147040,0,0,0);
+	LED_D_OFF();
+
+	DbpString("DONE!");
 }
 
 // Define 9bit header for EM410x tags
@@ -1338,7 +1302,7 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
 				// Fall through...
 			case 64:
 				clock = T55x7_BITRATE_RF_64;
-				break;      
+				break;
 			default:
 				Dbprintf("Invalid clock rate: %d", clock);
 				return;
@@ -1346,20 +1310,20 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
 
 		// Writing configuration for T55x7 tag
 		T55xxWriteBlock(clock	    |
-				T55x7_MODULATION_MANCHESTER |
-				2 << T55x7_MAXBLOCK_SHIFT,
-				0, 0, 0);
-  }
+		    T55x7_MODULATION_MANCHESTER |
+		    2 << T55x7_MAXBLOCK_SHIFT,
+		    0, 0, 0);
+	}
 	else
 		// Writing configuration for T5555(Q5) tag
 		T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
-				T5555_MODULATION_MANCHESTER   |
-				2 << T5555_MAXBLOCK_SHIFT,
-				0, 0, 0);
+		    T5555_MODULATION_MANCHESTER   |
+		    2 << T5555_MAXBLOCK_SHIFT,
+		    0, 0, 0);
 
 	LED_D_OFF();
 	Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
-					(uint32_t)(id >> 32), (uint32_t)id);
+	    (uint32_t)(id >> 32), (uint32_t)id);
 }
 
 // Clone Indala 64-bit tag by UID to T55x7
@@ -1372,15 +1336,15 @@ void CopyIndala64toT55x7(int hi, int lo)
 	T55xxWriteBlock(lo,2,0,0);
 	//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
 	T55xxWriteBlock(T55x7_BITRATE_RF_32    |
-			T55x7_MODULATION_PSK1 |
-			2 << T55x7_MAXBLOCK_SHIFT,
-			0, 0, 0);
+	    T55x7_MODULATION_PSK1 |
+	    2 << T55x7_MAXBLOCK_SHIFT,
+	    0, 0, 0);
 	//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
-//	T5567WriteBlock(0x603E1042,0);
+	//	T5567WriteBlock(0x603E1042,0);
 
 	DbpString("DONE!");
 
-}	
+}
 
 void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
 {
@@ -1396,11 +1360,11 @@ void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int
 	T55xxWriteBlock(uid7,7,0,0);
 	//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
 	T55xxWriteBlock(T55x7_BITRATE_RF_32    |
-			T55x7_MODULATION_PSK1 |
-			7 << T55x7_MAXBLOCK_SHIFT,
-			0,0,0);
+	    T55x7_MODULATION_PSK1 |
+	    7 << T55x7_MAXBLOCK_SHIFT,
+	    0,0,0);
 	//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
-//	T5567WriteBlock(0x603E10E2,0);
+	//	T5567WriteBlock(0x603E10E2,0);
 
 	DbpString("DONE!");
 
