X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/be2cf126bf74c3e0c60706dd2620c8a6d742e396..70ee301e0d21f73949173483f7e6728deb9c8b32:/armsrc/iso14443a.c

diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c
index b73495a3..b9fb9bae 100644
--- a/armsrc/iso14443a.c
+++ b/armsrc/iso14443a.c
@@ -15,15 +15,13 @@
 #include "util.h"
 #include "string.h"
 #include "cmd.h"
-
 #include "iso14443crc.h"
 #include "iso14443a.h"
 #include "crapto1.h"
 #include "mifareutil.h"
-
+#include "BigBuf.h"
 static uint32_t iso14a_timeout;
 int rsamples = 0;
-int tracing = TRUE;
 uint8_t trigger = 0;
 // the block number for the ISO14443-4 PCB
 static uint8_t iso14_pcb_blocknum = 0;
@@ -142,25 +140,40 @@ const uint8_t OddByteParity[256] = {
   1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
 };
 
+
 void iso14a_set_trigger(bool enable) {
 	trigger = enable;
 }
 
-void iso14a_clear_trace() {
-	uint8_t *trace = BigBuf_get_addr();
-	uint16_t max_traceLen = BigBuf_max_traceLen();
-	memset(trace, 0x44, max_traceLen);
-	traceLen = 0;
-}
-
-void iso14a_set_tracing(bool enable) {
-	tracing = enable;
-}
 
 void iso14a_set_timeout(uint32_t timeout) {
 	iso14a_timeout = timeout;
+	if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106);
+}
+
+
+void iso14a_set_ATS_timeout(uint8_t *ats) {
+
+	uint8_t tb1;
+	uint8_t fwi; 
+	uint32_t fwt;
+	
+	if (ats[0] > 1) {							// there is a format byte T0
+		if ((ats[1] & 0x20) == 0x20) {			// there is an interface byte TB(1)
+			if ((ats[1] & 0x10) == 0x10) {		// there is an interface byte TA(1) preceding TB(1)
+				tb1 = ats[3];
+			} else {
+				tb1 = ats[2];
+			}
+			fwi = (tb1 & 0xf0) >> 4;			// frame waiting indicator (FWI)
+			fwt = 256 * 16 * (1 << fwi);		// frame waiting time (FWT) in 1/fc
+			
+			iso14a_set_timeout(fwt/(8*16));
+		}
+	}
 }
 
+
 //-----------------------------------------------------------------------------
 // Generate the parity value for a byte sequence
 //
@@ -199,63 +212,12 @@ void AppendCrc14443a(uint8_t* data, int len)
 	ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1);
 }
 
-// The function LogTrace() is also used by the iClass implementation in iClass.c
-bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag)
+void AppendCrc14443b(uint8_t* data, int len)
 {
-	if (!tracing) return FALSE;
-	
-	uint8_t *trace = BigBuf_get_addr();
-	uint16_t num_paritybytes = (iLen-1)/8 + 1;	// number of valid paritybytes in *parity
-	uint16_t duration = timestamp_end - timestamp_start;
-
-	// Return when trace is full
-	uint16_t max_traceLen = BigBuf_max_traceLen();
-	if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) {
-		tracing = FALSE;	// don't trace any more
-		return FALSE;
-	}
-	
-	// Traceformat:
-	// 32 bits timestamp (little endian)
-	// 16 bits duration (little endian)
-	// 16 bits data length (little endian, Highest Bit used as readerToTag flag)
-	// y Bytes data
-	// x Bytes parity (one byte per 8 bytes data)
-	
-	// timestamp (start)
-	trace[traceLen++] = ((timestamp_start >> 0) & 0xff);
-	trace[traceLen++] = ((timestamp_start >> 8) & 0xff);
-	trace[traceLen++] = ((timestamp_start >> 16) & 0xff);
-	trace[traceLen++] = ((timestamp_start >> 24) & 0xff);
-	
-	// duration
-	trace[traceLen++] = ((duration >> 0) & 0xff);
-	trace[traceLen++] = ((duration >> 8) & 0xff);
-
-	// data length
-	trace[traceLen++] = ((iLen >> 0) & 0xff);
-	trace[traceLen++] = ((iLen >> 8) & 0xff);
-
-	// readerToTag flag
-	if (!readerToTag) {
-		trace[traceLen - 1] |= 0x80;
-	}
-
-	// data bytes
-	if (btBytes != NULL && iLen != 0) {
-		memcpy(trace + traceLen, btBytes, iLen);
-	}
-	traceLen += iLen;
-
-	// parity bytes
-	if (parity != NULL && iLen != 0) {
-		memcpy(trace + traceLen, parity, num_paritybytes);
-	}
-	traceLen += num_paritybytes;
-
-	return TRUE;
+	ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1);
 }
 
