X-Git-Url: https://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/be2d41b73a10f52c319dcf2c0664ff071fb753f1..902c470d3860ee90fef19ebedb0335774c3250c3:/armsrc/appmain.c diff --git a/armsrc/appmain.c b/armsrc/appmain.c index 68d2551f..64768922 100644 --- a/armsrc/appmain.c +++ b/armsrc/appmain.c @@ -10,19 +10,18 @@ // executes. //----------------------------------------------------------------------------- +#include + #include "usb_cdc.h" #include "cmd.h" - #include "proxmark3.h" #include "apps.h" #include "util.h" #include "printf.h" #include "string.h" - -#include - #include "legicrf.h" -#include +#include "hitag2.h" +#include "hitagS.h" #include "lfsampling.h" #include "BigBuf.h" #include "mifareutil.h" @@ -36,8 +35,6 @@ #include "iso14443a.h" #endif -#define abs(x) ( ((x)<0) ? -(x) : (x) ) - //============================================================================= // A buffer where we can queue things up to be sent through the FPGA, for // any purpose (fake tag, as reader, whatever). We go MSB first, since that @@ -138,35 +135,28 @@ void Dbhexdump(int len, uint8_t *d, bool bAsci) { // return that. //----------------------------------------------------------------------------- static int ReadAdc(int ch) -{ - uint32_t d; - - AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; - AT91C_BASE_ADC->ADC_MR = - ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz - ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us - ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us - +{ // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value. - // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant - // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. + // AMPL_HI is are high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant + // of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. // // The maths are: // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be // - // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%) - // - // Note: with the "historic" values in the comments above, the error was 34% !!! - - AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); + // v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%) - AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; + AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; + AT91C_BASE_ADC->ADC_MR = + ADC_MODE_PRESCALE(63) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz + ADC_MODE_STARTUP_TIME(1) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us + ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us - while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) - ; - d = AT91C_BASE_ADC->ADC_CDR[ch]; + AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); + AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; - return d; + while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {}; + + return AT91C_BASE_ADC->ADC_CDR[ch]; } int AvgAdc(int ch) // was static - merlok @@ -181,13 +171,9 @@ int AvgAdc(int ch) // was static - merlok return (a + 15) >> 5; } -void MeasureAntennaTuning(void) +void MeasureAntennaTuningLfOnly(int *vLf125, int *vLf134, int *peakf, int *peakv, uint8_t LF_Results[]) { - uint8_t LF_Results[256]; - int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0 - int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV - - LED_B_ON(); + int i, adcval = 0, peak = 0; /* * Sweeps the useful LF range of the proxmark from @@ -197,38 +183,69 @@ void MeasureAntennaTuning(void) * the resonating frequency of your LF antenna * ( hopefully around 95 if it is tuned to 125kHz!) */ - - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + SpinDelay(50); + for (i=255; i>=19; i--) { - WDT_HIT(); + WDT_HIT(); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); SpinDelay(20); adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10); - if (i==95) vLf125 = adcval; // voltage at 125Khz - if (i==89) vLf134 = adcval; // voltage at 134Khz + if (i==95) *vLf125 = adcval; // voltage at 125Khz + if (i==89) *vLf134 = adcval; // voltage at 134Khz - LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes + LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes if(LF_Results[i] > peak) { - peakv = adcval; + *peakv = adcval; peak = LF_Results[i]; - peakf = i; + *peakf = i; //ptr = i; } } for (i=18; i >= 0; i--) LF_Results[i] = 0; - - LED_A_ON(); + + return; +} + +void MeasureAntennaTuningHfOnly(int *vHf) +{ // Let the FPGA drive the high-frequency antenna around 13.56 MHz. - FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + LED_A_ON(); + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(20); - vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; + *vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; + LED_A_OFF(); + + return; +} + +void MeasureAntennaTuning(int mode) +{ + uint8_t LF_Results[256] = {0}; + int peakv = 0, peakf = 0; + int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV + + LED_B_ON(); + + if (((mode & FLAG_TUNE_ALL) == FLAG_TUNE_ALL) && (FpgaGetCurrent() == FPGA_BITSTREAM_HF)) { + // Reverse "standard" order if HF already loaded, to avoid unnecessary swap. + MeasureAntennaTuningHfOnly(&vHf); + MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results); + } else { + if (mode & FLAG_TUNE_LF) { + MeasureAntennaTuningLfOnly(&vLf125, &vLf134, &peakf, &peakv, LF_Results); + } + if (mode & FLAG_TUNE_HF) { + MeasureAntennaTuningHfOnly(&vHf); + } + } - cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256); + cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125>>1 | (vLf134>>1<<16), vHf, peakf | (peakv>>1<<16), LF_Results, 256); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - LED_A_OFF(); LED_B_OFF(); return; } @@ -428,7 +445,7 @@ void StandAloneMode14a() SpinDelay(300); } } - if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid)) + if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0, true)) continue; else { @@ -662,7 +679,7 @@ void SamyRun() SpinDelay(500); CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); - Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]); + Dbprintf("Recorded %x %x%08x", selected, high[selected], low[selected]); LEDsoff(); LED(selected + 1, 0); @@ -683,7 +700,7 @@ void SamyRun() LED(LED_ORANGE, 0); // record - Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]); + Dbprintf("Cloning %x %x%08x", selected, high[selected], low[selected]); // wait for button to be released while(BUTTON_PRESS()) @@ -692,8 +709,8 @@ void SamyRun() /* need this delay to prevent catching some weird data */ SpinDelay(500); - CopyHIDtoT55x7(high[selected], low[selected], 0, 0); - Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]); + CopyHIDtoT55x7(0, high[selected], low[selected], 0); + Dbprintf("Cloned %x %x%08x", selected, high[selected], low[selected]); LEDsoff(); LED(selected + 1, 0); @@ -726,7 +743,7 @@ void SamyRun() // wait for button to be released while(BUTTON_PRESS()) WDT_HIT(); - Dbprintf("%x %x %x", selected, high[selected], low[selected]); + Dbprintf("%x %x%08x", selected, high[selected], low[selected]); CmdHIDsimTAG(high[selected], low[selected], 0); DbpString("Done playing"); if (BUTTON_HELD(1000) > 0) @@ -841,7 +858,7 @@ void ListenReaderField(int limit) if (limit != HF_ONLY) { if(mode == 1) { - if (abs(lf_av - lf_baseline) > REPORT_CHANGE) + if (ABS(lf_av - lf_baseline) > REPORT_CHANGE) LED_D_ON(); else LED_D_OFF(); @@ -849,7 +866,7 @@ void ListenReaderField(int limit) lf_av_new = AvgAdc(ADC_CHAN_LF); // see if there's a significant change - if(abs(lf_av - lf_av_new) > REPORT_CHANGE) { + if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) { Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10); lf_av = lf_av_new; if (lf_av > lf_max) @@ -859,7 +876,7 @@ void ListenReaderField(int limit) if (limit != LF_ONLY) { if (mode == 1){ - if (abs(hf_av - hf_baseline) > REPORT_CHANGE) + if (ABS(hf_av - hf_baseline) > REPORT_CHANGE) LED_B_ON(); else LED_B_OFF(); @@ -867,7 +884,7 @@ void ListenReaderField(int limit) hf_av_new = AvgAdc(ADC_CHAN_HF); // see if there's a significant change - if(abs(hf_av - hf_av_new) > REPORT_CHANGE) { + if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) { Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10); hf_av = hf_av_new; if (hf_av > hf_max) @@ -916,7 +933,7 @@ void UsbPacketReceived(uint8_t *packet, int len) setSamplingConfig((sample_config *) c->d.asBytes); break; case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: - cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0); + cmd_send(CMD_ACK,SampleLF(c->arg[0], c->arg[1]),0,0,0,0); break; case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); @@ -946,7 +963,7 @@ void UsbPacketReceived(uint8_t *packet, int len) CmdIOdemodFSK(c->arg[0], 0, 0, 1); break; case CMD_IO_CLONE_TAG: - CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]); + CopyIOtoT55x7(c->arg[0], c->arg[1]); break; case CMD_EM410X_DEMOD: CmdEM410xdemod(c->arg[0], 0, 0, 1); @@ -983,9 +1000,9 @@ void UsbPacketReceived(uint8_t *packet, int len) case CMD_T55XX_WAKEUP: T55xxWakeUp(c->arg[0]); break; - //case CMD_T55XX_READ_TRACE: - // T55xxReadTrace(); - // break; + case CMD_T55XX_RESET_READ: + T55xxResetRead(); + break; case CMD_PCF7931_READ: ReadPCF7931(); break; @@ -993,14 +1010,20 @@ void UsbPacketReceived(uint8_t *packet, int len) WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]); break; case CMD_EM4X_READ_WORD: - EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]); + EM4xReadWord(c->arg[0], c->arg[1],c->arg[2]); break; case CMD_EM4X_WRITE_WORD: - EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); + EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]); break; case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation CmdAWIDdemodFSK(c->arg[0], 0, 0, 1); break; + case CMD_VIKING_CLONE_TAG: + CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]); + break; + case CMD_COTAG: + Cotag(c->arg[0]); + break; #endif #ifdef WITH_HITAG @@ -1013,6 +1036,23 @@ void UsbPacketReceived(uint8_t *packet, int len) case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); break; + case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content + SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes); + break; + case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file + check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes); + break; + case CMD_READ_HITAG_S://Reader for only Hitag S tags, args = key or challenge + ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); + break; + case CMD_WR_HITAG_S://writer for Hitag tags args=data to write,page and key or challenge + if ((hitag_function)c->arg[0] < 10) { + WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]); + } + else if ((hitag_function)c->arg[0] >= 10) { + WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]); + } + break; #endif #ifdef WITH_ISO15693 @@ -1123,6 +1163,9 @@ void UsbPacketReceived(uint8_t *packet, int len) case CMD_MIFAREU_WRITEBL: MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes); break; + case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES: + MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; case CMD_MIFARE_NESTED: MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; @@ -1151,6 +1194,9 @@ void UsbPacketReceived(uint8_t *packet, int len) break; // Work with "magic Chinese" card + case CMD_MIFARE_CWIPE: + MifareCWipe(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; case CMD_MIFARE_CSETBLOCK: MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; @@ -1204,13 +1250,18 @@ void UsbPacketReceived(uint8_t *packet, int len) iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes); break; #endif +#ifdef WITH_HFSNOOP + case CMD_HF_SNIFFER: + HfSnoop(c->arg[0], c->arg[1]); + break; +#endif case CMD_BUFF_CLEAR: BigBuf_Clear(); break; case CMD_MEASURE_ANTENNA_TUNING: - MeasureAntennaTuning(); + MeasureAntennaTuning(c->arg[0]); break; case CMD_MEASURE_ANTENNA_TUNING_HF: @@ -1241,6 +1292,15 @@ void UsbPacketReceived(uint8_t *packet, int len) break; case CMD_DOWNLOADED_SIM_SAMPLES_125K: { + // iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before. + // to be able to use this one for uploading data to device + // arg1 = 0 upload for LF usage + // 1 upload for HF usage + if (c->arg[1] == 0) + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + else + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + uint8_t *b = BigBuf_get_addr(); memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); cmd_send(CMD_ACK,0,0,0,0,0); @@ -1251,7 +1311,7 @@ void UsbPacketReceived(uint8_t *packet, int len) break; case CMD_SET_LF_DIVISOR: - FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); break; @@ -1340,7 +1400,7 @@ void __attribute__((noreturn)) AppMain(void) AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | - AT91C_PMC_PRES_CLK_4; + AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; // Reset SPI