@@ -1423,111 +1387,114 @@ int DemodPCF7931(uint8_t **outBlocks) {
 	int num_blocks = 0;
 	int lmin=128, lmax=128;
 	uint8_t dir;
-	
+
 	AcquireRawAdcSamples125k(0);
-	
+
 	lmin = 64;
 	lmax = 192;
-	
+
 	i = 2;
-	
+
 	/* Find first local max/min */
 	if(GraphBuffer[1] > GraphBuffer[0]) {
-    while(i < GraphTraceLen) {
-      if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
-        break;
-      i++;
-    }
-    dir = 0;
+		while(i < GraphTraceLen) {
+			if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
+				break;
+			i++;
+		}
+		dir = 0;
 	}
 	else {
-    while(i < GraphTraceLen) {
-      if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
-        break;
-      i++;
-    }
-    dir = 1;
+		while(i < GraphTraceLen) {
+			if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
+				break;
+			i++;
+		}
+		dir = 1;
 	}
-	
+
 	lastval = i++;
 	half_switch = 0;
 	pmc = 0;
 	block_done = 0;
-	
+
 	for (bitidx = 0; i < GraphTraceLen; i++)
 	{
-    if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
-    {
-      lc = i - lastval;
-      lastval = i;
-      
-      // Switch depending on lc length:
-      // Tolerance is 1/8 of clock rate (arbitrary)
-      if (abs(lc-clock/4) < tolerance) {
-        // 16T0
-        if((i - pmc) == lc) { /* 16T0 was previous one */
-          /* It's a PMC ! */
-          i += (128+127+16+32+33+16)-1;
-          lastval = i;
-          pmc = 0;
-          block_done = 1;
-        }
-        else {
-          pmc = i;
-        }
-      } else if (abs(lc-clock/2) < tolerance) {
-        // 32TO
-        if((i - pmc) == lc) { /* 16T0 was previous one */
-          /* It's a PMC ! */
-          i += (128+127+16+32+33)-1;
-          lastval = i;
-          pmc = 0;
-          block_done = 1;
-        }
-        else if(half_switch == 1) {
-          BitStream[bitidx++] = 0;
-          half_switch = 0;
-        }
-        else
-          half_switch++;
-      } else if (abs(lc-clock) < tolerance) {
-        // 64TO
-        BitStream[bitidx++] = 1;
-      } else {
-        // Error
-        warnings++;
-        if (warnings > 10)
-        {
-          Dbprintf("Error: too many detection errors, aborting.");
-          return 0;
-        }
-      }
-      
-      if(block_done == 1) {
-        if(bitidx == 128) {
-          for(j=0; j<16; j++) {
-            Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
-            64*BitStream[j*8+6]+
-            32*BitStream[j*8+5]+
-            16*BitStream[j*8+4]+
-            8*BitStream[j*8+3]+
-            4*BitStream[j*8+2]+
-            2*BitStream[j*8+1]+
-            BitStream[j*8];
-          }
-          num_blocks++;
-        }
-        bitidx = 0;
-        block_done = 0;
-        half_switch = 0;
-      }
-      if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
-      else dir = 1;
-    }
-    if(bitidx==255)
-      bitidx=0;
-    warnings = 0;
-    if(num_blocks == 4) break;
+		if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
+		{
+			lc = i - lastval;
+			lastval = i;
+
+			// Switch depending on lc length:
+			// Tolerance is 1/8 of clock rate (arbitrary)
+			if (abs(lc-clock/4) < tolerance) {
+				// 16T0
+				if((i - pmc) == lc) { /* 16T0 was previous one */
+					/* It's a PMC ! */
+					i += (128+127+16+32+33+16)-1;
+					lastval = i;
+					pmc = 0;
+					block_done = 1;
+				}
+				else {
+					pmc = i;
+				}
+			} else if (abs(lc-clock/2) < tolerance) {
+				// 32TO
+				if((i - pmc) == lc) { /* 16T0 was previous one */
+					/* It's a PMC ! */
+					i += (128+127+16+32+33)-1;
+					lastval = i;
+					pmc = 0;
+					block_done = 1;
+				}
+				else if(half_switch == 1) {
+					BitStream[bitidx++] = 0;
+					half_switch = 0;
+				}
+				else
+					half_switch++;
+			} else if (abs(lc-clock) < tolerance) {
+				// 64TO
+				BitStream[bitidx++] = 1;
+			} else {
+				// Error
+				warnings++;
+				if (warnings > 10)
+				{
+					Dbprintf("Error: too many detection errors, aborting.");
+					return 0;
+				}
+			}
+
+			if(block_done == 1) {
+				if(bitidx == 128) {
+					for(j=0; j<16; j++) {
+						Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
+						    64*BitStream[j*8+6]+
+						    32*BitStream[j*8+5]+
+						    16*BitStream[j*8+4]+
+						    8*BitStream[j*8+3]+
+						    4*BitStream[j*8+2]+
+						    2*BitStream[j*8+1]+
+						    BitStream[j*8];
+					}
+					num_blocks++;
+				}
+				bitidx = 0;
+				block_done = 0;
+				half_switch = 0;
+			}
+			if(i < GraphTraceLen)
+			{
+				if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
+				else dir = 1;
+			}
+		}
+		if(bitidx==255)
+			bitidx=0;
+		warnings = 0;
+		if(num_blocks == 4) break;
 	}
 	memcpy(outBlocks, Blocks, 16*num_blocks);
 	return num_blocks;
@@ -1536,18 +1503,18 @@ int DemodPCF7931(uint8_t **outBlocks) {
 int IsBlock0PCF7931(uint8_t *Block) {
 	// Assume RFU means 0 :)
 	if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
-    return 1;
+		return 1;
 	if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
-    return 1;
+		return 1;
 	return 0;
 }
 