+
 //=============================================================================
 // ISO 14443 Type A - Miller decoder
 //=============================================================================
@@ -275,13 +237,17 @@ bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_
 static tUart Uart;
 
 // Lookup-Table to decide if 4 raw bits are a modulation.
-// We accept two or three consecutive "0" in any position with the rest "1"
+// We accept the following:
+// 0001  -   a 3 tick wide pause
+// 0011  -   a 2 tick wide pause, or a three tick wide pause shifted left
+// 0111  -   a 2 tick wide pause shifted left
+// 1001  -   a 2 tick wide pause shifted right
 const bool Mod_Miller_LUT[] = {
-	TRUE,  TRUE,  FALSE, TRUE,  FALSE, FALSE, FALSE, FALSE,
-	TRUE,  TRUE,  FALSE, FALSE, TRUE,  FALSE, FALSE, FALSE
+	FALSE,  TRUE, FALSE, TRUE,  FALSE, FALSE, FALSE, TRUE,
+	FALSE,  TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE
 };
-#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4])
-#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)])
+#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4])
+#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)])
 
 void UartReset()
 {
@@ -291,16 +257,19 @@ void UartReset()
 	Uart.parityLen = 0;					// number of decoded parity bytes
 	Uart.shiftReg = 0;					// shiftreg to hold decoded data bits
 	Uart.parityBits = 0;				// holds 8 parity bits
-	Uart.twoBits = 0x0000;	 			// buffer for 2 Bits
-	Uart.highCnt = 0;
 	Uart.startTime = 0;
 	Uart.endTime = 0;
+	
+	Uart.byteCntMax = 0;
+	Uart.posCnt = 0;
+	Uart.syncBit = 9999;
 }
 
 void UartInit(uint8_t *data, uint8_t *parity)
 {
 	Uart.output = data;
 	Uart.parity = parity;
+	Uart.fourBits = 0x00000000;			// clear the buffer for 4 Bits
 	UartReset();
 }
 
@@ -308,45 +277,48 @@ void UartInit(uint8_t *data, uint8_t *parity)
 static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 {
 
-	Uart.twoBits = (Uart.twoBits << 8) | bit;
+	Uart.fourBits = (Uart.fourBits << 8) | bit;
 	
-	if (Uart.state == STATE_UNSYNCD) {												// not yet synced
+	if (Uart.state == STATE_UNSYNCD) {											// not yet synced
 	
-		if (Uart.highCnt < 7) {													// wait for a stable unmodulated signal
-			if (Uart.twoBits == 0xffff) {
-				Uart.highCnt++;
-			} else {
-				Uart.highCnt = 0;
-			}
-		} else {	
-			Uart.syncBit = 0xFFFF; // not set
-			// look for 00xx1111 (the start bit)
-			if 		((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; 
-			else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6;
-			else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5;
-			else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4;
-			else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3;
-			else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2;
-			else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1;
-			else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0;
-			if (Uart.syncBit != 0xFFFF) {
+		Uart.syncBit = 9999; 													// not set
+		
+		// 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated	 	Sequence Z (a "0" or "start of communication")
+		// 11111111 8 ticks unmodulation									Sequence Y (a "0" or "end of communication" or "no information")
+		// 111100x1 4 ticks unmodulated followed by 2|3 ticks pause			Sequence X (a "1")
+
+		// The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from
+		// Sequence X followed by Sequence Y followed by Sequence Z     (111100x1 11111111 00x11111)
+		// we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern 
+		// (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's)
+		//
+#define ISO14443A_STARTBIT_MASK		0x07FFEF80		// mask is    00001111 11111111 1110 1111 10000000
+#define ISO14443A_STARTBIT_PATTERN	0x07FF8F80		// pattern is 00001111 11111111 1000 1111 10000000
+
+		if		((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1;
+		else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0;
+
+		if (Uart.syncBit != 9999) {												// found a sync bit
 				Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8);
 				Uart.startTime -= Uart.syncBit;
 				Uart.endTime = Uart.startTime;
 				Uart.state = STATE_START_OF_COMMUNICATION;
 			}
-		}
 