 int IsBlock1PCF7931(uint8_t *Block) {
 	// Assume RFU means 0 :)
 	if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
-    if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
-      return 1;
-	
+		if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
+			return 1;
+
 	return 0;
 }
 
@@ -1562,106 +1529,106 @@ void ReadPCF7931() {
 	int ident = 0;
 	int error = 0;
 	int tries = 0;
-	
+
 	memset(Blocks, 0, 8*17*sizeof(uint8_t));
-	
+
 	do {
-    memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
-    n = DemodPCF7931((uint8_t**)tmpBlocks);
-    if(!n)
-      error++;
-    if(error==10 && num_blocks == 0) {
-      Dbprintf("Error, no tag or bad tag");
-      return;
-    }
-    else if (tries==20 || error==10) {
-      Dbprintf("Error reading the tag");
-      Dbprintf("Here is the partial content");
-      goto end;
-    }
-    
-    for(i=0; i<n; i++)
-      Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
-               tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
-               tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
-    if(!ident) {
-      for(i=0; i<n; i++) {
-        if(IsBlock0PCF7931(tmpBlocks[i])) {
-          // Found block 0 ?
-          if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
-            // Found block 1!
-            // \o/
-            ident = 1;
-            memcpy(Blocks[0], tmpBlocks[i], 16);
-            Blocks[0][ALLOC] = 1;
-            memcpy(Blocks[1], tmpBlocks[i+1], 16);
-            Blocks[1][ALLOC] = 1;
-            max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
-            // Debug print
-            Dbprintf("(dbg) Max blocks: %d", max_blocks);
-            num_blocks = 2;
-            // Handle following blocks
-            for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
-              if(j==n) j=0;
-              if(j==i) break;
-              memcpy(Blocks[ind2], tmpBlocks[j], 16);
-              Blocks[ind2][ALLOC] = 1;
-            }
-            break;
-          }
-        }
-      }
-    }
-    else {
-      for(i=0; i<n; i++) { // Look for identical block in known blocks
-        if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
-          for(j=0; j<max_blocks; j++) {
-            if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
-              // Found an identical block
-              for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
-                if(ind2 < 0)
-                  ind2 = max_blocks;
-                if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
-                  // Dbprintf("Tmp %d -> Block %d", ind, ind2);
-                  memcpy(Blocks[ind2], tmpBlocks[ind], 16);
-                  Blocks[ind2][ALLOC] = 1;
-                  num_blocks++;
-                  if(num_blocks == max_blocks) goto end;
-                }
-              }
-              for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
-                if(ind2 > max_blocks)
-                  ind2 = 0;
-                if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
-                  // Dbprintf("Tmp %d -> Block %d", ind, ind2);
-                  memcpy(Blocks[ind2], tmpBlocks[ind], 16);
-                  Blocks[ind2][ALLOC] = 1;
-                  num_blocks++;
-                  if(num_blocks == max_blocks) goto end;
-                }
-              }
-            }
-          }
-        }
-      }
-    }
-    tries++;
-    if (BUTTON_PRESS()) return;
+		memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
+		n = DemodPCF7931((uint8_t**)tmpBlocks);
+		if(!n)
+			error++;
+		if(error==10 && num_blocks == 0) {
+			Dbprintf("Error, no tag or bad tag");
+			return;
+		}
+		else if (tries==20 || error==10) {
+			Dbprintf("Error reading the tag");
+			Dbprintf("Here is the partial content");
+			goto end;
+		}
+
+		for(i=0; i<n; i++)
+			Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+			    tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
+			    tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
+		if(!ident) {
+			for(i=0; i<n; i++) {
+				if(IsBlock0PCF7931(tmpBlocks[i])) {
+					// Found block 0 ?
+					if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
+						// Found block 1!
+						// \o/
+						ident = 1;
+						memcpy(Blocks[0], tmpBlocks[i], 16);
+						Blocks[0][ALLOC] = 1;
+						memcpy(Blocks[1], tmpBlocks[i+1], 16);
+						Blocks[1][ALLOC] = 1;
+						max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
+						// Debug print
+						Dbprintf("(dbg) Max blocks: %d", max_blocks);
+						num_blocks = 2;
+						// Handle following blocks
+						for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
+							if(j==n) j=0;
+							if(j==i) break;
+							memcpy(Blocks[ind2], tmpBlocks[j], 16);
+							Blocks[ind2][ALLOC] = 1;
+						}
+						break;
+					}
+				}
+			}
+		}
+		else {
+			for(i=0; i<n; i++) { // Look for identical block in known blocks
+				if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
+					for(j=0; j<max_blocks; j++) {
+						if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
+							// Found an identical block
+							for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
+								if(ind2 < 0)
+									ind2 = max_blocks;
+								if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+									// Dbprintf("Tmp %d -> Block %d", ind, ind2);
+									memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+									Blocks[ind2][ALLOC] = 1;
+									num_blocks++;
+									if(num_blocks == max_blocks) goto end;
+								}
+							}
+							for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
+								if(ind2 > max_blocks)
+									ind2 = 0;
+								if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
+									// Dbprintf("Tmp %d -> Block %d", ind, ind2);
+									memcpy(Blocks[ind2], tmpBlocks[ind], 16);
+									Blocks[ind2][ALLOC] = 1;
+									num_blocks++;
+									if(num_blocks == max_blocks) goto end;
+								}
+							}
+						}
+					}
+				}
+			}
+		}
+		tries++;
+		if (BUTTON_PRESS()) return;
 	} while (num_blocks != max_blocks);
 end:
 	Dbprintf("-----------------------------------------");
 	Dbprintf("Memory content:");
 	Dbprintf("-----------------------------------------");
 	for(i=0; i<max_blocks; i++) {
-    if(Blocks[i][ALLOC]==1)
-      Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
-               Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
-               Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
-    else
-      Dbprintf("<missing block %d>", i);
+		if(Blocks[i][ALLOC]==1)
+			Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
+			    Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
+			    Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
+		else
+			Dbprintf("<missing block %d>", i);
 	}
 	Dbprintf("-----------------------------------------");
-	
+
 	return ;
 }
 
@@ -1686,20 +1653,20 @@ uint8_t * fwd_write_ptr; //forwardlink bit pointer
 //====================================================================
 //--------------------------------------------------------------------
 uint8_t Prepare_Cmd( uint8_t cmd ) {
-  //--------------------------------------------------------------------
-  
-  *forward_ptr++ = 0; //start bit
-  *forward_ptr++ = 0; //second pause for 4050 code
-  
-  *forward_ptr++ = cmd;
-  cmd >>= 1;
-  *forward_ptr++ = cmd;
-  cmd >>= 1;
-  *forward_ptr++ = cmd;
-  cmd >>= 1;
-  *forward_ptr++ = cmd;
-  
-  return 6; //return number of emited bits
+	//--------------------------------------------------------------------
+
+	*forward_ptr++ = 0; //start bit
+	*forward_ptr++ = 0; //second pause for 4050 code
+
+	*forward_ptr++ = cmd;
+	cmd >>= 1;
+	*forward_ptr++ = cmd;
+	cmd >>= 1;
+	*forward_ptr++ = cmd;
+	cmd >>= 1;
+	*forward_ptr++ = cmd;
+
+	return 6; //return number of emited bits
 }
 
 //====================================================================
@@ -1709,21 +1676,21 @@ uint8_t Prepare_Cmd( uint8_t cmd ) {
 