 	} else {
 
-		if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) {			
-			if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {		// Modulation in both halves - error
+		if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) {			
+			if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {		// Modulation in both halves - error
 				UartReset();
-				Uart.highCnt = 6;
 			} else {															// Modulation in first half = Sequence Z = logic "0"
 				if (Uart.state == STATE_MILLER_X) {								// error - must not follow after X
 					UartReset();
-					Uart.highCnt = 6;
 				} else {
 					Uart.bitCount++;
 					Uart.shiftReg = (Uart.shiftReg >> 1);						// add a 0 to the shiftreg
@@ -366,7 +338,7 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 				}
 			}
 		} else {
-			if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) {		// Modulation second half = Sequence X = logic "1"
+			if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) {		// Modulation second half = Sequence X = logic "1"
 				Uart.bitCount++;
 				Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100;					// add a 1 to the shiftreg
 				Uart.state = STATE_MILLER_X;
@@ -401,12 +373,11 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time)
 					if (Uart.len) {
 						return TRUE;											// we are finished with decoding the raw data sequence
 					} else {
-						UartReset();					// Nothing receiver - start over
+						UartReset();											// Nothing received - start over
 					}
 				}
 				if (Uart.state == STATE_START_OF_COMMUNICATION) {				// error - must not follow directly after SOC
 					UartReset();
-					Uart.highCnt = 6;
 				} else {														// a logic "0"
 					Uart.bitCount++;
 					Uart.shiftReg = (Uart.shiftReg >> 1);						// add a 0 to the shiftreg
@@ -473,6 +444,11 @@ void DemodReset()
 	Demod.highCnt = 0;
 	Demod.startTime = 0;
 	Demod.endTime = 0;
+	
+	//
+	Demod.bitCount = 0;
+	Demod.syncBit = 0xFFFF;
+	Demod.samples = 0;
 }
 
 void DemodInit(uint8_t *data, uint8_t *parity)
@@ -571,9 +547,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
 				}
 			}
 		}
-			
 	} 
-
     return FALSE;	// not finished yet, need more data
 }
 
@@ -616,8 +590,8 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 	uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
 
 	// init trace buffer
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
+	clear_trace();
+	set_tracing(TRUE);
 
 	uint8_t *data = dmaBuf;
 	uint8_t previous_data = 0;
@@ -723,6 +697,9 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 
 					// And ready to receive another response.
 					DemodReset();
+					// And reset the Miller decoder including itS (now outdated) input buffer
+					UartInit(receivedCmd, receivedCmdPar);
+
 					LED_C_OFF();
 				} 
 				TagIsActive = (Demod.state != DEMOD_UNSYNCD);
@@ -741,7 +718,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) {
 
 	FpgaDisableSscDma();
 	Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
-	Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]);
+	Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
 	LEDsoff();
 }
 
@@ -1077,8 +1054,8 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
 	free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
 
 	// clear trace
-    iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
+	clear_trace();
+	set_tracing(TRUE);
 
 	// Prepare the responses of the anticollision phase
 	// there will be not enough time to do this at the moment the reader sends it REQA
@@ -1380,7 +1357,7 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8
 		}
 
 		// Only transmit parity bit if we transmitted a complete byte
-		if (j == 8) {
+		if (j == 8 && parity != NULL) {
 			// Get the parity bit
 			if (parity[i>>3] & (0x80 >> (i&0x0007))) {
 				// Sequence X
@@ -1425,6 +1402,7 @@ void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *p
   CodeIso14443aBitsAsReaderPar(cmd, len*8, parity);
 }
 