 //--------------------------------------------------------------------
 uint8_t Prepare_Addr( uint8_t addr ) {
-  //--------------------------------------------------------------------
-  
-  register uint8_t line_parity;
-  
-  uint8_t i;
-  line_parity = 0;
-  for(i=0;i<6;i++) {
-    *forward_ptr++ = addr;
-    line_parity ^= addr;
-    addr >>= 1;
-  }
-  
-  *forward_ptr++ = (line_parity & 1);
-  
-  return 7; //return number of emited bits
+	//--------------------------------------------------------------------
+
+	register uint8_t line_parity;
+
+	uint8_t i;
+	line_parity = 0;
+	for(i=0;i<6;i++) {
+		*forward_ptr++ = addr;
+		line_parity ^= addr;
+		addr >>= 1;
+	}
+
+	*forward_ptr++ = (line_parity & 1);
+
+	return 7; //return number of emited bits
 }
 
 //====================================================================
@@ -1733,36 +1700,36 @@ uint8_t Prepare_Addr( uint8_t addr ) {
 
 //--------------------------------------------------------------------
 uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
-  //--------------------------------------------------------------------
-  
-  register uint8_t line_parity;
-  register uint8_t column_parity;
-  register uint8_t i, j;
-  register uint16_t data;
-  
-  data = data_low;
-  column_parity = 0;
-  
-  for(i=0; i<4; i++) {
-    line_parity = 0;
-    for(j=0; j<8; j++) {
-      line_parity ^= data;
-      column_parity ^= (data & 1) << j;
-      *forward_ptr++ = data;
-      data >>= 1;
-    }
-    *forward_ptr++ = line_parity;
-    if(i == 1)
-      data = data_hi;
-  }
-  
-  for(j=0; j<8; j++) {
-    *forward_ptr++ = column_parity;
-    column_parity >>= 1;
-  }
-  *forward_ptr = 0;
-  
-  return 45; //return number of emited bits
+	//--------------------------------------------------------------------
+
+	register uint8_t line_parity;
+	register uint8_t column_parity;
+	register uint8_t i, j;
+	register uint16_t data;
+
+	data = data_low;
+	column_parity = 0;
+
+	for(i=0; i<4; i++) {
+		line_parity = 0;
+		for(j=0; j<8; j++) {
+			line_parity ^= data;
+			column_parity ^= (data & 1) << j;
+			*forward_ptr++ = data;
+			data >>= 1;
+		}
+		*forward_ptr++ = line_parity;
+		if(i == 1)
+			data = data_hi;
+	}
+
+	for(j=0; j<8; j++) {
+		*forward_ptr++ = column_parity;
+		column_parity >>= 1;
+	}
+	*forward_ptr = 0;
+
+	return 45; //return number of emited bits
 }
 
 //====================================================================
@@ -1771,115 +1738,115 @@ uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
 // fwd_bit_count set with number of bits to be sent
 //====================================================================
 void SendForward(uint8_t fwd_bit_count) {
-  
-  fwd_write_ptr = forwardLink_data;
-  fwd_bit_sz = fwd_bit_count;
-  
-  LED_D_ON();
-  
-  //Field on
-  FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
-  FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
-  
-  // Give it a bit of time for the resonant antenna to settle.
-  // And for the tag to fully power up
-  SpinDelay(150);
-  
-  // force 1st mod pulse (start gap must be longer for 4305)
-  fwd_bit_sz--; //prepare next bit modulation
-  fwd_write_ptr++;
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-  SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
-  FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
-  SpinDelayUs(16*8); //16 cycles on (8us each)
-  
-  // now start writting
-  while(fwd_bit_sz-- > 0) { //prepare next bit modulation
-    if(((*fwd_write_ptr++) & 1) == 1)
-      SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
-    else {
-      //These timings work for 4469/4269/4305 (with the 55*8 above)
-      FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-      SpinDelayUs(23*8); //16-4 cycles off (8us each)
-      FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
-      FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
-      SpinDelayUs(9*8); //16 cycles on (8us each)
-    }
-  }
+
+	fwd_write_ptr = forwardLink_data;
+	fwd_bit_sz = fwd_bit_count;
+
+	LED_D_ON();
+
+	//Field on
+	FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
+
+	// Give it a bit of time for the resonant antenna to settle.
+	// And for the tag to fully power up
+	SpinDelay(150);
+
+	// force 1st mod pulse (start gap must be longer for 4305)
+	fwd_bit_sz--; //prepare next bit modulation
+	fwd_write_ptr++;
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
+	FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+	SpinDelayUs(16*8); //16 cycles on (8us each)
+
+	// now start writting
+	while(fwd_bit_sz-- > 0) { //prepare next bit modulation
+		if(((*fwd_write_ptr++) & 1) == 1)
+			SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
+		else {
+			//These timings work for 4469/4269/4305 (with the 55*8 above)
+			FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+			SpinDelayUs(23*8); //16-4 cycles off (8us each)
+			FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
+			FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
+			SpinDelayUs(9*8); //16 cycles on (8us each)
+		}
+	}
 }
 