+
 //-----------------------------------------------------------------------------
 // Wait for commands from reader
 // Stop when button is pressed (return 1) or field was gone (return 2)
@@ -1447,9 +1425,9 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 	// Set ADC to read field strength
 	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
 	AT91C_BASE_ADC->ADC_MR =
-				ADC_MODE_PRESCALE(32) |
-				ADC_MODE_STARTUP_TIME(16) |
-				ADC_MODE_SAMPLE_HOLD_TIME(8);
+				ADC_MODE_PRESCALE(63) |
+				ADC_MODE_STARTUP_TIME(1) |
+				ADC_MODE_SAMPLE_HOLD_TIME(15);
 	AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF);
 	// start ADC
 	AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
@@ -1459,7 +1437,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 
 	// Clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-
+	
 	for(;;) {
 		WDT_HIT();
 
@@ -1471,7 +1449,7 @@ static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity)
 			analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF];
 			AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
 			if (analogCnt >= 32) {
-				if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
+				if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) {
 					vtime = GetTickCount();
 					if (!timer) timer = vtime;
 					// 50ms no field --> card to idle state
@@ -1546,14 +1524,15 @@ static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNe
 	}
 
 	// Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
-	for (i = 0; i < 2 ; ) {
+	uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
+	for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
 		if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
 			AT91C_BASE_SSC->SSC_THR = SEC_F;
 			FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
 			i++;
 		}
 	}
-	
+
 	LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0);
 
 	return 0;
@@ -1642,7 +1621,7 @@ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_Start
 //-----------------------------------------------------------------------------
 static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset)
 {
-	uint32_t c;
+	uint32_t c = 0x00;
 	
 	// Set FPGA mode to "reader listen mode", no modulation (listen
 	// only, since we are receiving, not transmitting).
@@ -1655,8 +1634,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
 
 	// clear RXRDY:
     uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
-	
-	c = 0;
+
 	for(;;) {
 		WDT_HIT();
 
@@ -1665,13 +1643,14 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive
 			if(ManchesterDecoding(b, offset, 0)) {
 				NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD);
 				return TRUE;
-			} else if (c++ > iso14a_timeout) {
+			} else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) {
 				return FALSE; 
 			}
 		}
 	}
 }
 
+
 void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing)
 {
 	CodeIso14443aBitsAsReaderPar(frame, bits, par);
@@ -1687,11 +1666,13 @@ void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t
 	}
 }
 
+
 void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing)
 {
   ReaderTransmitBitsPar(frame, len*8, par, timing);
 }
 
+
 void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
 {
   // Generate parity and redirect
@@ -1700,6 +1681,7 @@ void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing)
   ReaderTransmitBitsPar(frame, len, par, timing);
 }
 
+
 void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing)
 {
   // Generate parity and redirect
@@ -1760,6 +1742,11 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 		memset(uid_ptr,0,10);
 	}
 
+	// check for proprietary anticollision:
+	if ((resp[0] & 0x1F) == 0) {
+		return 3;
+	}
+	
 	// OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in
 	// which case we need to make a cascade 2 request and select - this is a long UID
 	// While the UID is not complete, the 3nd bit (from the right) is set in the SAK.
@@ -1863,6 +1850,10 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u
 
 	// reset the PCB block number
 	iso14_pcb_blocknum = 0;
+
+	// set default timeout based on ATS
+	iso14a_set_ATS_timeout(resp);
+
 	return 1;	
 }
 
@@ -1888,7 +1879,7 @@ void iso14443a_setup(uint8_t fpga_minor_mode) {
 	DemodReset();
 	UartReset();
 	NextTransferTime = 2*DELAY_ARM2AIR_AS_READER;
-	iso14a_set_timeout(1050); // 10ms default
+	iso14a_set_timeout(10*106); // 10ms default
 }
 
 int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) {
@@ -1927,17 +1918,18 @@ void ReaderIso14443a(UsbCommand *c)
 {
 	iso14a_command_t param = c->arg[0];
 	uint8_t *cmd = c->d.asBytes;
-	size_t len = c->arg[1];
-	size_t lenbits = c->arg[2];
+	size_t len = c->arg[1] & 0xffff;
+	size_t lenbits = c->arg[1] >> 16;
+	uint32_t timeout = c->arg[2];
 	uint32_t arg0 = 0;
 	byte_t buf[USB_CMD_DATA_SIZE];
 	uint8_t par[MAX_PARITY_SIZE];
   
 	if(param & ISO14A_CONNECT) {
-		iso14a_clear_trace();
+		clear_trace();
 	}
 
-	iso14a_set_tracing(TRUE);
+	set_tracing(TRUE);
 
 	if(param & ISO14A_REQUEST_TRIGGER) {
 		iso14a_set_trigger(TRUE);
@@ -1953,7 +1945,7 @@ void ReaderIso14443a(UsbCommand *c)
 	}
 
 	if(param & ISO14A_SET_TIMEOUT) {
-		iso14a_set_timeout(c->arg[2]);
+		iso14a_set_timeout(timeout);
 	}
 
 	if(param & ISO14A_APDU) {
@@ -1963,15 +1955,38 @@ void ReaderIso14443a(UsbCommand *c)
 
 	if(param & ISO14A_RAW) {
 		if(param & ISO14A_APPEND_CRC) {
+			if(param & ISO14A_TOPAZMODE) {
+				AppendCrc14443b(cmd,len);
+			} else {
 			AppendCrc14443a(cmd,len);
+			}
 			len += 2;
 			if (lenbits) lenbits += 16;
 		}
-		if(lenbits>0) {
+		if(lenbits>0) {				// want to send a specific number of bits (e.g. short commands)
+			if(param & ISO14A_TOPAZMODE) {
+				int bits_to_send = lenbits;
+				uint16_t i = 0;
+				ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL);		// first byte is always short (7bits) and no parity
+				bits_to_send -= 7;
+				while (bits_to_send > 0) {
+					ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL);	// following bytes are 8 bit and no parity
+					bits_to_send -= 8;
+				}
+			} else {
 			GetParity(cmd, lenbits/8, par);
-			ReaderTransmitBitsPar(cmd, lenbits, par, NULL);
+				ReaderTransmitBitsPar(cmd, lenbits, par, NULL);							// bytes are 8 bit with odd parity
+			}
+		} else {					// want to send complete bytes only
+			if(param & ISO14A_TOPAZMODE) {
+				uint16_t i = 0;
+				ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL);						// first byte: 7 bits, no paritiy
+				while (i < len) {
+					ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL);					// following bytes: 8 bits, no paritiy
+				}
 		} else {
-			ReaderTransmit(cmd,len, NULL);
+				ReaderTransmit(cmd,len, NULL);											// 8 bits, odd parity
+			}
 		}
 		arg0 = ReaderReceive(buf, par);
 		cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
@@ -2033,8 +2048,8 @@ void ReaderMifare(bool first_try)
 	// free eventually allocated BigBuf memory. We want all for tracing.
 	BigBuf_free();
 	
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
+	clear_trace();
+	set_tracing(TRUE);
 
 	byte_t nt_diff = 0;
 	uint8_t par[1] = {0};	// maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
@@ -2207,7 +2222,7 @@ void ReaderMifare(bool first_try)
 	FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
 	LEDsoff();
 
-	iso14a_set_tracing(FALSE);
+	set_tracing(FALSE);
 }
 
 /**
@@ -2264,9 +2279,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 
 	// free eventually allocated BigBuf memory but keep Emulator Memory
 	BigBuf_free_keep_EM();
+
 	// clear trace
-    iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
+	clear_trace();
+	set_tracing(TRUE);
 
 	// Authenticate response - nonce
 	uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
@@ -2328,10 +2344,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 		WDT_HIT();
 
 		// find reader field
-		// Vref = 3300mV, and an 10:1 voltage divider on the input
-		// can measure voltages up to 33000 mV
 		if (cardSTATE == MFEMUL_NOFIELD) {
-			vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
+			vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
 			if (vHf > MF_MINFIELDV) {
 				cardSTATE_TO_IDLE();
 				LED_A_ON();
@@ -2406,11 +2420,12 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
 					break;
 				}
+
 				uint32_t ar = bytes_to_num(receivedCmd, 4);
 				uint32_t nr = bytes_to_num(&receivedCmd[4], 4);
 