 void EM4xLogin(uint32_t Password) {
-  
-  uint8_t fwd_bit_count;
-  
-  forward_ptr = forwardLink_data;
-  fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
-  fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
-  
-  SendForward(fwd_bit_count);
-  
-  //Wait for command to complete
-  SpinDelay(20);
-  
+
+	uint8_t fwd_bit_count;
+
+	forward_ptr = forwardLink_data;
+	fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
+	fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
+
+	SendForward(fwd_bit_count);
+
+	//Wait for command to complete
+	SpinDelay(20);
+
 }
 
 void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-  
-  uint8_t fwd_bit_count;
-  uint8_t *dest = (uint8_t *)BigBuf;
-  int m=0, i=0;
-  
-  //If password mode do login
-  if (PwdMode == 1) EM4xLogin(Pwd);
-  
-  forward_ptr = forwardLink_data;
-  fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
-  fwd_bit_count += Prepare_Addr( Address );
-  
-  m = sizeof(BigBuf);
-  // Clear destination buffer before sending the command
-  memset(dest, 128, m);
-  // Connect the A/D to the peak-detected low-frequency path.
-  SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
-  // Now set up the SSC to get the ADC samples that are now streaming at us.
-  FpgaSetupSsc();
-  
-  SendForward(fwd_bit_count);
-  
-  // Now do the acquisition
-  i = 0;
-  for(;;) {
-    if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
-      AT91C_BASE_SSC->SSC_THR = 0x43;
-    }
-    if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
-      dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-      i++;
-      if (i >= m) break;
-    }
-  }
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-  LED_D_OFF();
+
+	uint8_t fwd_bit_count;
+	uint8_t *dest = (uint8_t *)BigBuf;
+	int m=0, i=0;
+
+	//If password mode do login
+	if (PwdMode == 1) EM4xLogin(Pwd);
+
+	forward_ptr = forwardLink_data;
+	fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
+	fwd_bit_count += Prepare_Addr( Address );
+
+	m = sizeof(BigBuf);
+	// Clear destination buffer before sending the command
+	memset(dest, 128, m);
+	// Connect the A/D to the peak-detected low-frequency path.
+	SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
+	// Now set up the SSC to get the ADC samples that are now streaming at us.
+	FpgaSetupSsc();
+
+	SendForward(fwd_bit_count);
+
+	// Now do the acquisition
+	i = 0;
+	for(;;) {
+		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
+			AT91C_BASE_SSC->SSC_THR = 0x43;
+		}
+		if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
+			dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
+			i++;
+			if (i >= m) break;
+		}
+	}
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	LED_D_OFF();
 }
 
 void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
-  
-  uint8_t fwd_bit_count;
-  
-  //If password mode do login
-  if (PwdMode == 1) EM4xLogin(Pwd);
-  
-  forward_ptr = forwardLink_data;
-  fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
-  fwd_bit_count += Prepare_Addr( Address );
-  fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
-  
-  SendForward(fwd_bit_count);
-  
-  //Wait for write to complete
-  SpinDelay(20);
-  FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
-  LED_D_OFF();
+
+	uint8_t fwd_bit_count;
+
+	//If password mode do login
+	if (PwdMode == 1) EM4xLogin(Pwd);
+
+	forward_ptr = forwardLink_data;
+	fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
+	fwd_bit_count += Prepare_Addr( Address );
+	fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
+
+	SendForward(fwd_bit_count);
+
+	//Wait for write to complete
+	SpinDelay(20);
+	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
+	LED_D_OFF();
 }