 				//Collect AR/NR
-				if(ar_nr_collected < 2){
+				if(ar_nr_collected < 2 && cardAUTHSC == 2){
 					if(ar_nr_responses[2] != ar)
 					{// Avoid duplicates... probably not necessary, ar should vary. 
 						ar_nr_responses[ar_nr_collected*4] = cuid;
@@ -2418,6 +2433,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 						ar_nr_responses[ar_nr_collected*4+2] = ar;
 						ar_nr_responses[ar_nr_collected*4+3] = nr;
 						ar_nr_collected++;
+					}						
+					// Interactive mode flag, means we need to send ACK
+					if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
+					{
+						finished = true;
 					}
 				}
 
@@ -2512,6 +2532,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 						ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); 
 						num_to_bytes(ans, 4, rAUTH_AT);
 					}
+
 					EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT));
 					//Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]);
 					cardSTATE = MFEMUL_AUTH1;
@@ -2564,7 +2585,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					mf_crypto1_encrypt(pcs, response, 18, response_par);
 					EmSendCmdPar(response, 18, response_par);
 					numReads++;
-					if(exitAfterNReads > 0 && numReads == exitAfterNReads) {
+					if(exitAfterNReads > 0 && numReads >= exitAfterNReads) {
 						Dbprintf("%d reads done, exiting", numReads);
 						finished = true;
 					}
@@ -2684,15 +2705,15 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 	if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK
 	{
 		//May just aswell send the collected ar_nr in the response aswell
-		cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4);
+		cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,1,0,&ar_nr_responses,ar_nr_collected*4*4);
 	}
 
-	if(flags & FLAG_NR_AR_ATTACK)
+	if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 )
 	{
-		if(ar_nr_collected > 1) {
+		if(ar_nr_collected > 1 ) {
 			Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
 			Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
-					 ar_nr_responses[0], // UID
+					ar_nr_responses[0], // UID
 					ar_nr_responses[1], //NT
 					ar_nr_responses[2], //AR1
 					ar_nr_responses[3], //NR1
@@ -2701,7 +2722,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 					);
 		} else {
 			Dbprintf("Failed to obtain two AR/NR pairs!");
-			if(ar_nr_collected >0) {
+			if(ar_nr_collected > 0 ) {
 				Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
 						ar_nr_responses[0], // UID
 						ar_nr_responses[1], //NT
@@ -2711,7 +2732,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
 			}
 		}
 	}
-	if (MF_DBGLEVEL >= 1)	Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",	tracing, traceLen);
+	if (MF_DBGLEVEL >= 1)	Dbprintf("Emulator stopped. Tracing: %d  trace length: %d ",	tracing, BigBuf_get_traceLen());
+	
 }
 
 
@@ -2728,8 +2750,8 @@ void RAMFUNC SniffMifare(uint8_t param) {
 	// C(red) A(yellow) B(green)
 	LEDsoff();
 	// init trace buffer
-	iso14a_clear_trace();
-	iso14a_set_tracing(TRUE);
+	clear_trace();
+	set_tracing(TRUE);
 
 	// The command (reader -> tag) that we're receiving.
 	// The length of a received command will in most cases be no more than 18 bytes.
@@ -2836,7 +2858,7 @@ void RAMFUNC SniffMifare(uint8_t param) {
 					if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break;
 
 					/* And ready to receive another command. */
-					UartReset();
+					UartInit(receivedCmd, receivedCmdPar);
 					
 					/* And also reset the demod code */
 					DemodReset();
@@ -2853,6 +2875,9 @@ void RAMFUNC SniffMifare(uint8_t param) {
 
 					// And ready to receive another response.
 					DemodReset();
+
+					// And reset the Miller decoder including its (now outdated) input buffer
+					UartInit(receivedCmd, receivedCmdPar);
 				}
 				TagIsActive = (Demod.state != DEMOD_UNSYNCD);
 			}